
Bottom Up Parsing



• More general than deterministic top-down 
parsing
– Just as efficient
– Uses the same ideas

• The method used by most compiler generation 
tools

• +ve:  do not need left factored grammar
• For example the following grammar is OK

E→T+E|T
T → int*T | int |(E)

• A grammar is OK provided that it is unambiguous



What is Bottom-Up Parsing?

• Idea: Apply productions in reverse to convert 
the user's program to the start symbol.

• A left-to-right, bottom-up parse is a rightmost 
derivation traced in reverse  (as we will see).





















































Important Fact #1 about bottom-

up parsing:

A bottom-up parser traces a 

rightmost derivation in reverse















Shift Reduce Parsing

• The main strategy used by bottom up parsers
• Recall that a bottom-up parser traces a rightmost derivation in 

reverse
• An important consequence 

– Let αβω be a step of a bottom-up parse
– Assume the next reduction is by X→ β

– Then ω is a string of terminals, otherwise the reduction we just 
did was not for the  rightmost terminal.

• The general idea: split string into two substrings
– Right substring is yet unexamined by parsing
– The Left substring has terminals and non-terminals
– The left substring is our work area (where we should search for 

handles)
– The dividing point is marked by a |



Two Main kinds of actions

1. Shift: Move | one place to the right
• i.e., shifts a terminal to the left string

• e.g. ABC|xyz ABCx|yz

2. Reduce: apply an inverse production at the right 
end of the left string
– If A→ xy is a production, then

Cbxy | ijk CbA| ijk

• When to shift and when to reduce is another 
story





Bottom-Up Parsing Using a Stack

• Left string can be implemented by a stack

– Shift 

• pushes a terminal on the stack

– Reduce 

• Pop symbols off of the stack (the right hand side of a 
production)

• Pushes a non-terminal on the stack (the left hand side 
of a production)



Conflicts

• In a given state, more than one action (shift or 
reduce) may lead to a parse tree

• Two main kinds of conflicts:
– If it is legal to shift or reduce, there is a shift-reduce 

conflict
• Not very good, but it is easy to rewrite the grammar to 

remove it.

– If it is legal to reduce by two different productions, 
there is a reduce-reduce conflict.
• This is bad because it indicates that something is wrong with 

the grammar



Handles

• How do we decide when to shift or reduce?

• The leftmost reduction is not always the best 
thing to do

• 2 Examples





Another Example

• Example grammar:

– E→ T+E | T

– T → int * T | int | (E)

– Consider step int | * int  + int

• We could reduce by T → int giving T| *int+int

• A fatal mistake
– Since no production can handle T*

– There would be no way to reduce to the start symbol E



Handles

• A handle is a reduction that allows further 
reductions back to the start symbol

• S→* αXω →αβω,     then αβ is the handle 
simply because it is not a mistake it allowed 
us to go back to the start symbol.

• The handle of a parse tree T is the leftmost 
complete cluster of leaf nodes.



• A left-to-right, bottom-up parse works by

• iteratively searching for a handle, then 

• reducing the handle.



Finding Handles

• Where do we look for handles?

– Where in the string might the handle be?

• How do we search for possible handles?

– Once we know where to search, how do we identify 
candidate handles?

– What algorithm do we use to try to discover a handle?

• How do we recognize handles?

– Once we've found a candidate handle, how do we 
confirm that it is  correct (i.e., the handle?)



Recognizing Handles

• There are no known efficient algorithms to 
recognize handles

• But, there are good heuristics for guessing 
handles

• On some CFGs, the heuristics always 
guess correctly



• It is not obvious how to detect handles

• At each step the parser sees only the stack, 
not the entire input;

• It sees α where α is a viable prefix if there is 
an ω such that α| ω is a state of a shift-
reduce parser.

• Recall that α is on the stack while ω is the 
unseen input.



Viable Prefix

• A viable prefix because is a prefix of the 
handle

• In other words: it does not extend past the 
right end of the handle

• As long as a parser has viable prefixes on the 

stack no parsing error has been detected. 



Important Fact

• For any grammar, the set of viable prefixes is 
a regular language.

