Isolation and Purification of Nucleic Acids

Nucleic Acid Purification

There are many DNA purification methods. All must:

- 1. Effectively disrupt cells or tissues (usually using detergent)
- 2. Denature proteins and nucleoprotein complexes (a protease/denaturant)
- 3. Inactivate endogenous nucleases (chelating agents)
- Purify nucleic acid target away from other nucleic acids and protein (could involve RNases, proteases, selective matrix and alcohol precipitations)

Disruption of Cells/Tissues

Most purification methods disrupt cells using lysis buffer containing:

- **Detergent** to disrupt the lipid bilayer of the cell membrane
- Denaturants to release chromosomal DNA and denature proteins

Additional enzymes are required for lysis of some cell types:

- Gram-positive bacteria require lysozyme to disrupt the bacterial cell wall.
- Yeasts require addition of zymolase to disrupt the cell wall.
- Plant cells may require cellulase pre-treatment.

Disruption of Cells: Membrane Disruption

- Detergents are used to disrupt the lipid:lipid and lipid:protein interactions in the cell membrane, causing solubilization of the membrane.
- Ionic detergents (such as sodium dodecyl sulfate; SDS) also denature proteins by binding to charged residues, leading to local changes in conformation.

Protein Denaturation

Denaturation = Modification of conformation to unfold protein, disrupting secondary structure but not breaking the peptide bonds between amino acid residues.

Denaturation results in:

- Decreased protein solubility
- Loss of biological activity
- Improved digestion by proteases
- Release of chromosomal DNA from nucleoprotein complexes ("unwinding" of DNA and release from associated histones)

Protein Denaturing Agents

- Ionic detergents, such as SDS, disrupt hydrophobic interactions and hydrogen bonds.
- Chaotropic agents such as urea and guanidine disrupt hydrogen bonds.
- Reducing agents break disulfide bonds.
- Salts associate with charged groups and at low or moderate concentrations increase protein solubility.
- Heat disrupts hydrogen bonds and nonpolar interactions.
- Some DNA purification methods incorporate proteases such as proteinase K to digest proteins.

Inactivation of Nucleases

- Chelating agents, such as EDTA, sequester Mg²⁺ required for nuclease activity.
- Proteinase K digests and destroys all proteins, including nucleases.
- Some commercial purification systems provide a single solution for cell lysis, protein digestion/denaturation and nuclease inactivation.

Removal of RNA

- Some procedures incorporate RNase digestion during cell lysate preparation.
- In other procedures, RNase digestion is incorporated during wash steps.

Isolated DNA could be used in:

- Amplification methods (PCR)
- Cloning
- Sequencing
- Transfection
- Invitro transcription

Nucleic Acid Preparation Choosing an Isolation Method

- Important factors are:
 - Processing speed
 - Ease of use
 - Yield of DNA or RNA
 - Quality of DNA and RNA prepared (amplification performance)
 - Shelf life/storage conditions
 - Quality assurance criteria
 - Cost of preparation

Basic Steps in Isolating DNA from Clinical Specimens

Separate WBCs from RBCs, if necessary Lyse WBCs or other nucleated cells Denature/digest proteins Separate contaminants (e.g., proteins) from DNA Precipitate DNA if necessary Resuspend DNA in final buffer

DNA Isolation Methods Liquid Phase Organic Extraction

- Phenol chloroform/isoamyl alcohol
 - Two layers are formed.
 - Proteins remain at interface.
 - DNA is removed with top aqueous layer.
 - DNA is precipitated with ethanol and rehydrated.
- Disadvantages:
 - Slow, labor-intensive, toxic (phenol, chloroform)
 - Fume hood required, disposal of hazardous materials required

DNA Isolation Methods: Liquid Phase Nonorganic Salt Precipitation

- Cell membranes are lysed and proteins are denatured by detergent (such as SDS).
 - RNA is removed with RNase.
 - Proteins are precipitated with salt solution.
 - DNA is precipitated with alcohol and rehydrated.
- Advantages:
 - Fast and easy method
 - Uses nontoxic materials, no fume hood required, no hazardous materials disposal issues
 - Produces high-quality DNA

DNA Isolation Methods Solid Phase Procedures

- Uses solid support columns, magnetic beads.
- Solid support columns: Fibrous or silica matrices bind DNA allowing separation from other contaminants.
- Magnetic beads: DNA binds to beads; beads are separated from other contaminants with magnet.
- Advantages:
 - Fast and easy, no precipitation required

DNA Purification Method Comparison

Liquid Phase Solid Phase (Pre-lyse cells) (Lyse RBCs) Apply sample Lyse cells Wash (Protein digestion-ProK) Elute DNA Separate proteins from DNA Precipitate DNA-alcohol **Rehydrate DNA**

Basic Steps in Isolating RNA

Precautions for Working with RNA

• RNA is not a stable molecule!

