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Mixed Wavelet Leaders Multifractal
Formalism in a Product of Critical Besov
Spaces
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Abstract. In this paper, we will prove (resp. study) the Baire generic va-
lidity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multi-

fractal formalism on a product of two critical Besov spaces B
m
t1

,q1

t1
(Rm)×

B
m
t2

,q2

t2
(Rm), for t1, t2 > 0, q1 ≤ 1 and q2 ≤ 1. Contrary to product

spaces Bs1,∞
t1

(Rm) × Bs2,∞
t2

(Rm) with s1 > m
t1

and s2 > m
t2

(Ben Sli-

mane in Mediterr J Math, 13(4):1513–1533, 2016) and (Bs1,∞
t1

(Rm) ∩
Cγ1(Rm)) × (Bs2,∞

t2
(Rm) ∩ Cγ2(Rm) with 0 < γ1 < s1 < m

t1
and

0 < γ2 < s2 < m
t2

(Ben Abid et al. in Mediterr J Math, 13(6):5093–

5118, 2016), all pairs of functions in the obtained generic set are not
uniform Hölder. Nevertheless, the characterization of the upper bound
of the Hölder exponent by decay conditions of local wavelet leaders suf-
fices for our study.
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1. Introduction

Recently, many authors were interested in mixed multifractal spectra (see for
example [1,3–6,14,30,31]).

In the framework of probability measures μ on R
m, singularities are

expressed by the pointwise exponent hμ(x) of μ at x, given by

hμ(x) = lim
r→0

log μ(B(x, r))
log r

. (1.1)
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Let dim denote the Hausdorff dimension. Conventionally dim∅ = −∞.
The (single) spectrum of μ is given by

h �→ dimEμ(h) where Eμ(h) = {x : hμ(x) = h}. (1.2)

The mixed multifractal spectrum of two measures μ1 and μ2 on R
m is given

by
(h1, h2) �→ dimEμ1(h1) ∩ Eμ2(h2). (1.3)

It combines local characteristics which depend simultaneously on various dif-
ferent aspects of the underlying dynamical system, and allows to better un-
derstand the dynamics. Olsen [30] conjectured a mixed multifractal formal-
ism which links the mixed spectrum (1.3) to the Legendre transform of mixed
Rényi dimensions. Olsen obtained a general upper bound. He also proved that
this bound is equality if both measures are selfsimilar with same contracting
similarities.

In the framework of locally bounded functions f : Rm → R, singularities
are expressed by the Hölder exponent hf (x) of f at x, given by

hf (x) = sup{h > 0 : f ∈ Ch(x)}. (1.4)

Recall that f ∈ Ch(x), for h positive non-integer, means that

|f(y) − P (y − x)| ≤ C|y − x|h (1.5)

holds for all y in a neighborhood of x, for a constant C and a polynomial P
of degree less than h.

Single spectra are described by either iso-Hölder spectrum (initially in-
troduced by [19] in turbulence)

h �→ dimEf (h), where Ef (h) = {x : hf (x) = h} (1.6)

or upper-Hölder spectrum

h �→ dimEh
f , where Eh

f = {x : hf (x) ≤ h}. (1.7)

The mixed multifractal spectra of two functions f1 and f2 on R
m are given

by
(h1, h2) �→ dimEf1(h1) ∩ Ef2(h2) (1.8)

and
(h1, h2) �→ dimEh1

f1
∩ Eh2

f2
. (1.9)

The definitions can be extended for simultaneous Hölder exponents of finitely
many functions.
Clearly

dimEf1(h1) ∩ Ef2(h2) ≤ min(dimEf1(h1), dimEf2(h2)) (1.10)

and
dimEh1

f1
∩ Eh2

f2
≤ min

(
dimEh1

f1
,dimEh2

f2

)
. (1.11)

Note that if μ is a probability measure on R and fμ is its primitive, then

hfµ
(x) = lim inf

r→0

log μ(B(x, r))
log r

, (1.12)

when the right-hand term in (1.12) is less then 1.
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In [1], the authors conjectured a mixed wavelet multifractal formalism
which links the mixed spectrum (1.8) to the Legendre transform of a scal-
ing function on the simultaneous continuous wavelet transforms of f1 and
f2. They also proved the validity of that conjecture for pairs of selfsimilar
functions with same contracting similarities. In [3], the authors extended the
validity for pairs of some non-selfsimilar functions.

In [14], the second author of this paper conjectured a mixed wavelet
leaders multifractal formalism which involves a mixed wavelet leaders scaling
function ω(f1,f2)(p1, p2). He also proved that, Baire generically, the upper
bound (1.11) becomes equality and dimEh1

f1
∩Eh2

f2
coincides with the Legendre

transform of ω(f1,f2)(p1, p2), for pairs (f1, f2) in a product of continuous Besov
spaces Bs1,∞

t1 (Rm) × Bs2,∞
t2 (Rm), for s1 > m

t1
and s2 > m

t2
. In [6], this result

was extended in a product of intersections of a non-continuous Besov space
with a Hölder space (Bs1,∞

t1 (Rm) ∩ Cγ1(Rm)) × (Bs2,∞
t2 (Rm) ∩ Cγ2(Rm), for

0 < γ1 < s1 < m
t1

and 0 < γ2 < s2 < m
t2

. The Baire equality of (1.10) on
these spaces was also studied in [6,14]. To achieve the results, the authors
have used the wavelet leaders characterization of the Hölder exponent (1.4)
of a uniform Hölder function.

