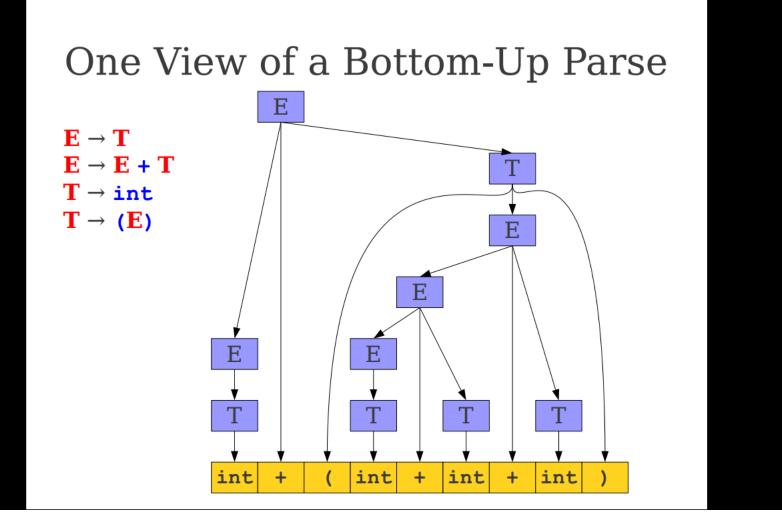
Bottom Up Parsing

- More general than deterministic top-down parsing
 - Just as efficient
 - Uses the same ideas
- The method used by most compiler generation tools
- +ve: do not need left factored grammar
- For example the following grammar is OK
 E→T+E|T
 T → int*T | int |(E)
- A grammar is OK provided that it is unambiguous

What is Bottom-Up Parsing?

- Idea: Apply productions in reverse to convert the user's program to the start symbol.
- A left-to-right, bottom-up parse is a rightmost derivation traced in reverse (as we will see).

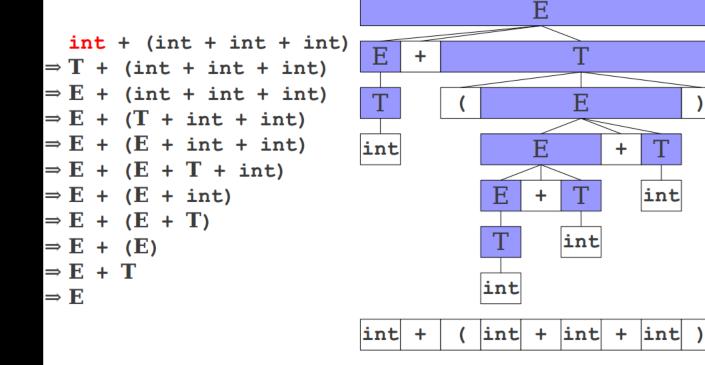


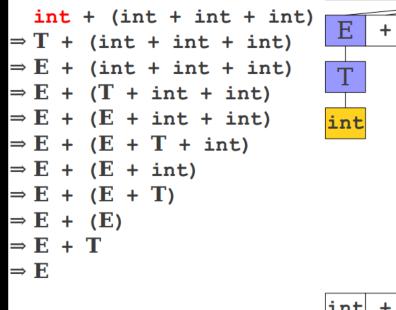
A Second View of a Bottom-Up Parse

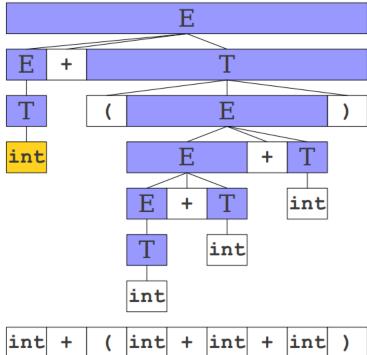
A Third View of a Bottom-Up Parse

```
int + (int + int + int)
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow E
```

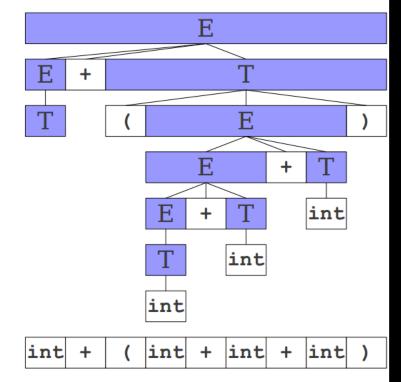
Each step in this bottom-up parse is called a reduction. We reduce a substring of the sentential form back to a nonterminal.



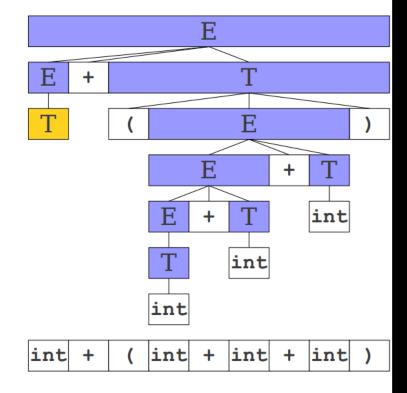


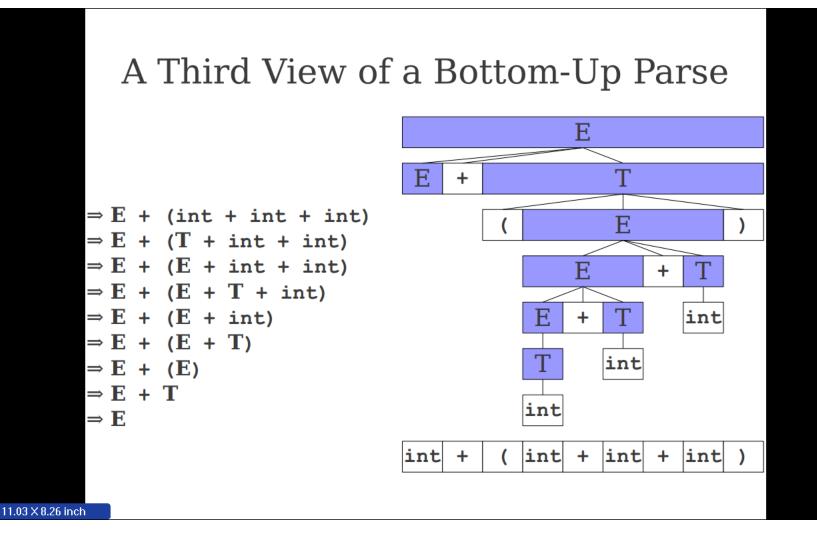


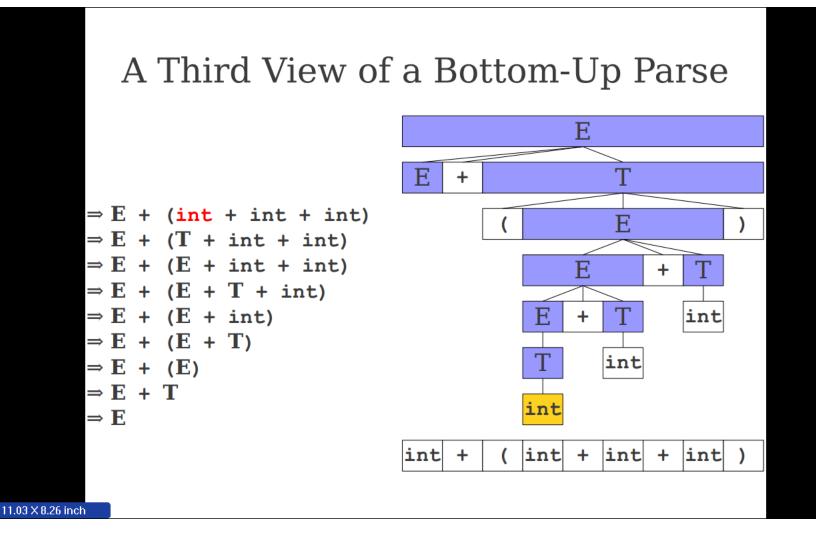
 $\Rightarrow T + (int + int + int)$ $\Rightarrow E + (int + int + int)$ $\Rightarrow E + (T + int + int)$ $\Rightarrow E + (E + int + int)$ $\Rightarrow E + (E + T + int)$ $\Rightarrow E + (E + int)$ $\Rightarrow E + (E + T)$ $\Rightarrow E + (E)$ $\Rightarrow E + T$ $\Rightarrow E$