- It is easily degraded by RNase enzymes.
- Use sterile, disposable plastic ware (tubes, filter tips) marked "For RNA Use Only".
- Always wear gloves and work in a hood whenever possible/practical.

RNA Isolation Methods Guanidinium-based Organic Isolation

- Phenol/guanidinium solution disrupts cells, solubilizes cell components, but maintains integrity of RNA.
- Add chloroform, mix, and centrifuge.
- Proteins/DNA remain at interface.
- RNA is removed with aqueous top layer.
- RNA is precipitated with alcohol and rehydrated.
- Disadvantages: fume hood required, hazardous waste disposal issues

RNA Isolation Methods Nonorganic Salt Precipitation

- Cell membranes are lysed and proteins are denatured by detergent (such as SDS) in the presence of EDTA or other RNase inhibitors.
- Proteins/DNA are precipitated with a high concentration salt solution.
- RNA is precipitated with alcohol and rehydrated.
- Advantages:
 - Fast and easy, nontoxic
 - Produces high quality RNA

Resuspending Final Nucleic Acid Samples

- Have some idea of expected nucleic acid yield.
 - Choose diluent volume according to desired concentration.
- Resuspend DNA in TE buffer or ultra pure DNAsefree water.
- Resuspend RNA in ultra pure RNase-free water.
- Nucleic acid concentration could be measured by Abs at 260 nm.

Nucleic Acid Analysis

- DNA or RNA is characterized using several different methods for assessing quantity, quality, and molecular size.
 - UV spectrophotometry
 - Agarose gel electrophoresis

Quantity from UV Spectrophotometry

- DNA and RNA absorb maximally at 260 nm.
- Proteins absorb at 280 nm.
- Background scatter absorbs at 320 nm.

Quantification Methods

Spectrophotometry: Use of light absorbance to measure concentration. Many biological substances absorb light. The spectrophometer measures absorbance of light at specific wavelengths

- Most commonly used method
- DNA concentration can be calculated based on a nm:
 - $A = \varepsilon \times c \times I$ (Beer-Lambert Law)
 - A = absorbance
 - ϵ = extinction coefficient
 - c = concentration
 - I = path length

Quality from UV Spectrophotometry

 A_{260}/A_{280} = measure of purity $(A_{260} - A_{320})/(A_{280} - A_{320})$ 1.8 - 2.0 = good DNA or RNA <1.8 = too much protein or other contaminant (salt, EDTA or organic solvents)

Quality from Agarose Gel Electrophoresis

- Genomic DNA:
 - 0.6% to 1% gel, stain with ethidium bromide.
 - Electrophorese at 70–80 volts, 45–90 minutes.
- Total RNA:
 - 1% to 2% gel, stain with ethidium bromide.
 - Electrophorese at 80–100 volts, 20–40 minutes.

DNA Size from Agarose Gel Electrophoresis: Compares unknown DNA to known size standards

DNA Quality from Agarose Gel Electrophoresis

• Smearing indicates DNA degradation (or too much DNA loaded).

Storage Conditions

- Store DNA in TE buffer at 4 °C for weeks or at -20 °C to -80 °C for long term.
- Store RNA in RNase-free ultra pure water at -80 °C.

Troubleshooting Nucleic Acid Preparation Methods

- Problem: No or low nucleic acid yield.
 - Make sure that ample time was allowed for resuspension or rehydration of sample.
 - Repeat isolation from any remaining original sample (adjust procedure for possible low cell number or poorly handled starting material).
 - Concentrate dilute nucleic acid using ethanol precipitation.

• Problem: Poor nucleic acid quality

- If sample is degraded, repeat isolation from remaining original sample, if possible.
- If sample is contaminated with proteins or other substances, clean it up by re-isolating (improvement depends on the extraction procedure used).

Extraction and purification of plasmids

- Alkaline lysis of bacterial cells followed by adsorption of DNA onto silica membrane in the presence of high salt.
- The procedure consists of three basic steps:
- 1. Preparation and clearing of a bacterial lysate
- 2. Adsorption of DNA onto the silica membrane
- 3. Washing and elution of plasmid DNA
- All steps are performed without the use of phenol, chloroform, and without alcohol precipitation.
- For further reading:

http://vlab.amrita.edu/?sub=3&brch=77&sim=314&cnt=1

Oligo dT primer is bound to mRNA

strand cDNA

Conversion of mRNA to cDNA by Reverse Transcription

There are commercially available kits to isolate DNA easily from any source

From plasmid to genomic DNA and from DNA clean-up to automation, Invitrogen[™] products bring flexible, innovative solutions to meet virtually every researcher's needs.

Explore the Invitrogen portfolio of leading solutions, kits and benchtop devices for reliable results.

DNA DNA

3
4
10
22
12
14
16
19
22
24

For further reading:

http://bitesizebio.com/1660/plasmid-v-genomic-dna-extractionthe-difference/