In this paper, we will prove (resp. study) the Baire generic validity of the
upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism

on a product of two critical Besov spaces B
m
t1

,q1

t1 (Rm)×B
m
t2

,q2

t2 (Rm), for t1, t2 >
0, q1 ≤ 1 and q2 ≤ 1. Contrary to the above product spaces, all pairs of
functions in the obtained generic set are not uniform Hölder. Nevertheless,
the characterization of the upper bound of the Hölder exponent by decay
conditions of local wavelet leaders suffices for our study.

Ideas of this paper together with [6,14] allow to cover the case of any
finite product of above Besov spaces.

Note that, Jaffard and Meyer [27] proved that if q > 1 then functions
in B

m
t ,q

t (Rm) are not necessarily locally bounded. They also computed the
single Hölder spectrum generically in B

m
t ,q

t (Rm) if 0 < q ≤ 1. In the case
where 0 < t < q ≤ 1, in order to simplify the notations, the generic set was
constructed in the case where m = 1. In this paper, we clarify and give the
construction for any m.

Note that the multifractal formalism of infinitely simultaneous many
pointwise singularities was studied by Peyrière [31]. Its validity holds under
some Frostman assumption. The check of this assumption proves to be very
difficult.

Note also that iso-Hölder spectrum and multifractal formalism of single
functions have been studied under selfsimilarity assumptions on f [2,7–12,15,
21], or for a class of particular random processes [22], or for specific functions
f [13,20], or even generically in either Baire sense [24,27,28] or prevalence
sense [17,18].

In the next section, we will recall the statement of the mixed wavelet
leaders multifractal formalisms and summarize our main results.
In Sects. 3, 4 and 5, we give the proofs.
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2. Mixed Wavelet Leaders Multifractal Formalisms and Main
Results

2.1. Mixed Wavelet Leaders Multifractal Formalism

Let {2
mj
2 ψr(2jx−k), r = 1, . . . , 2m −1, j ≥ 0, k ∈ Z

m}∪{φ(x−k), k ∈ Z
m}

form an orthonormal wavelet basis of L2(Rm) in the Schwartz class (see [29]).
We will omit the index r. Using the notation λ = λj,k = k2−j +[0, 2−j)m and
ψλ(x) = ψ(2jx−k), the wavelet coefficients ck(f) and Cλ(f) of a function in
L2(Rm) are given by

ck(f) =
∫

Rm

φ(t − k)f(t)dt (2.1)

and

Cλ(f) = 2mj

∫

Rm

ψλ(t)f(t)dt. (2.2)

The usual modification holds for (2.1) and (2.2) when f is a tempered distri-
bution.
In [29], it is proved that any function f in L2(Rm) can be expanded as

f(x) =
∑

k∈Zm

ck(f)φ(x − k) +
∑
j≥0

∑
λ∈Λj

Cλ(f)ψλ(x), (2.3)

where
Λj = {λj,k : k ∈ Z

m}. (2.4)
Recall that Bs,q

t (Rm) is the space of all functions f satisfying

||f || :=

(∑
k∈Zm

|ck(f)|t
)1/t

+

⎛
⎜⎝
∑
j≥0

⎛
⎝∑

λ∈Λj

|Cλ(f)2(s− m
t )j |t
⎞
⎠

q/t
⎞
⎟⎠

1/q

< ∞

(2.5)
(with the usual modification when t = ∞ and/or q = ∞).

Let f ∈ B0,∞
∞ (Rm), there exists C > 0 such that

∀ j ≥ 0 ∀ λ ∈ Λj |Cλ(f)| ≤ C. (2.6)

For λ ∈ Λj let
dλ(f) = sup

λ′⊂λ
|Cλ(f)| (2.7)

denote the wavelet leader coefficient of f in the cube λ.
Let x ∈ R

m and j ≥ 0. Denote by λj,k(x) the unique dyadic cube in Λj that
contains x. Put

Adj(λj,k(x)) =
m∏

i=1

[(ki(x) − 1)2−j , (ki(x) + 2)2−j). (2.8)

Clearly Adj(λj,k(x)) is the union of λj,k(x) and its 3m − 1 adjacent cubes in
Λj .
The local wavelet leader around x at scale j is defined by

dj(f)(x) = sup
λ′⊂Adj(λj,k(x))

|Cλ′(f)|. (2.9)
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If f is uniform Hölder, then the Hölder exponent hf (x) given in (1.4) is
characterized by a decay condition of the wavelet leaders near x (see [25])

hf (x) = lim inf
j→∞

log dj(f)(x)
log 2−j

. (2.10)

Recall that f is uniform Hölder if there exists δ ∈ (0, 1) and C > 0 such that

∀ x, y ∈ R
m |f(x) − f(y)| ≤ C|x − y|δ. (2.11)

Without any assumption of uniform regularity on f we only have

hf (x) ≤ lim inf
j→∞

log dj(f)(x)
log 2−j

. (2.12)

If Ω is a bounded subset of Rm and j ≥ 0, put

Λj(Ω) = {λ ∈ Λj : λj ⊂ Ω}. (2.13)

Let f1 and f2 be two functions in B0,∞
∞ (Rm). The mixed wavelet leaders

scaling function ωΩ
(f1,f2)

(p1, p2) on Ω, for p1, p2 > 0, is defined by

ωΩ
(f1,f2)

(p1, p2) = lim inf
j→∞

log

⎛
⎝2−mj

∑
λ∈Λj(Ω)

((dλ(f1))p1(dλ(f2))p2)

⎞
⎠

log(2−j)
.