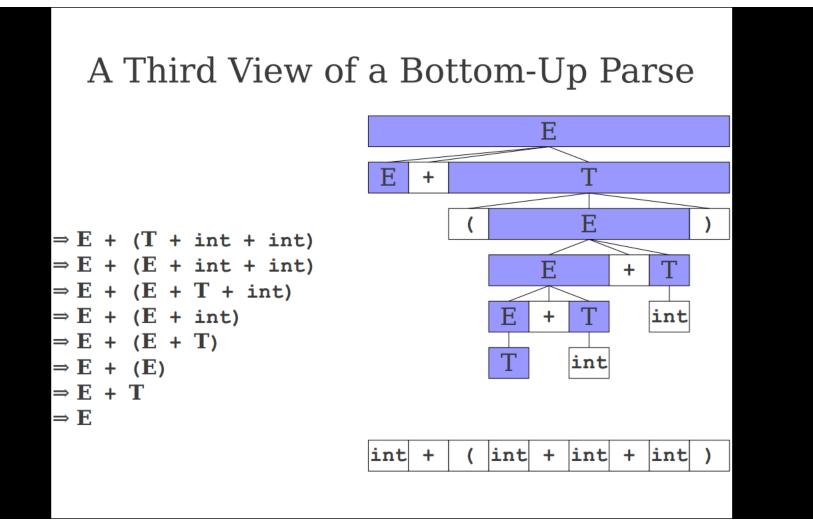


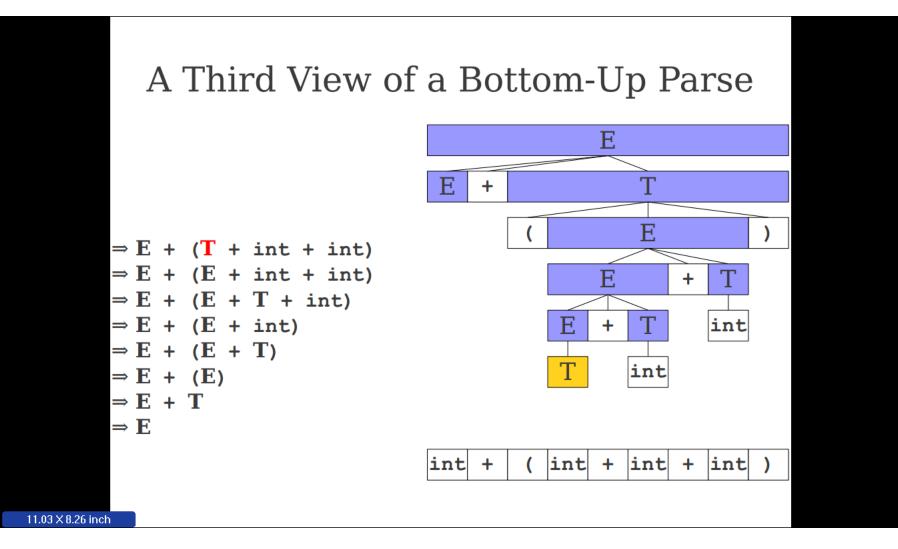
 $\Rightarrow \mathbf{T} + (\text{int} + \text{int} + \text{int})$ $\Rightarrow \mathbf{E} + (\text{int} + \text{int} + \text{int})$ $\Rightarrow \mathbf{E} + (\mathbf{T} + \text{int} + \text{int})$ $\Rightarrow \mathbf{E} + (\mathbf{E} + \text{int} + \text{int})$ $\Rightarrow \mathbf{E} + (\mathbf{E} + \mathbf{T} + \text{int})$ $\Rightarrow \mathbf{E} + (\mathbf{E} + \text{int})$ $\Rightarrow \mathbf{E} + (\mathbf{E} + \mathbf{T})$ $\Rightarrow \mathbf{E} + (\mathbf{E} + \mathbf{T})$ $\Rightarrow \mathbf{E} + (\mathbf{E})$ $\Rightarrow \mathbf{E} + \mathbf{T}$ $\Rightarrow \mathbf{E}$