• Therefore they can be recognized by a finite 
automata

• The basis for many compiler generation tools.

• We will see how to construct such a FA.

• But first we need a few more definitions



An item

• An item is a production with a “.” somewhere 
on the rhs.

• The items for T → (E) are

T → .(E)

T → (.E)

T → (E.)

T → (E).

• The only item for X → ξ is X → .

• Items are often called “LR(0) items”



The problem in recognizing viable prefixes

• is that the stack has only bits and pieces of 
the rhs of productions

– If it had a complete rhs, we could reduce

• In any successful parse theses bits and pieces 
are always prefixes of rhs of productions.



• Consider the input (int)

E  → T + E | T

T → int*T | int | (E)

– Then (E|) is a valid state of  a shift-reduce parse

– (E is a prefix of the rhs of T → (E)

• Notice that it will be reduced after the next shift

– Item T → (E.) says that so far we have seen (E of 
this production and hope to see ) 

• i.e. no parsing errors so far



The structure of the stack

• The stack does not contain an arbitrary string 
of symbols.

• The stack may have many prefixes or rhs’s

• Prefix1 Prefix2 … Prefixn-1 Prefixn



• Let Prefixi be a prefix of rhs of Xi → αi

– Prefixi will eventually reduce to Xi

– The missing part of αi-1 starts with Xi

– i.e., there is an Xi-1 → Prefixi-1 Xi β for some β

– Recursively, Prefixk+1 … Prefixn eventually reduces 
to the missing part of αk



An Example
• Consider the grammar

E  → T + E | T

T → int*T | int | (E)

• And the string (int * int)

• (int * | int) is a state of a shift-reduce parse

• The stack contents from bottom-to-top is

“(”  which is a prefix of the rhs of T → (E)

“ξ”  which is prefix of the rhs of E → T

“int *”  which is a prefix of the rhs of T → int * T



• The stack of items
T → (.E)

E → .T

T → int * .T

• Which says

– We have seen “(“ of T → (E)

– We have seen ξ of E → T

– We have seen int* of T → int * T



• To recognize viable prefixes, we must 

– Recognize a sequence of partial rhs’s of 
productions, where

– Each partial rhs can eventually reduce to part of 
the missing suffix of its predecessor



An Algorithm for recognizing Viable 
prefixes

• Recall that the set of viable prefixes are 
regular, so what we are going to do is to 
construct a NFA that recognizes them.

• The input of the NFA is the stack.

– It will be read bottom-up

• The output is

– yes if it is a viable prefix and

– no if it is not.

• The states of the NFA are the items of the 
grammar.



Algorithm: 
1. Add a dummy production S’ → S to G

– this makes S’ the new start symbol and 

– makes sure that there is one production for the new start symbol

2. The NFA states are the items of G
– Including the extra production

3. For item E → α.Xβ add transition
– (i.e. so far we have seen α on the stack)

– So if x is the next symbol on the stack (above α) then we can make this 
transition

– E → α.Xβx E → αX.β where X a terminal or non terminal (i.e., a move the NFA can make)

4. For item E → α.Xβ and for every production X →ϒ
– where X is a non-terminal 

– and what is on the stack can eventually be reduced to x

– So we can make the transition

– E → α.Xβ ξ X → .ϒ

5. Every state is an accepting state

6. Start State is S’ → .S 



Example
S’ → E          (the extra production)

E  → T + E | T

T  → int*T | int | (E)



The start state is the extra production

What transitions can we make depends on what can be 
on the stack: 
There can be an E on the stack or something derived 
from E so we need three transitions

Notice the dot on the left 
of T, indicating that we 
are hoping to see T on 
the stack next.

Notice the dot on the left 
of T, indicating that we 
are hoping to see T on 
the stack next.



The transitions for E→.T

Notice the dot on the 
right indicates that we 
are ready to perform a 
reduction. 

If we do not see a T, we 
may see something that 
can be derived from T 



The transitions for E → .T+E



The transitions for T → .(E):
One possible transition that is if we see “(“ on the 

stack.
One possible transition 
that is if we see “(“ on 
the stack.