(2.14)

The mixed wavelet leaders scaling function ω(f1,f2)(p1, p2), for p1, p2 > 0, is
defined by

ω(f1,f2)(p1, p2) = inf
Ω

ωΩ
(f1,f2)

(p1, p2). (2.15)

The Legendre transform of the function ω(f1,f2) is defined by

ω∗
(f1,f2)

(h1, h2) = inf
p1>0, p2>0

(h1p1 + h2p2 − ω(f1,f2)(p1, p2)). (2.16)

The iso-Hölder mixed wavelet leaders multifractal formalism (see [14]) states
that

dimEf1(h1) ∩ Ef2(h2) = m + ω∗
(f1,f2)

(h1, h2). (2.17)

The upper-Hölder mixed wavelet leaders multifractal formalism (see [14])
states that

dimEh1
f1

∩ Eh2
f2

= m + ω∗
(f1,f2)

(h1, h2). (2.18)

Remark 1. Besov spaces Bs,q
t (Rm), s, t, q > 0, are Baire spaces. If moreover

s ≥ m/t then Bs,q
t (Rm) is included in B0,∞

∞ (Rm).

Recall that in a Baire space E any countable intersection of open dense
sets is dense and called a Gδ-set or residual set. Moreover, if a property (P )
on E holds on a Gδ-set, (P ) holds Baire generically in E.

In [14], the second author proved that, Baire generically the upper-
Hölder mixed wavelet leaders multifractal formalism holds for pairs (f1, f2)
in a product of continuous Besov spaces Bs1,∞

t1 (Rm)×Bs2,∞
t2 (Rm), for s1 > m

t1
and s2 > m

t2
. In [6], this result was extended in a product of intersections of a
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non-continuous Besov space with a Hölder space (Bs1,∞
t1 (Rm) ∩ Cγ1(Rm)) ×

(Bs2,∞
t2 (Rm) ∩ Cγ2(Rm), for 0 < γ1 < s1 < m

t1
and 0 < γ2 < s2 < m

t2
. The

Baire validity of the iso-Hölder mixed wavelet leaders multifractal formalism
was also studied in [6,14]. To achieve the results, the authors have used the
wavelet characterization (2.10) of the Hölder exponent of a uniform Hölder
function.

In this paper, we will prove (resp. study) the Baire generic validity of the
upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism

on a product of two critical Besov spaces B
m
t1

,q1

t1 (Rm)×B
m
t2

,q2

t2 (Rm), for q1 ≤ 1
and q2 ≤ 1. Contrary to the above spaces, functions in critical Besov spaces
are not necessarily uniform Hölder. Bound (2.12) can be applied, but not
(2.10). Note that, for q1 > 1 and q2 > 1, functions of these spaces are not
necessarily locally bounded (see [27]).

From now on, we will not write (Rm) in B
m
ti

,qi

ti (Rm). For L = (�1, . . . , �m)
∈ Z

m, let CL be the cube L+[0, 1]m of Rm. Our main results are summarized
in the following theorems.

Theorem 2.1. Let q1, q2, t1, t2 > 0. Let bi = max {qi, ti}, i ∈ {1, 2}. Then, for
all (f1, f2) ∈ B

m
t1

,q1

t1 × B
m
t2

,q2

t2

1.

ω(f1,f2)(p1, p2) ≥
⎧
⎨
⎩

m
(

p1
b1

+ p2
b2

)
if p1

b1
+ p2

b2
< 1

m if p1
b1

+ p2
b2

≥ 1
(2.19)

2.

m + ω∗
(f1,f2)

(h1, h2)
{

= −∞ if h1 < 0 or h2 < 0
≤ min {h1b1, h2b2,m} else. (2.20)

Theorem 2.2. Let q1, q2, t1, t2 > 0. Let bi = max{qi, ti}, i ∈ {1, 2}. Then,

Baire generically, pairs of functions (f1, f2) in B
m
t1

,q1

t1 × B
m
t2

,q2

t2 satisfy for all
L ∈ Z

m

ωCL

(f1,f2)
(p1, p2) = ω(f1,f2)(p1, p2) =

⎧
⎨
⎩

m
(

p1
b1

+ p2
b2

)
if p1

b1
+ p2

b2
< 1

m if p1
b1

+ p2
b2

≥ 1
(2.21)

and

m + ω∗
(f1,f2)

(h1, h2) =
{−∞ if h1 < 0 or h2 < 0

min {h1b1, h2b2,m} else. (2.22)

Theorem 2.3. Let q1, q2 ≤ 1 and t1, t2 > 0. Set bi = max {qi, ti}, i ∈ {1, 2}.
Baire generically, pairs of functions (f1, f2) in B

m
t1

,q1

t1 × B
m
t2

,q2

t2 satisfy for all
L ∈ Z

m

1.

∀ (h1, h2) dimEh1
f1

∩Eh2
f2

∩CL = dimEh1
f1

∩Eh2
f2

= m+ω∗
(f1,f2)

(h1, h2). (2.23)



MJOM Mixed Wavelet Leaders Multifractal Formalism Page 7 of 20  176 

2. If hi /∈ [0, m
bi

] for either i = 1 or 2 then

dimEf1(h1) ∩ Ef2(h2) ∩ CL = dimEf1(h1) ∩ Ef2(h2) = −∞ (2.24){
= m + ω∗

(f1,f2)
(h1, h2) if h1 < 0orh2 < 0

< m + ω∗
(f1,f2)

(h1, h2) else.
(2.25)

3. If (h1, h2) ∈ [0, m
b1

] × [0, m
b2

] then

dimEf1(h1) ∩ Ef2(h2) ∩ CL = dimEf1(h1) ∩ Ef2(h2) ≤ m + ω∗
(f1,f2)

(h1, h2).
(2.26)

If moreover h1b1 = h2b2 then

dimEf1(h1) ∩ Ef2(h2) ∩ CL = dimEf1(h1) ∩ Ef2(h2) = m + ω∗
(f1,f2)

(h1, h2).
(2.27)

3. Proof of Theorem 2.1

Let (f1, f2) in B
m
t1

,q1

t1 × B
m
t2

,q2

t2 . For i ∈ {1, 2}, put bi = max{qi, ti}.