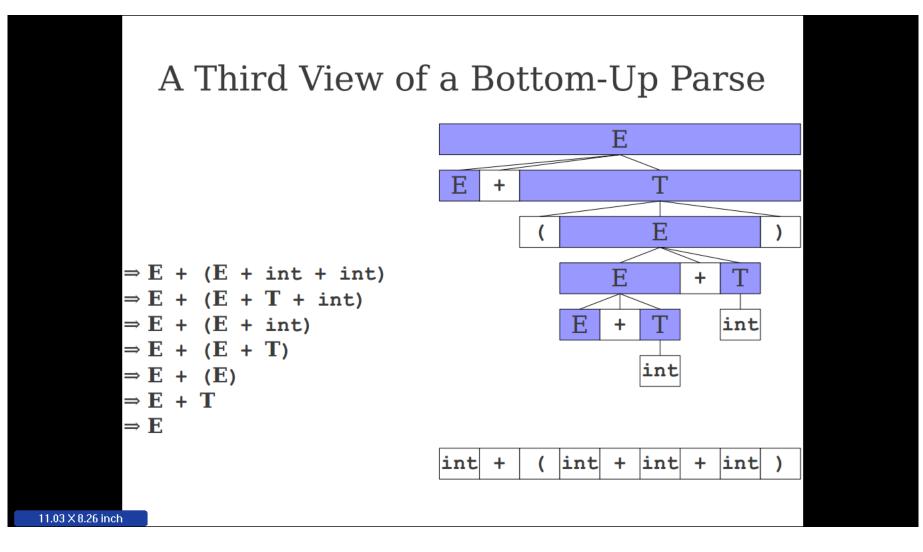


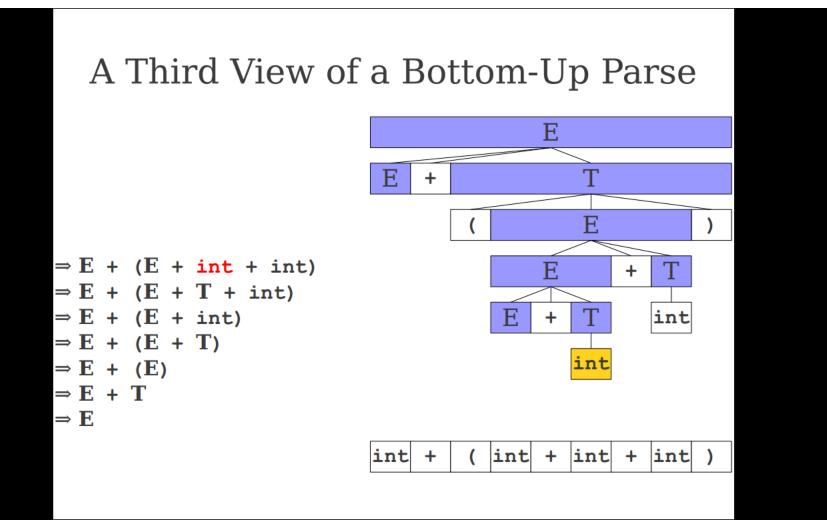


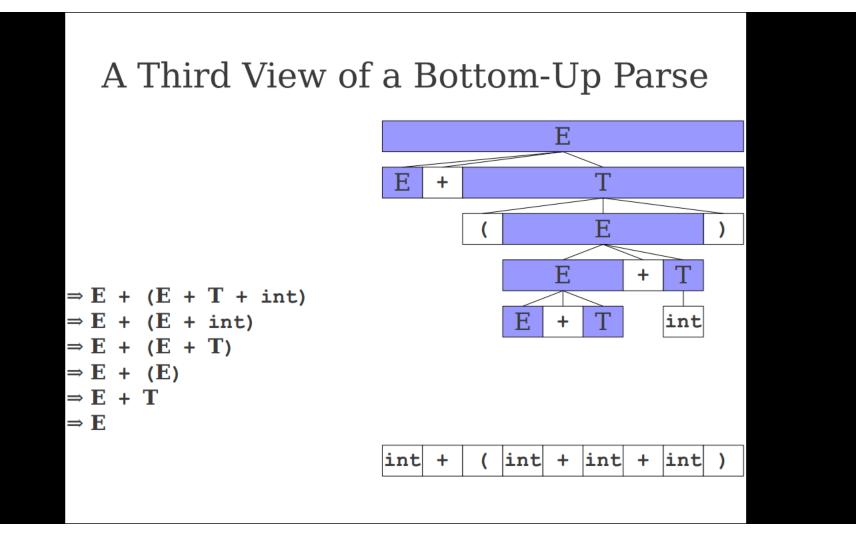


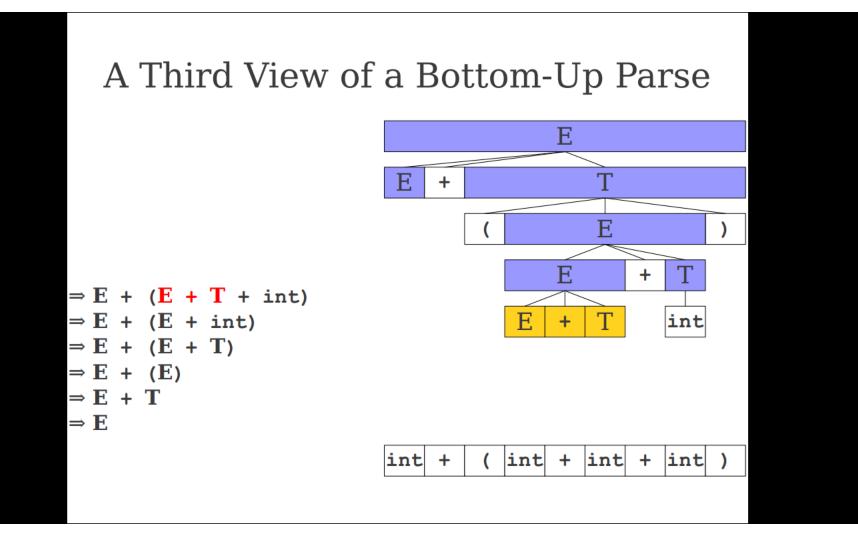


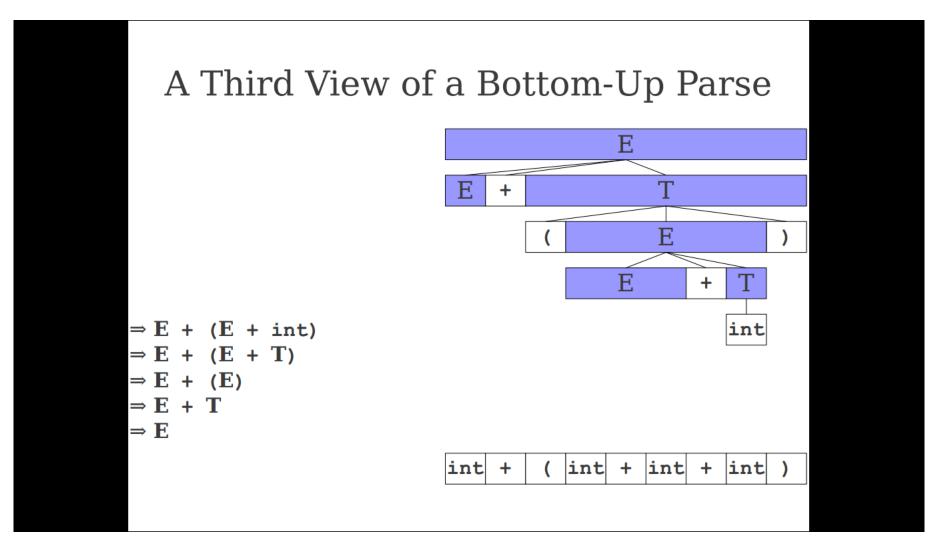


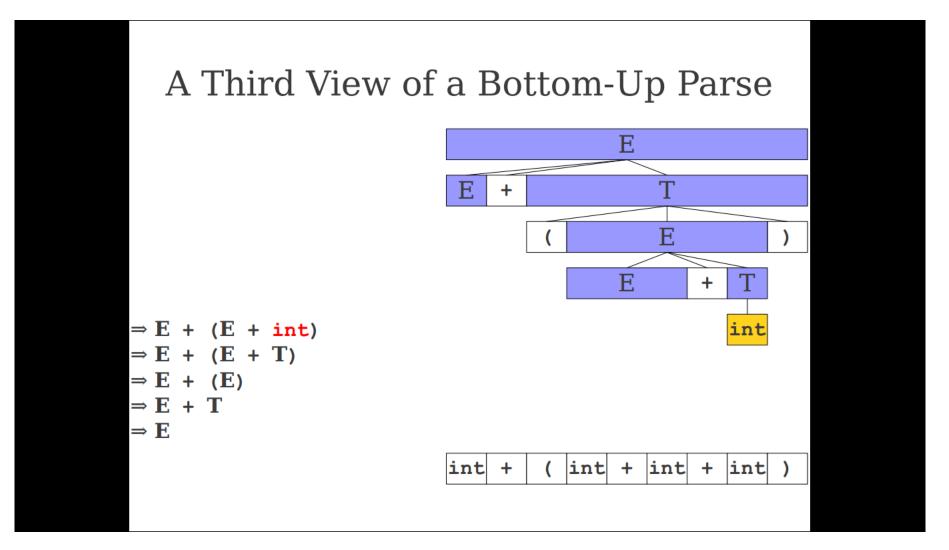


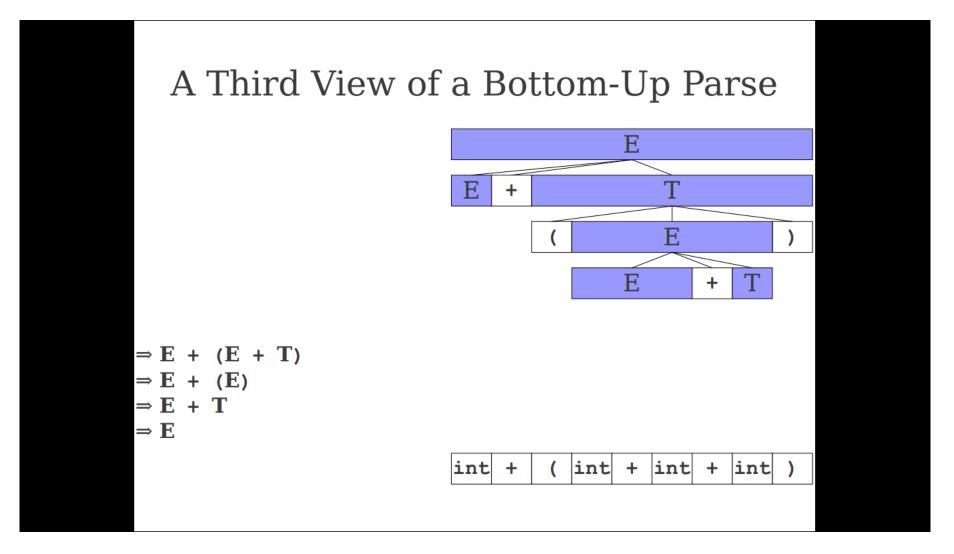


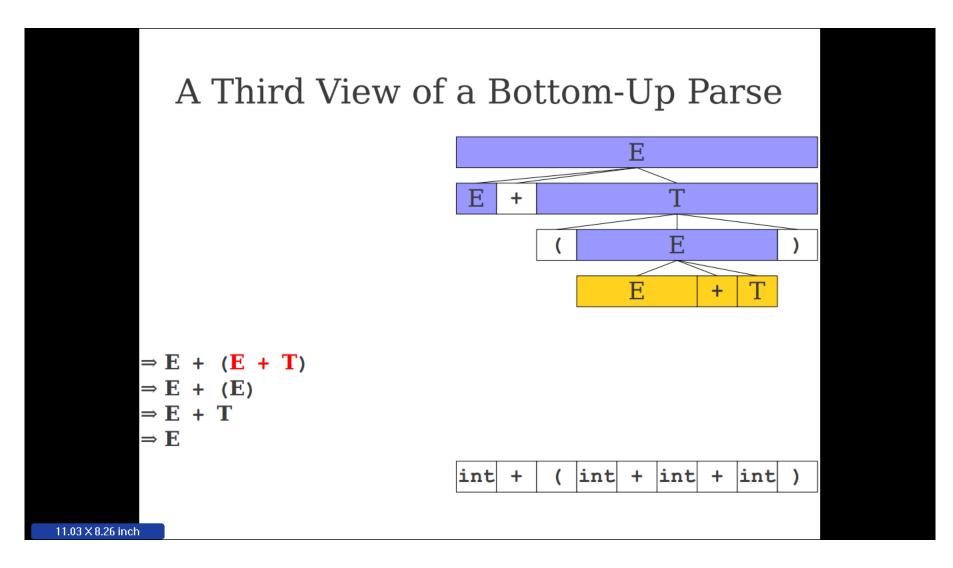


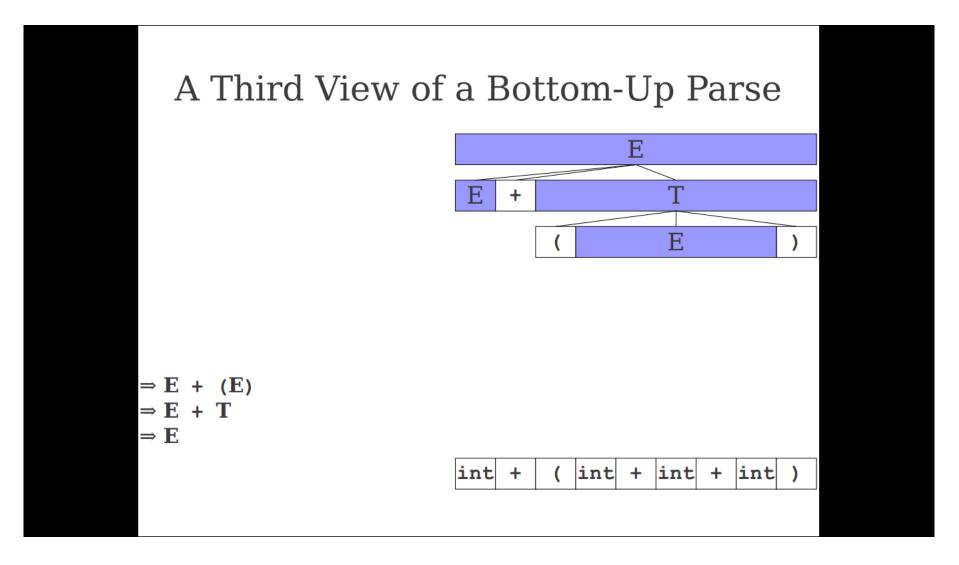


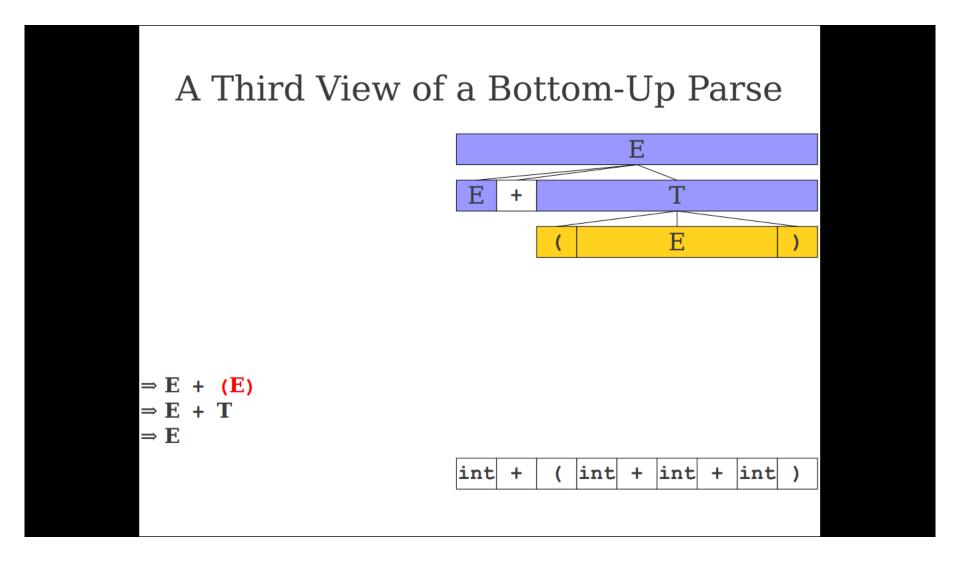


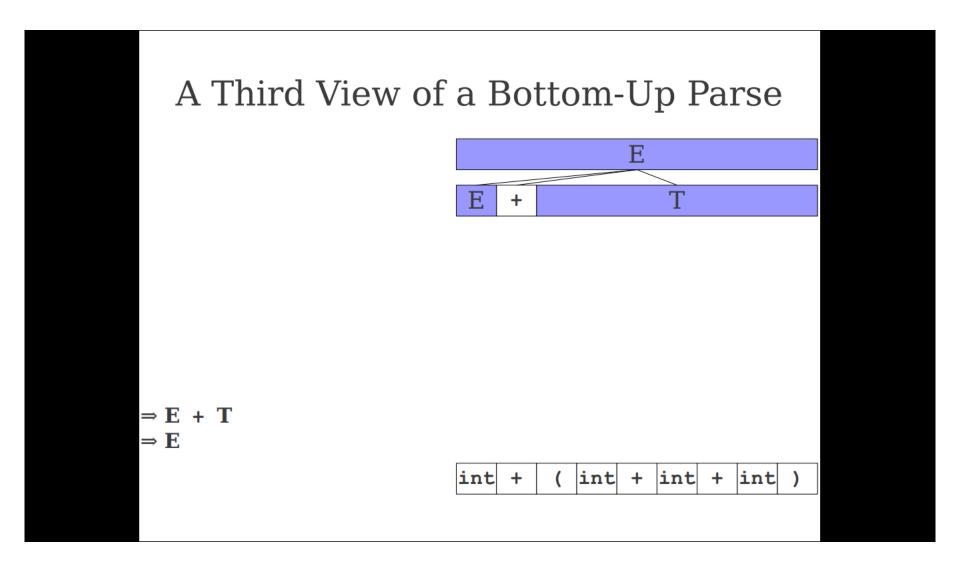


