Quantum Mechanics H.W №3

Salwa Al Saleh

Problem (1)

Express the position and momentum operators X and P in terms of a and a^{\dagger}

Problem(2)

Verify the commutation relations of the triple H^{\prime}, a and a^{\dagger} stated in the lecture notes, recall the canonical commutation relation $[X, P]=i \hbar I$.

Problem (3)

Find $\langle X\rangle,\langle P\rangle,\left\langle X^{2}\right\rangle$ and $\left\langle P^{2}\right\rangle$.

Problem(4)

A quantum harmonic oscillator, in the 2nd excited state, having an energy of 2.45 eV , find its angular frequency, and period.

Problem (5)

Find the eigenfunction $\psi_{1}(x)$, and show that it is orthogonal to $\psi_{0}(x)$ seen in the lecture.

Problem (6)

From problem (3), verify the uncertainty relation for position and momentum .

Problem (7)

Verify that $a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$

Problem (8)

Write the operators a and a^{\dagger} as matrices acting on the vector states :

$$
|0\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right) \quad|1\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right) \quad|2\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right) \ldots
$$