1. If Ω is a bounded subset of Rm and f ∈ B0,∞
∞ (Rm), define the wavelet

leaders scaling function ωΩ
f (p) on Ω, for p > 0, by

ωΩ
f (p) = lim inf

j→∞

log

⎛
⎝2−mj

∑
λ∈Λj(Ω)

(dλ(f))p

⎞
⎠

log(2−j)
, (3.1)

where Λj(Ω) is in (2.13).
The wavelet leaders scaling function ωf (p), for p > 0, is defined by (see [25])

ωf (p) = inf
Ω

ωΩ
f (p). (3.2)

Remark 2. In [25], it is shown that ωf (p) does not depend on the chosen
sufficiently smooth wavelet basis.

By Hölder inequality, we have (see Proposition 3.1 of [14]) for all p, q > 0
such that 1

p + 1
q = 1

ω(f1,f2)(p1, p2) ≥ 1
p
ωf1(pp1) +

1
q
ωf2(qp2), (3.3)

Lemma 3.1. If f ∈ B
m
t ,q

t and b = max{q, t} then

∀ p > 0 ωf (p) ≥ min
{

m,
mp

b

}
.

Proof. For p > 0 and s > 0, the oscillation space Os
p(R

m) is defined by

f ∈ Os
p(R

m) ⇐⇒ f ∈ Bs,∞
p (Rm) and sup

j≥0

⎛
⎝2(sp−m)j

∑
λ∈Λj

(dλ(f))p

⎞
⎠ < ∞.

(3.4)
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Its local version O
s/p
p,loc(R

m) is the space of functions f such that the restriction
of f on any bounded open set Ω in R

m coincides with a function in Os
p(R

m).
In [25], it is also shown that

ωf (p) = sup{s : f ∈ O
s/p
p,loc(R

m)}. (3.5)

(a) Let 0 < q ≤ min(1, t). Since q ≤ t, then B
m/t,q
t ↪→ B

m/t,t
t . In Proposition

2 in [26], it is shown that B
m/t,t
t ↪→ O

m/t
t .

• If p ≤ t then O
m/t
t,loc ⊂ O

m/t
p,loc. Thus ωf (p) ≥ mp/t.

• If p ≥ t then in Proposition 2 in [26] it is shown that O
m/t
t ↪→ O

m/p
p .

Thus ωf (p) ≥ m.

(b) Let 0 < t < q ≤ 1 and f ∈ B
m/t,q
t .

• If p ≥ q then p > t. It is known that B
m/t,q
t ↪→ B

m/p,q
p . Since p ≥ q

then B
m/p,q
p ↪→ B

m/p,p
p . In Proposition 2 in [26], it is shown that

B
m/p,p
p ↪→ O

m/p
p . Therefore ωf (p) ≥ m. In particular, ωf (q) ≥ m.

• Let now p < q. In [25], by Hölder’s inequality, it is shown that, if
both f and the wavelets are compactly supported then

∑
λ∈Λj

(dλ(f))q ≥ C2mj(1− q
p )

⎛
⎝∑

λ∈Λj

(dλ(f))p

⎞
⎠

q/p

.

We deduce that

ωΩ(q) ≤ q

p
ωΩ(p)

and so

ωf (q) ≤ q

p
ωf (p).

It follows from Remark 2 that this property remains valid if the
wavelets are sufficiently smooth.
Since ωf (q) ≥ m, then

ωf (p) ≥ mp

q
.

�

Clearly

min
{

m,
mp

b

}
=

m

2

(
1 +

p

b
−
∣∣∣1 − p

b

∣∣∣
)

.

Thus for all p, q > 0 such that 1
p + 1

q = 1

ω(f1,f2)(p1, p2) ≥ m

2

(
1 +

p1

b1
+

p2

b2
−
∣∣∣∣
1
p

− p1

b1

∣∣∣∣−
∣∣∣∣
1
q

− p2

b2

∣∣∣∣
)

.

Put x = 1
p . We have for all x ∈]0, 1[

ω(f1,f2)(p1, p2) ≥ m

2

(
1 +

p1

b1
+

p2

b2
−
∣∣∣∣x − p1

b1

∣∣∣∣−
∣∣∣∣1 − x − p2

b2

∣∣∣∣
)

.
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So

ω(f1,f2)(p1, p2) ≥ m

2

(
1 +

p1

b1
+

p2

b2
− inf

x∈[0,1]
ϕ(x)
)

,

where

ϕ(x) =
∣∣∣∣x − p1

b1

∣∣∣∣+
∣∣∣∣x − (1 − p2

b2
)
∣∣∣∣ .

The first assertion of the point can be deduced from the following lemma.

Lemma 3.2.

inf
x∈[0,1]

ϕ(x) =
∣∣∣∣1 − p2

b2
− p1

b1

∣∣∣∣ =
{

1 − p2
b2

− p1
b1

if p2
b2

+ p1
b1

≤ 1
p2
b2

+ p1
b1

− 1 if p2
b2

+ p1
b1

≥ 1.