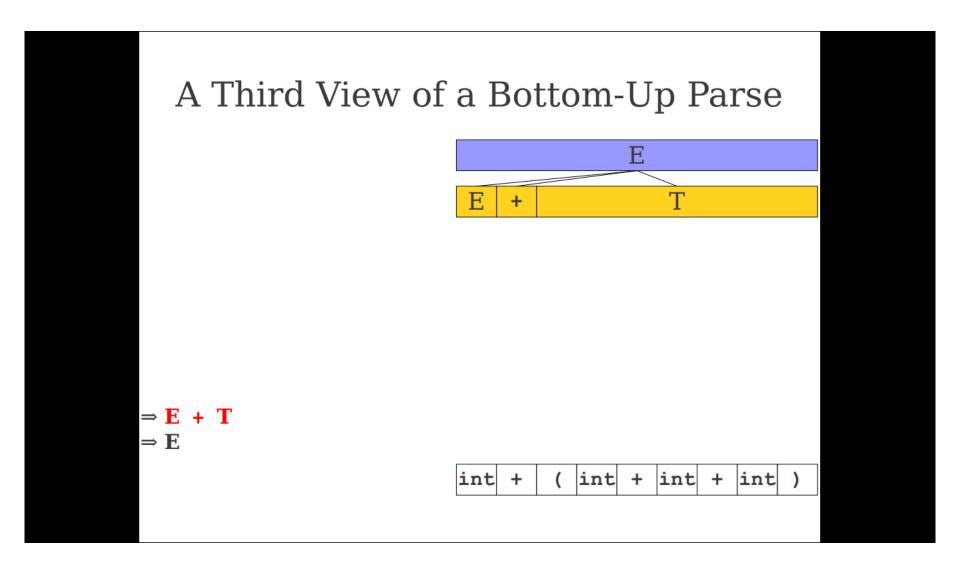


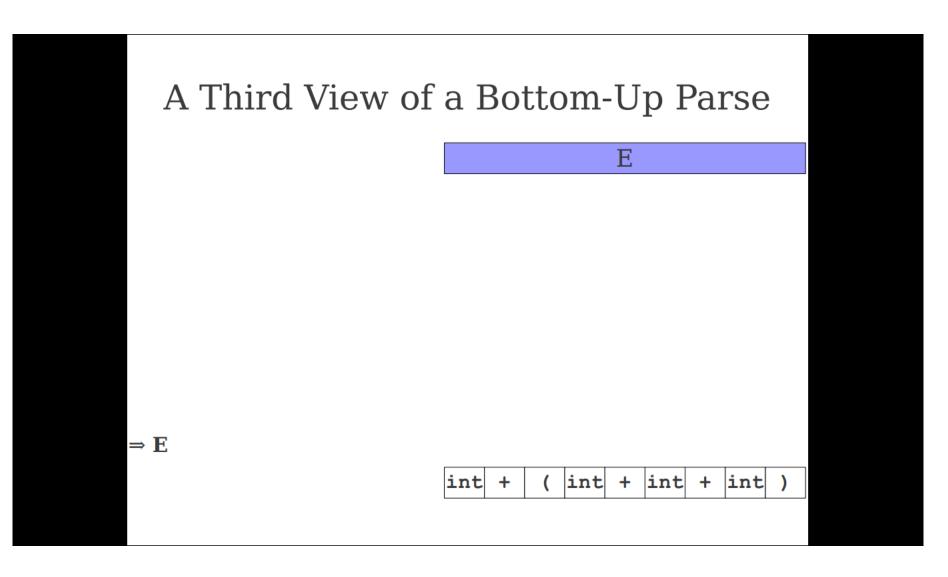












Observation

- Read the productions in reverse (from bottom to top)
- This is a rightmost derivation!

int * int + int	$T \rightarrow int$
int * T + int	$T \to int * T$
T + int	$T \rightarrow int$
T + T	$E \rightarrow T$
T + E	$E \rightarrow T + E$
E	

Important Fact #1 about bottomup parsing:

A bottom-up parser traces a rightmost derivation in reverse

A Bottom-up Parse in Detail (1)