The transition for T → (.E)



The transition of T → (E.)

We can make a reduction



The transition for E  → T.+E



Transitions for E → T+.E



Transitions for T → .int



Transitions for T → .int * T



Transitions for T → int. * T



Transitions for T→ int *.T



An Equivalent DFA

the start 
state

•Notice: that each item is state and 

•the NFA can be in any of these states



• The states of the DFA are “canonical 
collections of items”

• Or “canonical collections of LR(0) items”

• Item X→ β.ϒ is valid for a viable prefix αβ if

S’ →* αXω → αβϒω

by a rightmost derivation

• After parsing  αβ, the valid items are the 
possible tops of the stack of items.



Valid Items

• An item is often valid for many prefixes

• Example: The item T → (.E) is valid for prefixes
(

((

(((

((((

(((((

…



SLR Parsing Algorithm: Simple LR 
parsing

• LR(0) parsing: Assume

– Stack contains α

– Next input is t

– DFA on input α terminates in state s

• Reduce by X → β if 

– S contains item X → β.   (i.e. we have seen a complete rhs)

• Shift if

– S contains item X → β.tω

– i.e. s has a transition labeled t



2 kinds of problems

• LR(0) may not be able to decide what to do in 
two situations

• LR(0) has a reduce/reduce conflict if:

– Any state has two reduce items:

– X → β. and Y → ω.      (two possible reduce actions)

• LR(0) has a shift/reduce conflict if:

– Any state has a reduce item and a shift item:

– X → β. and Y → ω.tδ
• (i.e. a reduce is possible and a shift is also possible)



A shift reduce 
conflictA shift reduce 

conflict



SLR Parsing

• SLR = “Simple LR”

• SLR improves on LR(0) by adding shift/reduce 
heuristics that 

• will help us determine when to reduce and 
when to shift

– Fewer states have conflicts



SLR Parsing

• Assumptions

– Stack contains α

– Next input is t

– DFA on input α terminates in state s.

• Reduce by X → β if

– S contains X → β. 

– And

– t ϵ Follow(X)          (where t is the next input)

• Shift if 

– s contains item X → β.tω



• If we still have conflicts after applying these 
rules, then the grammar is not SLR.

• The rules are heuristics for detecting handles

– The SLR grammars are those where the heuristics 
detect exactly the handles.



Parsing Example
We will reduce if the next input is in 
the Follow(E) which is {$,)}
and shift if the next input is +

We will reduce if the next input 
is in the Follow(T) which is 
{$,),+}
and shift if the next input is *



• Notice that all conflicts are resolved in the 
above grammar so it is an SLR grammar. 

• But many grammars are not SLR

– These include all ambiguous grammar.

• We can parse more grammars by using 
precedence declarations

– Instructions for resolving conflicts



• Consider the grammar

• E→ E+E | E*E | (E) | int

• The DFA for this grammar contains a state 
with the following items:

– E→ E*E.   And E→ E.+E

– Shift/reduce conflict.

• Declaring that * has higher precedence than + 
resolves this conflict in favor of reducing.

• So we will not do the shift.



SLR Parsing algorithm
• Let M be a DFA for viable prefixes of G

• Let |x1…Xn$ be initial configuration  (the stack is empty)

• Repeat until configuration is S|$      (i.e. until all input has been consumed)

– Let α|ω be current configuration

– Run M on current stack α

– If M rejects α, report parsing error

• Stack α is not a viable prefix

– If M accepts α and ends in a state with items I, let a be 
next input

• Shift if X→β.aϒ ϵ I

• Reduce if X→β. ϵ I and a ϵ Follow(X)

• Report parsing error if neither applies



A Parsing Example: int * int$



Configuration DFA Halt State Action

|int*int$ 1 Shift

int| * int$ 3  (because * is not in Follow(T) Shift

int * | int $ 11 shift

int * int |$ 3   Because  $ϵ Follow(T) Reduce T → int

int * T |$ 4   Because  $ϵ Follow(T) Reduce T → int*T

T|$ 5   Because  $ϵ Follow(E) Reudce E → T

E|$ accept (since E is the start symbol)