Proof. Write ϕ(x) = |x−a1|+|x−a2|, where a1 = p1
b1

> 0, and a2 = 1− p2
b2

< 1.

• If a1, a2 ∈ [0, 1] and a1 ≤ a2, i.e., p1
b1

+ p2
b2

≤ 1, then

∀ x ∈ [0, 1] ϕ(x) =

⎧
⎨
⎩

a1 + a2 − 2x if x ≤ a1

a2 − a1 if a1 ≤ x ≤ a2

2x − a1 − a2 if a2 ≤ x.

Thus

inf
x∈[0,1]

ϕ(x) = a2 − a1 = 1 − p2

b2
− p1

b1
.

• If a1, a2 ∈ [0, 1] and a2 ≤ a1, i.e., p1
b1

≤ 1, p2
b2

≤ 1 and p1
b1

+ p2
b2

≥ 1, then

∀ x ∈ [0, 1] ϕ(x) =

⎧
⎨
⎩

a1 + a2 − 2x if x ≤ a2

a1 − a2 if a2 ≤ x ≤ a1

2x − a1 − a2 if a1 ≤ x.

Thus

inf
x∈[0,1]

ϕ(x) = a1 − a2 =
p1

b1
+

p2

b2
− 1.

• If a1 ∈ [0, 1] and a2 < 0, i.e., p1
b1

≤ 1, p2
b2

> 1, then

∀ x ∈ [0, 1] ϕ(x) =
{

a1 − a2 if x ≤ a1

2x − a1 − a2 if a1 ≤ x.

Thus

inf
x∈[0,1]

ϕ(x) = a1 − a2 =
p1

b1
+

p2

b2
− 1.

• If a1 > 1 and a2 ∈ [0, 1], i.e., p1
b1

> 1, p2
b2

≤ 1, then

∀ x ∈ [0, 1] ϕ(x) =
{

a1 + a2 − 2x if x ≤ a2

a1 − a2 if a2 ≤ x.

Thus

inf
x∈[0,1]

ϕ(x) = a1 − a2 =
p1

b1
+

p2

b2
− 1.
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• If a1 > 1 and a2 < 0, i.e., p1
b1

> 1, p2
b2

> 1., then

∀ x ∈ [0, 1] ϕ(x) = a1 − a2.

Thus

inf
x∈[0,1]

ϕ(x) = a1 − a2 =
p1

b1
+

p2

b2
− 1.

�

For p1, p2 > 0, set

B(p1, p2) =

⎧
⎨
⎩

m
(

p1
b1

+ p2
b2

)
if p1

b1
+ p2

b2
< 1

m if p1
b1

+ p2
b2

≥ 1.

From above, we deduce

∀ p1, p2 > 0 ω(f1,f2)(p1, p2) ≥ B(p1, p2).

2. The previous lower bound yields

∀ h1, h2 > 0 m + ω∗
(f1,f2)

(h1, h2) ≤ m + B∗(h1, h2).

Lemma 3.3. We have

m + B∗(h1, h2) =
{−∞ if h1 < 0 or h2 < 0

min {h1b1, h2b2,m} else. (3.6)

Proof. To compute B∗(h1, h2) = inf
p1,p2>0

(h1p1 + h2p2 − B(p1, p2)), we split

(0,+∞)2 as

(0,+∞)2 = D1 ∪ D2,

where

D1 =
{

(p1, p2) ∈ (0,+∞)2;
p1

b1
+

p2

b2
≤ 1
}

,

and

D2 =
{

(p1, p2) ∈ (0,+∞)2;
p1

b1
+

p2

b2
≥ 1
}

.

Clearly

B∗(h1, h2) = min
{

inf
D1

g, inf
D2

g

}
. (3.7)

Clearly

∀ i = 1, 2 inf
Di

g = inf
∂Di

g,

where ∂Di is the boundary of Di.
We have

∂D1 = {(p, 0); 0 ≤ p ≤ b1}
∪
{(

p,−b2

b1
p + b2

)
; 0 ≤ p ≤ b1

}
∪ {(0, p); 0 ≤ p ≤ b2}
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and

∂D2 =
{(

p,−b2

b1
p + b2

)
; 0 ≤ p ≤ b1

}
∪ {(0, p); p ≥ b2} ∪ {(p, 0); p ≥ b1} .

Then

inf
∂D1

g = min
{

inf
0≤p≤b1

g1(p), inf
0≤p≤b2

g2(p), inf
0≤p≤b1

g3(p)
}

,

inf
∂D2

g = min
{

inf
0≤p≤b1

g3(p), inf
p≥b2

g4(p), inf
p≥b1

g5(p)
}

,

where

g1(p) = (h1b1 − m)
p

b1
,

g2(p) = (h2b2 − m)
p

b2
, g3(p) = (h1b1 − h2b2)

p

b1
+ h2b2 − m

g4(p) = h2p − m, g5(p) = h1p − m.

Thus

B∗(h1, h2) = min

{
inf

0≤p≤b1

g1(p), inf
0≤p≤b2

g2(p), inf
0≤p≤b1

g3(p), inf
p≥b2

g4(p), inf
p≥b1

g5(p)

}

=

{−∞ if h1 < 0 or h2 < 0
min {h1b1, h2b2, m} else.

�

4. Proof of Theorem 2.2

4.1. Construction of a Saturating Pair (F1, F2)
We will first construct a pair (F1, F2) of functions that will satisfy (2.21).