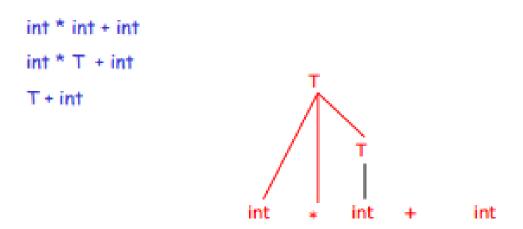
int * int + int

int * int + int

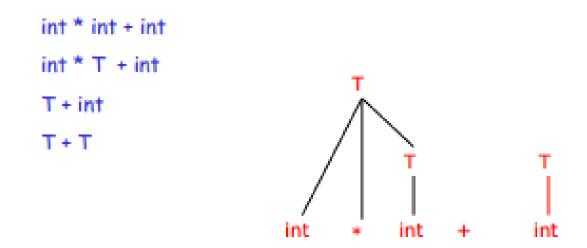
A Bottom-up Parse in Detail (2)

int * int + int int * T + int

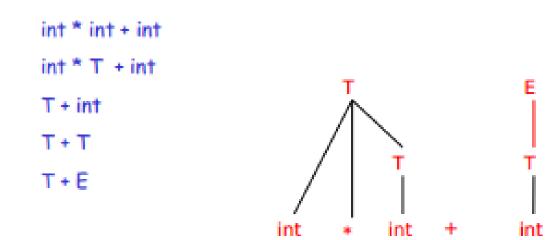
A Bottom-up Parse in Detail (3)



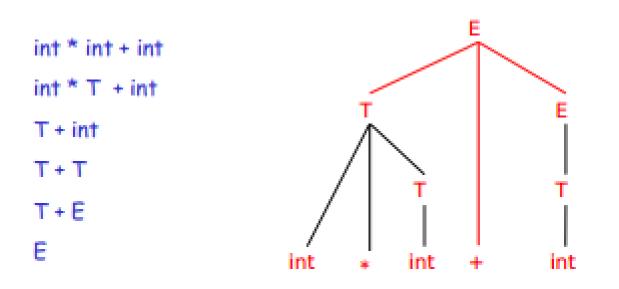
A Bottom-up Parse in Detail (4)



A Bottom-up Parse in Detail (5)



A Bottom-up Parse in Detail (6)



Shift Reduce Parsing

- The main strategy used by bottom up parsers
- Recall that a bottom-up parser traces a rightmost derivation in reverse
- An important consequence
 - Let $\alpha\beta\omega$ be a step of a bottom-up parse
 - Assume the next reduction is by $X \rightarrow \beta$
 - Then ω is a string of terminals, otherwise the reduction we just did was not for the rightmost terminal.
- The general idea: split string into two substrings
 - Right substring is yet unexamined by parsing
 - The Left substring has terminals and non-terminals
 - The left substring is our work area (where we should search for handles)
 - The dividing point is marked by a |

Two Main kinds of actions

- 1. Shift: Move | one place to the right
 - i.e., shifts a terminal to the left string
 - e.g. ABC|xyz → ABCx|yz
- 2. Reduce: apply an inverse production at the right end of the left string
 - If A→ xy is a production, then
 Cbxy | ijk → CbA| ijk
- When to shift and when to reduce is another story

int * int + int	shift
int * int + int	shift
int * int + int	shift
int * int + int	reduce $T \rightarrow int$
int * T + int	reduce $T \rightarrow int * T$
T + int	shift
T+ int	shift
T + int	reduce $T \rightarrow int$
T + T	reduce $E \rightarrow T$
T + E	reduce $E \rightarrow T + E$
El a su	

The Example with Shift-Reduce Parsing

Bottom-Up Parsing Using a Stack

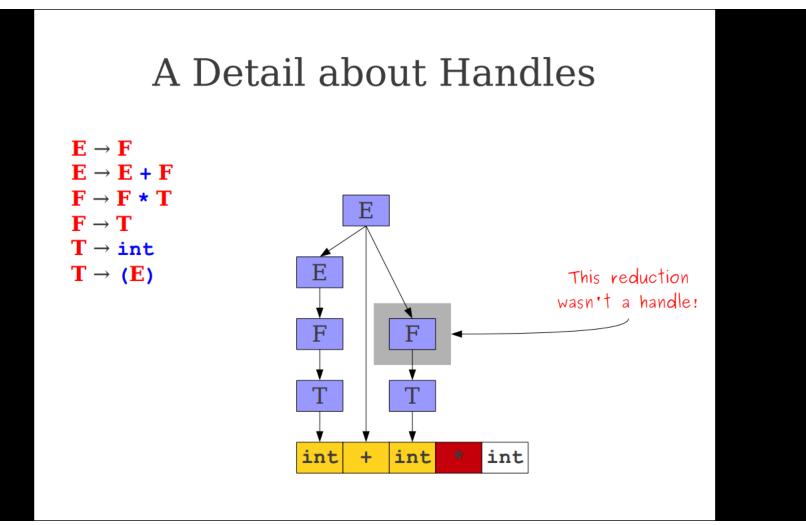
- Left string can be implemented by a stack
 - Shift
 - pushes a terminal on the stack
 - Reduce
 - Pop symbols off of the stack (the right hand side of a production)
 - Pushes a non-terminal on the stack (the left hand side of a production)

Conflicts

- In a given state, more than one action (shift or reduce) may lead to a parse tree
- Two main kinds of conflicts:
 - If it is legal to shift or reduce, there is a shift-reduce conflict
 - Not very good, but it is easy to rewrite the grammar to remove it.
 - If it is legal to reduce by two different productions, there is a reduce-reduce conflict.
 - This is bad because it indicates that something is wrong with the grammar

Handles

- How do we decide when to shift or reduce?
- The leftmost reduction is not always the best thing to do
- 2 Examples



Another Example

- Example grammar:
 - $E \rightarrow T+E \mid T$
 - $-T \rightarrow int * T \mid int \mid (E)$
 - Consider step int | * int + int
 - We could reduce by T \rightarrow int giving T| *int+int
 - A fatal mistake
 - Since no production can handle T^*
 - There would be no way to reduce to the start symbol E

Handles

- A handle is a reduction that allows further reductions back to the start symbol
- $S \rightarrow \alpha X \omega \rightarrow \alpha \beta \omega$, then $\alpha \beta$ is the handle simply because it is **not a mistake it allowed us to go back to the start symbol**.
- The handle of a parse tree T is the leftmost complete cluster of leaf nodes.

- A left-to-right, bottom-up parse works by
 - iteratively searching for a handle, then
 - reducing the handle.

Finding Handles

- Where do we look for handles?
 - Where in the string might the handle be?
- How do we search for possible handles?
 - Once we know where to search, how do we identify candidate handles?
 - What algorithm do we use to try to discover a handle?
- How do we recognize handles?
 - Once we've found a candidate handle, how do we confirm that it is correct (i.e., the handle?)

Recognizing Handles

There are no known efficient algorithms to recognize handles

- But, there are good heuristics for guessing handles
- On some CFGs, the heuristics always guess correctly

- It is **not obvious how to detect** handles
- At each step the parser sees only the stack, not the entire input;
- It sees α where α is a viable prefix if there is an ω such that α | ω is a state of a shiftreduce parser.
- Recall that α is on the stack while ω is the unseen input.

Viable Prefix

- A viable prefix because is a prefix of the handle
- In other words: it does not extend past the right end of the handle
- As long as a parser has viable prefixes on the stack no parsing error has been detected.

Important Fact

- For any grammar, the set of viable prefixes is a regular language.
- Therefore they can be recognized by a finite automata
- The basis for many **compiler generation tools**.
- We will see how to construct such a FA.
- But first we need **a few more definitions**

An item

- An item is a production with a "." somewhere on the rhs.
- The items for $T \rightarrow (E)$ are
 - $T \rightarrow .(E)$
 - $\mathsf{T} \rightarrow (.\mathsf{E})$
 - $\mathsf{T} \rightarrow (\mathsf{E}.)$
 - $T \rightarrow (E).$
- The only item for $X \rightarrow \xi$ is $X \rightarrow$.
- Items are often called "LR(0) items"

The problem in recognizing viable prefixes

 is that the stack has only bits and pieces of the rhs of productions

- If it had a complete rhs, we could reduce

 In any successful parse theses bits and pieces are always prefixes of rhs of productions.

- Consider the input (int)
 - $E \rightarrow T + E \mid T$
 - $T \rightarrow int^*T \mid int \mid (E)$
 - Then (E|) is a valid state of a shift-reduce parse
 - (E is a prefix of the rhs of T \rightarrow (E)
 - Notice that it will be reduced after the next shift
 - Item T \rightarrow (E.) says that so far we have seen (E of this production and hope to see)
 - i.e. no parsing errors so far

The structure of the stack

- The stack does not contain an arbitrary string of symbols.
- The stack may have many prefixes or rhs's
- Prefix₁ Prefix₂ ... Prefix_{n-1} Prefix_n

- Let Prefix_i be a prefix of rhs of $X_i \rightarrow \alpha_i$
 - Prefix, will eventually reduce to X_i
 - The missing part of α_{i-1} starts with X_i
 - i.e., there is an $X_{i-1} \rightarrow Prefix_{i-1} X_i \beta$ for some β
 - Recursively, Prefix_{k+1} ... Prefix_n eventually reduces to the missing part of α_k

An Example

- Consider the grammar
 - $E \rightarrow T + E \mid T$
 - $T \rightarrow int^*T \mid int \mid (E)$
- And the string (int * int)
- (int * | int) is a state of a shift-reduce parse
- The stack contents from bottom-to-top is "(" which is a prefix of the rhs of T → (E) "ξ" which is prefix of the rhs of E → T "int *" which is a prefix of the rhs of T → int * T

- The stack of items
 - $T \rightarrow (.E)$ $E \rightarrow .T$ $T \rightarrow int * .T$
- Which says
 - We have seen "(" of T \rightarrow (E)
 - We have seen ξ of $E \rightarrow T$
 - We have seen int* of T \rightarrow int * T

- To recognize viable prefixes, we must
 - Recognize a sequence of partial rhs's of productions, where
 - Each partial rhs can eventually reduce to part of the missing suffix of its predecessor

An Algorithm for recognizing Viable prefixes

- Recall that the set of viable prefixes are regular, so what we are going to do is to construct a NFA that recognizes them.
- The input of the NFA is the stack.
 - It will be read bottom-up
- The **output is**
 - yes if it is a viable prefix and
 - no if it is not.
- The states of the NFA are the items of the grammar.

Algorithm:

- 1. Add a dummy production $S' \rightarrow S$ to G
 - this makes S' the new start symbol and
 - makes sure that there is one production for the new start symbol

2. The NFA states are the items of G

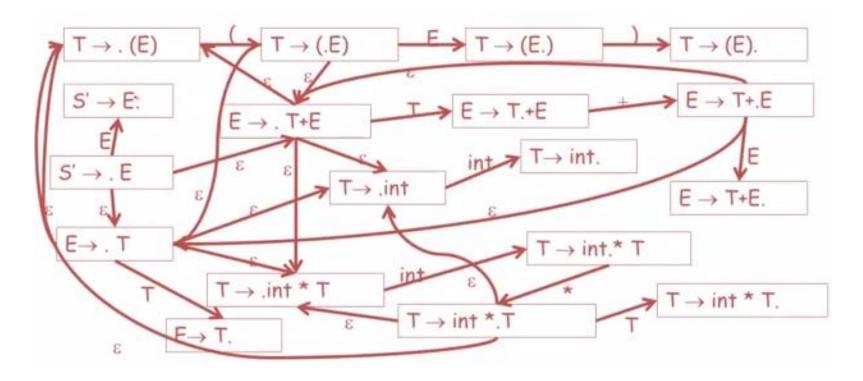
- Including the extra production
- 3. For item $E \rightarrow \alpha . X\beta$ add transition
 - (i.e. so far we have seen α on the stack)
 - So if x is the next symbol on the stack (above α) then we can make this transition
 - $E \rightarrow \alpha . X\beta \Rightarrow E \rightarrow \alpha X.\beta \text{ where } X \text{ a terminal or non terminal (i.e., a move the NFA can make)}$

4. For item $E \rightarrow \alpha . X\beta$ and for every production $X \rightarrow \Upsilon$

- where X is a non-terminal
- and what is on the stack can eventually be reduced to x
- So we can make the transition
- $E \rightarrow \alpha. X\beta \Rightarrow^{\xi} X \rightarrow .\Upsilon$
- 5. Every state is an accepting state
- 6. Start State is $S' \rightarrow .S$

Example

- $S' \rightarrow E$ (the extra production)
- $E \rightarrow T + E \mid T$
- $T \rightarrow int^*T \mid int \mid (E)$



The start state is the extra production

 $S' \rightarrow . E$

 $S' \rightarrow E.$

 $S' \rightarrow E$

E->.

What transitions can we make depends on what can be on the stack:

There can be an E on the stack or something derived

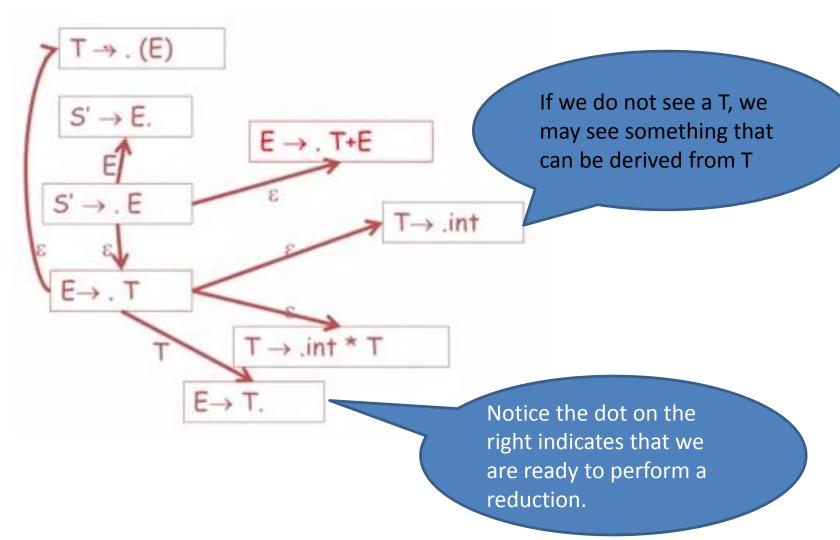
from E so we need three transitions

 $E \rightarrow . T+E$

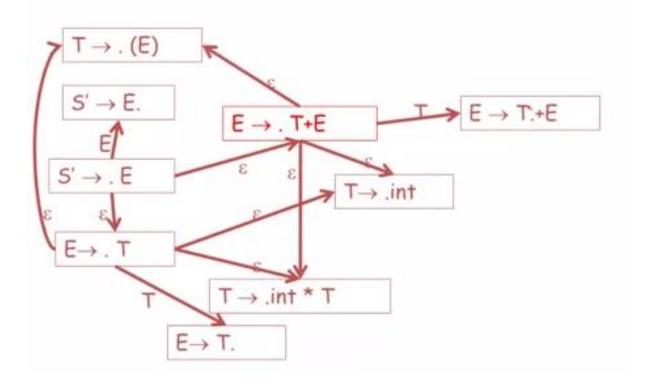
Notice the dot on the left of T, indicating that we are hoping to see T on the stack next.

Notice the dot on the left of T, indicating that we are hoping to see T on the stack next.

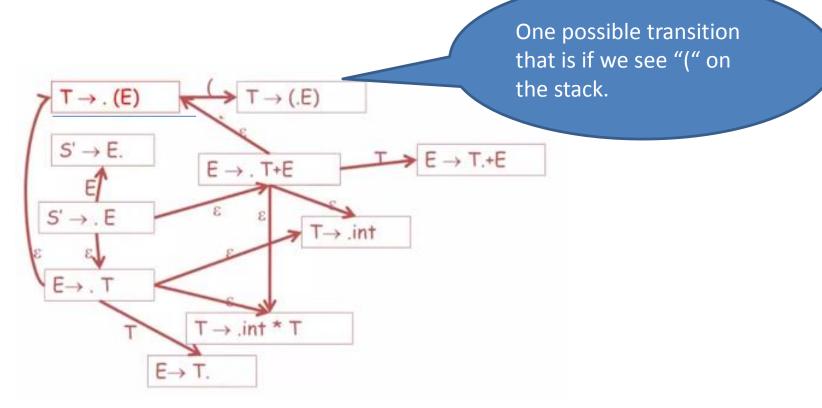
The transitions for $E \rightarrow T$



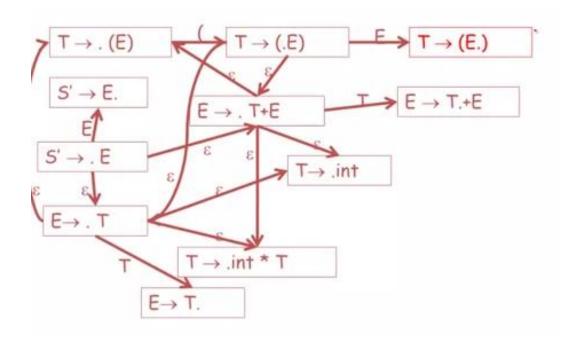
The transitions for $E \rightarrow .T+E$



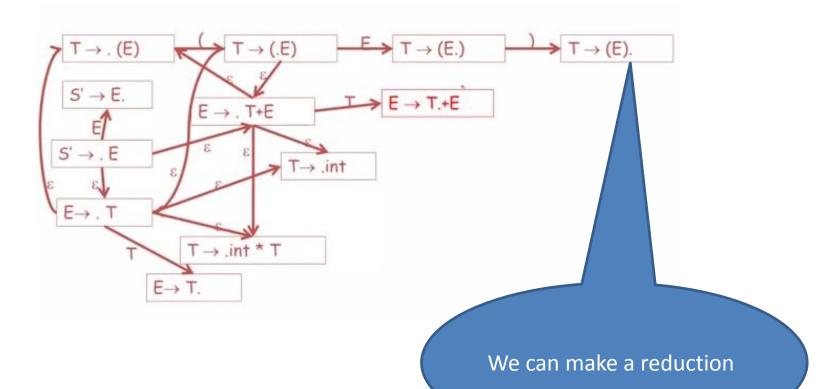
The transitions for $T \rightarrow .(E)$: One possible transition that is if we see "(" on the stack.