For L = (�1, . . . , �m) ∈ Z
m, put

|L| = |�1| + · · · + |�m| (4.1)

and CL the cube L + [0, 1]m of Rm.
Let

F (x) =
∑

L∈Zm

∑
j≥1

∑
λ∈Λj(CL)

Cλ(F )ψλ(x). (4.2)

Remark 3. If λ ∈ Λj(C0). Let L ∈ Z
m and λ̃ = L + λ be the cube obtained

from λ by the translation of L. Clearly λ̃ ∈ Λj(CL). We will put

Cλ̃(F ) = 2−|L|Cλ(F ). (4.3)

This choice yields

dλ̃(F ) = 2−|L|dλ(F ). (4.4)
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So to compute the wavelet leaders of F it suffices to look to those associated
to λ in Λj(C0).

For λ ∈ Λj write
k

2j
=

K

2J
, whereK ∈ Z

m − (2Z)m and J ≤ j. (4.5)

Remark 4. Note that λ and λ̃ share the same J .

• If q ≤ t, let a =
1
t

+
2
q
.

If j ≥ 1 and λ ∈ Λj(C0) put

Cλ(F ) =
1
ja

2−mJ
t . (4.6)

Clearly dλ(F ) = Cλ(F ) = 1
ja 2−mJ

t . It is easy to show that F ∈ B
m
t ,q

t .
• Let now t < q. If r is a positive integer, then Λr(C0) contains 2mr dyadic

cubes of side 2−r. Let σr be a bijection between {0, . . . , 2r − 1}m and
{0, . . . , 2mr − 1}.

Let D =
⋃

r≥1{2mr, . . . , 2mr+1 −1}. For each j ∈ D, there exists a
unique r ∈ N such that 2mr ≤ j ≤ 2mr+1−1. Let mj = 2j−rσ−1

r (j−2mr)
and λj be the associated cube in Λj(C0). Put

∀ j ∈ D Cλj
(F ) =

1

(j ln(j)2)
1
q

, and Cλ(F ) = 0 else. (4.7)

For all L ∈ Z
m and all j ≥ 2, the function F has at most only one non-

vanishing wavelet coefficient in Λj(CL). Thus F ∈ B
m
t ,q

t .
At scale j, denote by Rj(C0) the set of all cubes λ ∈ Λj(C0) such that

j < 2mJ (where J was given in (4.5)). We have the following result.

Proposition 4.1. There exists C > 0 such that

for all λ ∈ Rj(C0)there existsλ′ ⊂ λsuch that Cλ′ ≥ C

J
2
q 2

m
q J

. (4.8)

Proof. Let λ ∈ Rj(C0). Let j′ be such that 2mJ ≤ j′ ≤ 2mJ+1−1 and λj′ ⊂ λ.
This is possible since when j′ increases from 2mJ to 2mJ+1 − 1, mj′

2j′ takes all
dyadic values k

2J , where k ∈ {0, . . . 2J − 1
}m.

Thus for λ′ = λj′

Cλ′(F ) =
1

(j′ ln(j′)2)
1
q

.

This achieves the proof. �
If

Rj(CL) = {λ ∈ Λj(CL) : j < 2mJ} (4.9)
then (4.3) implies that there exists C > 0 such that

∀ L ∀ λ ∈ Rj(CL) ∃ λ′ ⊂ λ : Cλ′ ≥ C2−|L|

J
2
q 2

m
q J

. (4.10)

Actually, we can show the following result.
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Proposition 4.2.

∀ L ∈ Z
m ∀ j ≥ 2 ∀ λ ∈ Λj(CL) dλ(F ) ≈

⎧
⎪⎨
⎪⎩

2−|L|

(j ln(j)2)
1
q

if 2mJ < j

2−|L|

J
2
q 2

m
q

J
else,

where the notation u ≈ v means that there exist C > 0 independent of λ and
j such that v

C ≤ u ≤ Cv.

Proof. Thanks to (4.4), we can assume that j ≥ 2 and λ ∈ Λj(C0). Let J
defined by (4.5).

• If r′ < J , then Cλ′(F ) = 0, since at scale j′ the only non-vanishing
coefficient is located at mj′

2j′ = k′

2r′ , for some k′ ∈ {0, . . . 2r′ − 1}m, then
J ′ ≤ r′ < J and the corresponding cube cannot be included in λ.

• If r′ ≥ J then j ≤ 2mr′+1. Let r be the unique integer such that 2mr ≤
j < 2m(r+1). We have necessarily r ≤ r′.

∗ If 2mJ < j then J ≤ r. For any j′ ∈ D such that 2mr ≤
j′ < 2mr+1 and λ′ ⊂ λ, if Cλ′(F ) �= 0, then Cλ′(F ) = 1

(j′ ln(j′)2)
1
q

≈
1

(j ln(j)2)
1
q
. Thus

dλ(F ) = Cλ′(F ) ≈ 1

(j ln(j)2)
1
q

. (4.11)

Suppose that for all j′ such that 2mr ≤ j′ < 2mr+1 and λ′ ⊂ λ we have
Cλ′(F ) = 0. Since J < r + 1 < j, then there exist only one j′ such that
2m(r+1) ≤ j′ < 2m(r+1)+1 and λj′ ⊂ λ (it suffices to take j′ such that
mj′
2j′ = k′

2r+1 = k
2j ) and in this case we have

dλ(F ) = Cλ′(F ) =
1

(j′ ln(j′)2)
1
q

≈ 1

(j ln(j)2)
1
q

. (4.12)

∗ If j ≤ 2mJ , then since we should have r′ ≥ J , the best r′ is J . Take
j′ such that mj′

2j′ = K
2J = k

2j . Then 2mJ ≤ j′ < 2mJ+1, λj′ ⊂ λ and

dλ(F ) = Cλ′(F ) =
1

(j′ ln(j′)2)
1
q

≈ 1

J
2
q 2

m
q J

. (4.13)

�

Let q1, q2, t1, t2 > 0. Let i ∈ {1, 2}. Put bi = max{qi, ti} and let Fi be
the function given by (4.2), (4.3) and(4.6) (resp. and (4.7)) if qi ≤ ti (resp. if
ti < qi), where q, t are replaced by qi and ti.