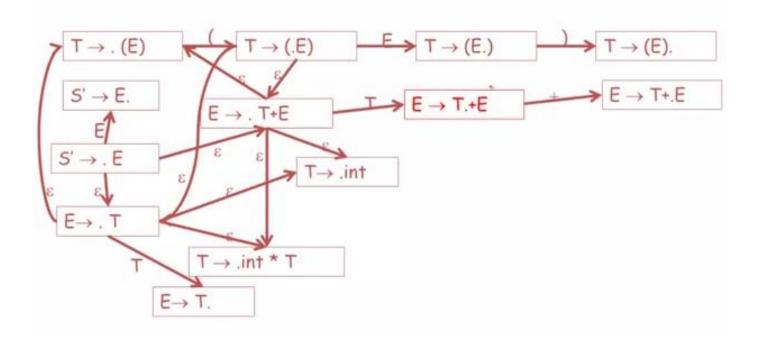
The transition for $T \rightarrow (.E)$



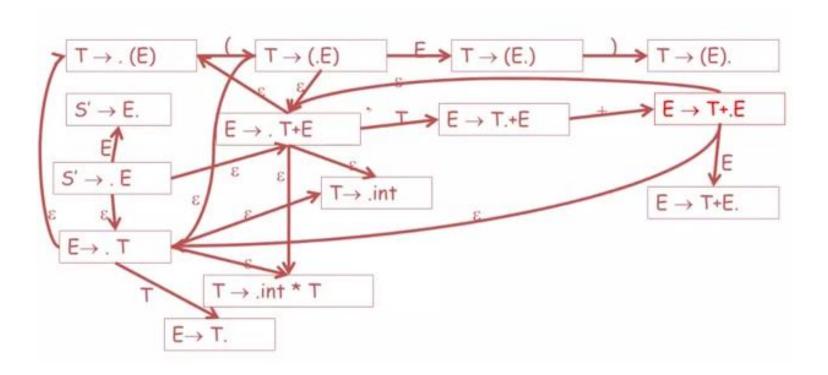
The transition of $T \rightarrow (E.)$



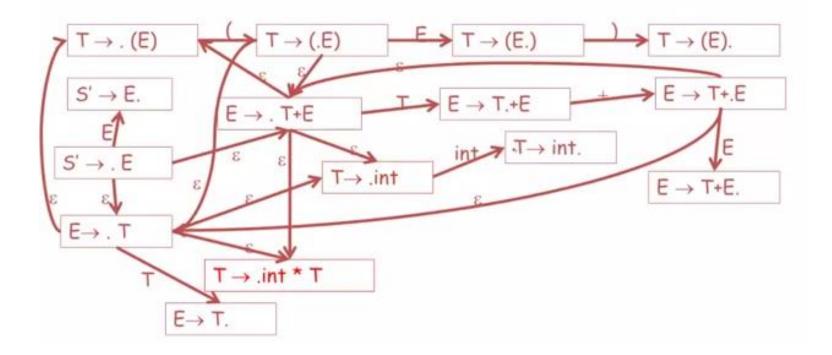
The transition for $E \rightarrow T.+E$



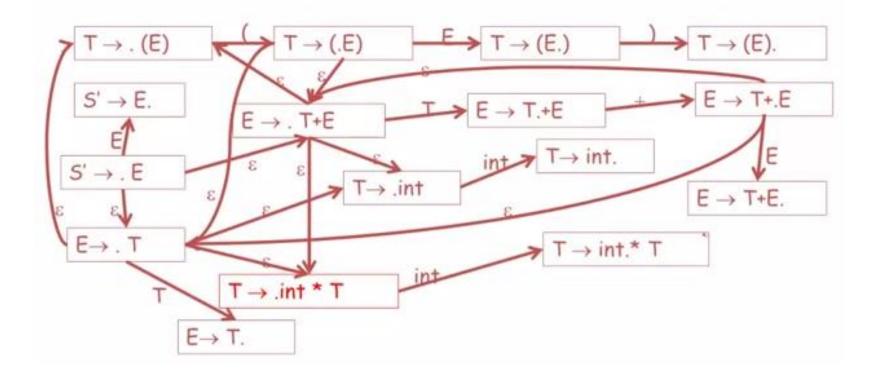
Transitions for $E \rightarrow T+.E$



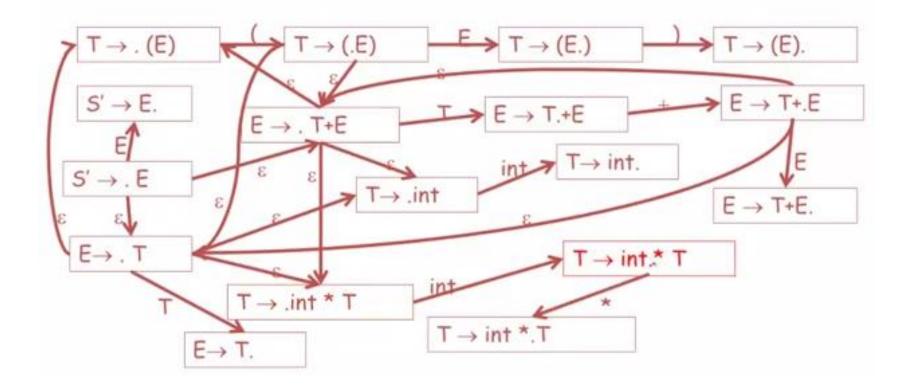
Transitions for $T \rightarrow .int$



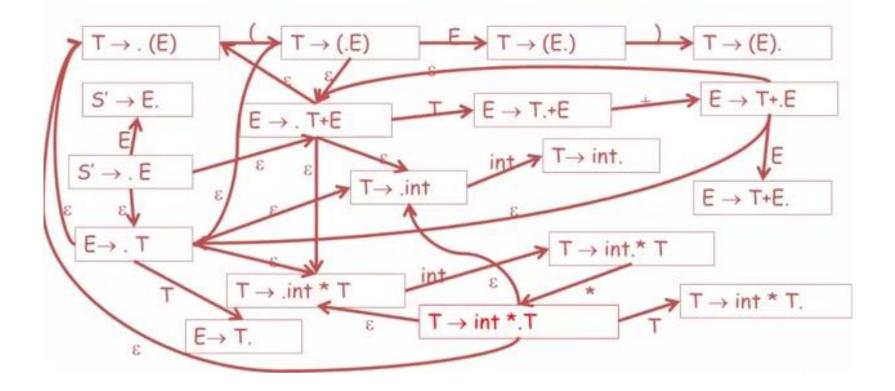
Transitions for $T \rightarrow .int * T$



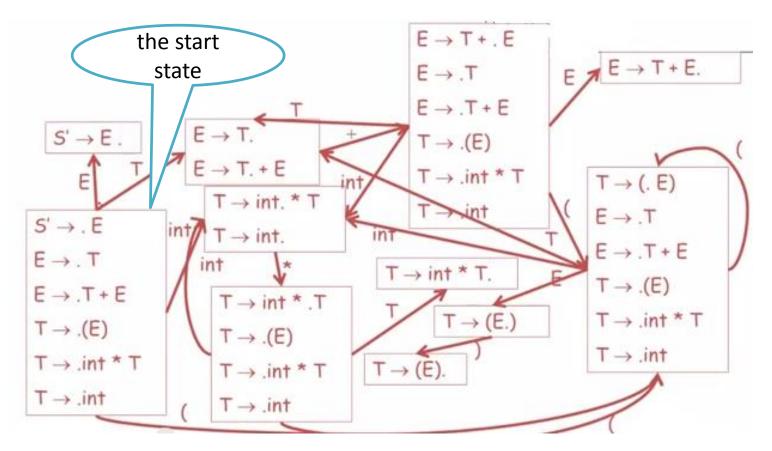
Transitions for $T \rightarrow int. * T$



Transitions for $T \rightarrow int *.T$



An Equivalent DFA



Notice: that each item is state andthe NFA can be in any of these states

- The states of the DFA are "canonical collections of items"
- Or "canonical collections of LR(0) items"
- Item $X \rightarrow \beta$. Υ is valid for a viable prefix $\alpha\beta$ if S' $\rightarrow^* \alpha X \omega \rightarrow \alpha\beta \Upsilon \omega$

by a rightmost derivation

• After parsing $\alpha\beta$, the valid items are the possible tops of the stack of items.