Using the above results, clearly ω(F1,F2)(p1, p2) = ωCL

(F1,F2)
(p1, p2) for all

L ∈ Z
m, and we can directly show that (F1, F2) satisfies (2.21). But, since

(F1, F2) will be in the Gδ-set, we will prove (2.21) on the entire Gδ-set in the
next section.
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4.2. The Gδ-set

Let (F1, F2) as above. If parameters ti, qi are finite then the product space

B
m
t1

,q1

t1 ×B
m
t2

,q2

t2 is separable (in the case where one or more of these parameters
equals infinity, the reader can accommodate the idea of the construction
done in [14] for the steps below). Let (f1,n, f2,n)n be a dense sequence in

B
m
t1

,q1

t1 × B
m
t2

,q2

t2 . For a nonnegative integer n, define gi,n of the form (2.3)
with

ck(gi,n) = ck(fi,n) (4.14)

and

Cλ(gi,n) = Cλ(Fi) if j ≥ n and λ ∈ Λjand Cλ(gi,n) = Cλ(fi,n) else. (4.15)

Clearly, the sequence (g1,n, g2,n)n is dense in B
m
t1

,q1

t1 × B
m
t2

,q2

t2 .

Let ai =
1
ti

+
2
qi

if qi ≤ ti and ai =
2
qi

if qi > ti. If ti < qi, let Ci be a

constant given by (4.8), (4.11), (4.12) and (4.13).
Let C ′

i = 1 if qi ≤ ti and C ′
i = Ci if ti < qi.

Put

ri(n) =
C ′

i

2nai
2−mn/bi .

The residual set of B
m
t1

,q1

t1 × B
m
t2

,q2

t2 is

A =
⋂

L∈Zm

⋂
N∈N

⋃
n≥N

B(g1,n, 2−|L|r1(n)) × B(g2,n, 2−|L|r2(n)), (4.16)

where B(gi,n, 2−|L|ri(n)) denotes the open ball in B
m
ti

,qi

ti of center gi,n and
radius 2−|L|ri(n).

We have the following proposition.

Proposition 4.3. If (f1, f2) ∈ A and L ∈ Z
m then for infinitely many ns

(f1, f2) ∈ B(g1,n, 2−|L|r1(n)) × B(g2,n, 2−|L|r2(n)) (4.17)

and

∀ λ ∈ Λn(CL) ∀ i ∈ {1, 2} dλ(fi) ≥ 1
2

dλ(Fi).

Proof. Clearly, if (f1, f2) ∈ A and L ∈ Z
m, then for infinitely many ns (4.17)

holds. It follows that

∀ λ ∈ Λn(CL) ∀ i ∈ {1, 2} |Cλ(fi) − Cλ(gi,n)| < 2−|L|ri(n). (4.18)

If qi ≤ ti, then thanks to the choice of ri,n, we have for all λ ∈ Λn(CL)

dλ(fi) ≥ |Cλ(fi)| ≥ Cλ(Fi) − 2−|L|ri,n ≥ 1
2
Cλ(Fi) =

1
2
dλ(Fi).

If ti < qi, we have seen that (4.11), (4.12) and (4.13) hold. In each case L = 0
and
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dλ(fi) ≥ |Cλ′(fi)| ≥ Cλ′(Fi) − 2−|L|ri,n ≥ 1
2
Cλ′(Fi) =

1
2
dλ(Fi).

Using (4.3), the last result remains valid for any L ∈ Z
m. �

Now we can achieve the proof of Theorem 2.2. Let A be the residual
set (4.16). If (f1, f2) ∈ A and L ∈ Z

m, then for infinitely many ns (4.17) holds.

Let δn be the integer part of
log n

m log 2
. Propositions 4.2 and 4.3 together with

(4.9) imply that
∑

λ∈Λn(CL)

(dλ(f1))
p1(dλ(f2))

p2 ≥
∑

λ∈Rn

(dλ(f1))
p1(dλ(f2))

p2

≥ C′′2−|L|(p1+p2)
n∑

J=δn+1

2mJ

Ja1p1+a2p2
2

−m(
p1
b1

+
p2
b2

)J

≥ C′′ 2−|L|(p1+p2)

na1p1+a2p2

n∑
J=δn+1

2
m(1− p1

b1
− p2

b2
)J

:= Hn.

Thus

ωCL

(f1,f2)
(p1, p2) ≤ m + lim inf

n→+∞

log
(∑

λ∈Λn(CL)(dλ(f1))p1(dλ(f2))p2

)

log 2−n

≤ m + lim inf
n→+∞

log
(∑

λ∈Rn(CL)(dλ(f1))p1(dλ(f2))p2

)

log 2−n

≤ m + lim inf
n→+∞

log Hn

log 2−n
.

• If p1
b1

+ p2
b2

< 1, then Hn ≈ C ′′ 2−|L|(p1+p2)

na1p1a2p2 2m(1− p1
b1

− p2
b2

)n.
Thus

m + lim inf
n→+∞

log Hn

log 2−n
= m(

p1

b1
+

p2

b2
).

Thus

ωCL

(f1,f2)
(p1, p2) ≤ m(

p1

b1
+

p2

b2
).

• If p1
b1

+ p2
b2

≥ 1, then Hn ≈ C ′′ 2−|L|(p1+p2)

na1p1a2p2 2m(1− p1
b1

− p2
b2

)δn ≈ nα, for a
constant α that we do not need to precise. Thus

m + lim inf
n→+∞

log Hn

log 2−n
= m.

Thus

ωCL

(f1,f2)
(p1, p2) ≤ m.

Gathering these upper bounds with the lower bounds already obtained
in Theorem 2.1, we get (2.21). Result (2.22) is a consequence of
Lemma 3.3. �
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5. Proof of Theorem 2.3

1. In [27], the following result is proved.

Proposition 5.1. Let q ≤ 1 and t > 0. Put b = max {q, t}. If f ∈ B
m
t ,q

t then

∀ h ≥ 0 dimEh
f ≤ min {m, bh} .

By (1.11), if (f1, f2) ∈ B
m
t1

,q1

t1 × B
m
t2

,q2

t2 then

dimEh1
f1

∩ Eh2
f2

≤ min
{

dimEh1
f1

, dimEh2
f2

}
.

From Proposition 5.1 and the upper bound (1.11)

∀ h1 ≥ 0 ∀ h2 ≥ 0 dim Eh1
f1

∩ Eh2
f2

≤ min {m, b1h1, b2h2} . (5.1)

We will now show that this upper bound is optimal in the Baire sense.
Let α ≥ 1. Let L ∈ Z

m. For each scale j, denote by ΛL
j (α) the dyadic

cubes λ ∈ Λj(CL) such that J = [ j
α ].

Let A be the residual set (4.16) of the space B
m
t1

,q1

t1 × B
m
t2

,q2

t2 . Let
(f1, f2) ∈ A. For each L ∈ Z

m, fix the sequence of infinitely many ns such
that (4.17) holds. Let KL(α) be the set of points x that belong to ΛL

n(α) for
the above ns. Using [16,23,24], we have the following result.

Proposition 5.2. If α ≥ 1 then dimKL(α) = m
α and there exists a σ-finite

measure μL
α carried by KL(α) such that, if E ⊂ KL(α) and dimE < m

α then
μL

α(E) = 0.

By applying (2.12) and Proposition 4.3, we have

∀ i ∈ {1, 2} ∀ x ∈ KL(α) hfi
(x) ≤ m

αbi
. (5.2)

Let h1, h2 ≥ 0. Put β = min {m, b1h1, b2h2}. Put α = m
β . Result (5.2) implies

that
KL(α) ⊂ Eh1

f1
∩ Eh2

f2
∩ CL. (5.3)

From Proposition 5.2, it follows that

min {m, b1h1, b2h2} =
m

α
≤ dim Eh1

f1
∩ Eh2

f2
∩ CL. (5.4)

Thus using (2.22) and (5.1), we deduce that (2.23) holds.
2. Let (f1, f2) ∈ A. For h1 ∈ [0, m

b1
] and h2 ∈ [0, m

b2
], we have

dim Ef1(h1) ∩ Ef2(h2) ≤ dim Eh1
f1

∩ Eh2
f2

= min {b1h1, b2h2} .

If moreover h1b1 = h2b2, then

dim (Ef1(h1) ∩ Ef2(h2)) ≤ dim (Eh1
f1

∩ Eh2
f2

) = b1h1 = b2h2.

Let us show the lower bound. Take α = b1h1. Clearly

KL(α) ⊂ Eh1
f1

∩ Eh2
f2

∩ CL.

Split Eh1
f1

∩ Eh2
f2

∩ CL as

Eh1
f1

∩ Eh2
f2

∩ CL = (Ef1(h1) ∩ Ef2(h2) ∩ CL) ∪ SL(h1, h2) ∪ TL(h1, h2),
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where

SL(h1, h2) =
⋃

N≥1

E
h1− 1

N

f1
∩ Eh2

f2
∩ CL

and

TL(h1, h2) =
⋃

N≥1

Eh1
f1

∩ E
h2− 1

N

f2
∩ CL.

Let μL
α be the measure considered in Proposition 5.2. Since for all

N ≥ 1

dim KL(α) ∩ E
h1− 1

N

f1
∩ Eh2

f2
≤ dim E

h1− 1
N

f1
∩ Eh2

f2
∩ CL

= (h1 − 1
N

)b1 <
m

α
,

then Proposition 5.2 yields

μL
α(KL(α) ∩ E

h1− 1
N

f1
∩ Eh2

f2
) = 0.

It follows that

μL
α(SL(h1, h2)) = sup

N≥1
μL

α(KL(α) ∩ E
h1− 1

N

f1
∩ Eh2

f2
) = 0.

Similar argument yields

μL
α(TL(h1, h2)) = 0.

Therefore,

0 < μL
α(K(α)) = μL

α(KL(α) ∩ Ef1(h1) ∩ Ef2(h2)).

By Proposition 5.2, we deduce that

dim KL(α) ∩ Ef1(h1) ∩ Ef2(h2) =
m

α
.

Consequently,

h1b1 = h2b2 =
m

α
≤ dim Ef1(h1) ∩ Ef2(h2) ∩ CL.

Finally,

dim Ef1(h1) ∩ Ef2(h2) ∩ CL = dim (Ef1(h1) ∩ Ef2(h2)) = h1

b1 = h2b2 = m + ω∗
(f1,f2)

(h1, h2).

�
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