Valid Items

- An item is often valid for many prefixes

•••

SLR Parsing Algorithm: Simple LR parsing

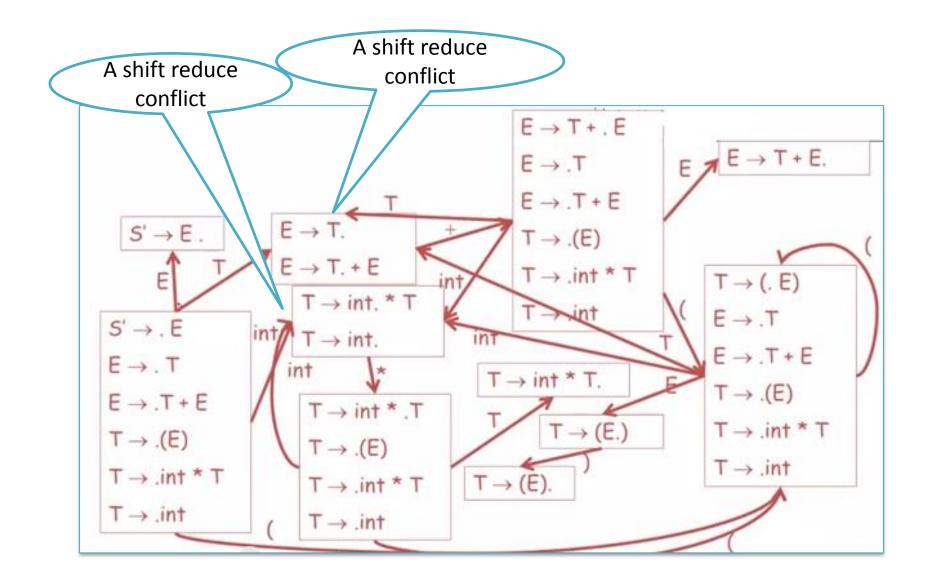
- LR(0) parsing: Assume
 - Stack contains α
 - Next input is t
 - DFA on input α terminates in state s
- Reduce by $X \rightarrow \beta$ if
 - S contains item $X \rightarrow \beta$. (i.e. we have seen a complete rhs)
- Shift if
 - S contains item $X \rightarrow \beta.t\omega$
 - i.e. s has a transition labeled t

2 kinds of problems

- LR(0) may not be able to decide what to do in two situations
- LR(0) has a reduce/reduce conflict if:
 - Any state has two reduce items:

 $-X \rightarrow \beta$. and $Y \rightarrow \omega$. (two possible reduce actions)

- LR(0) has a shift/reduce conflict if:
 - Any state has a reduce item and a shift item:
 - $-X \rightarrow \beta$. and $Y \rightarrow \omega$.t δ
 - (i.e. a reduce is possible and a shift is also possible)



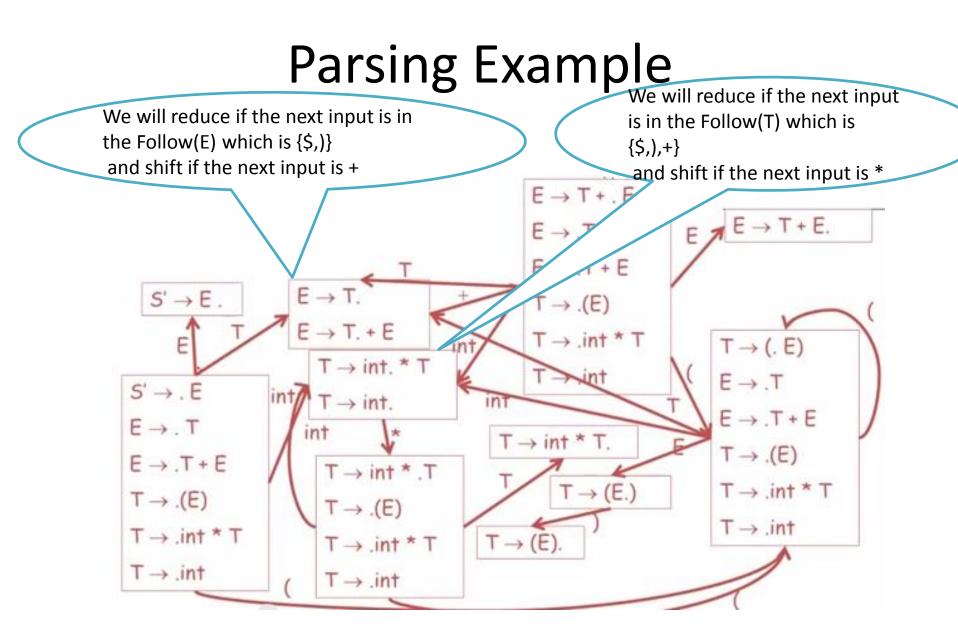
SLR Parsing

- SLR = "Simple LR"
- SLR improves on LR(0) by adding shift/reduce heuristics that
- will help us determine when to reduce and when to shift
 - Fewer states have conflicts

SLR Parsing

- Assumptions
 - Stack contains α
 - Next input is t
 - DFA on input α terminates in state s.
- Reduce by $X \rightarrow \beta$ if
 - -S contains $X \rightarrow \beta$.
 - -And
 - $-t \in Follow(X)$ (where t is the next input)
- Shift if
 - s contains item $X \rightarrow \beta.t\omega$

- If we still have conflicts after applying these rules, then the grammar is not SLR.
- The rules are heuristics for detecting handles
 - The SLR grammars are those where the heuristics detect exactly the handles.



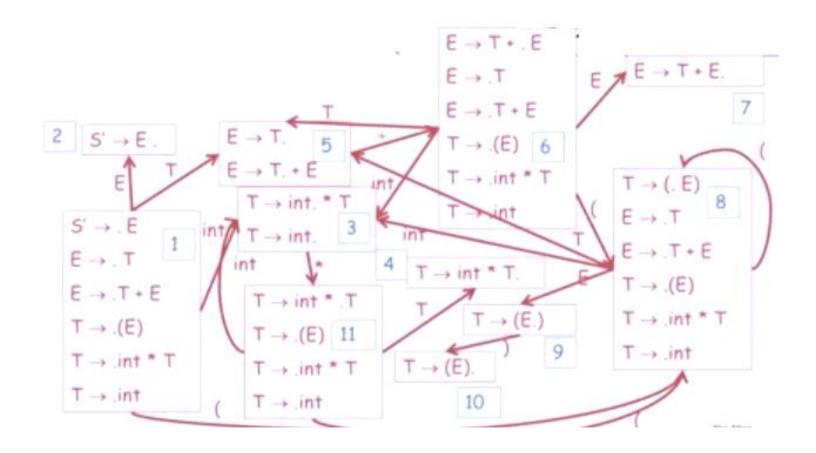
- Notice that all conflicts are resolved in the above grammar so it is an SLR grammar.
- But many grammars are not SLR
 These include all ambiguous grammar.
- We can parse more grammars by using precedence declarations
 - Instructions for resolving conflicts

- Consider the grammar
- $E \rightarrow E + E \mid E^*E \mid (E) \mid int$
- The DFA for this grammar contains a state with the following items:
 - $-E \rightarrow E^*E$. And $E \rightarrow E.+E$
 - Shift/reduce conflict.
- Declaring that * has higher precedence than + resolves this conflict in favor of reducing.
- So we will not do the shift.

SLR Parsing algorithm

- Let M be a DFA for viable prefixes of G
- Let $|x_1...X_n$ \$ be initial configuration (the stack is empty)
- Repeat until configuration is S | \$ (i.e. until all input has been consumed)
 - Let $\alpha | \omega$ be current configuration
 - Run M on current stack α
 - If M rejects α , report parsing error
 - Stack α is not a viable prefix
 - If M accepts α and ends in a state with items I, let a be next input
 - Shift if $X \rightarrow \beta.a \Upsilon \in I$
 - Reduce if $X \rightarrow \beta$. ϵ I and a ϵ Follow(X)
 - Report parsing error if neither applies

A Parsing Example: int * int\$



Configuration	DFA Halt State	Action
int*int\$	1	Shift
int * int\$	3 (because * is not in Follow(T)	Shift
int * int \$	11	shift
int * int \$	3 Because \$ Follow(T)	Reduce T \rightarrow int
int * T \$	4 Because \$ε Follow(T)	Reduce T \rightarrow int*T
т \$	5 Because \$e Follow(E)	Reudce $E \rightarrow T$
E \$		accept (since E is the start symbol)