
Section 9: Presentation of the Theory ~w
toc9. Presentation of the Theory

In this section, we present the demonstration of many of the theorems
discussed in the tutorial.

Theorem 9.1. Let a and c be numbers, then

lim
x→a c = c. (Rule 1)

Proof : Let ε > 0. In reference to the definition of limit, the function
under consideration is f(x) = c, and L = c. We want to choose a
number δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− L| < ε
or,

0 < |x− a| < δ =⇒ |c− c| < ε (1)

It is clear in this trivial situation that the condition |c − c| < ε will
hold no matter the choice of δ > 0; therefore, choose δ = 1. Thus, for
that choice of δ, obviously, (1) holds. �
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Theorem 9.2. For any number a,

lim
x→ax = a. (Rule 2)

Proof : Within the context of the definition of limit of a function,
f(x) = x and L = a. Let ε > 0. We want to find a δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− L| < ε
or,

0 < |x− a| < δ =⇒ |x− a| < ε (2)

Towards that end, choose δ = ε, then

0 < |x− a| < δ =⇒ |x− a| < δ = ε.

But this is exactly what we wanted to prove, (2). �
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Theorem 9.3. (Algebra of Limits Theorem) Let f and g be functions
and let a and c be number. Suppose

lim
x→a f(x), and lim

x→a g(x)

exist and are finite. Then,
(1) lim

x→a(f(x) + g(x)) = lim
x→a f(x) + lim

x→a g(x);

(2) lim
x→a(cf(x)) = c lim

x→a f(x);

(3) lim
x→a(f(x)g(x)) = lim

x→a f(x) lim
x→a g(x);

(4) lim
x→a

f(x)
g(x)

=
lim
x→a f(x)

lim
x→a g(x)

, provided, lim
x→a g(x) 6= 0.

Throughout the proofs below, let L = lim
x→a f(x) and M = lim

x→a g(x).

Proof of (1). Let ε > 0. We must find a δ > 0 such that

0 < |x− a| < δ =⇒ |(f(x) + g(x))− (L+M)| < ε.
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Towards that end, there exists a δ2 > 0 such that

0 < |x− a| < δ1 =⇒ |f(x)− L| < ε

2
, (3)

since lim
x→a f(x) = L. And there exists a δ1 > 0 such that

0 < |x− a| < δ2 =⇒ |g(x)−M | < ε

2
, (4)

Finally, define δ = min{δ1, δ2}. Note that

0 < |x− a| < δ =⇒ 0 < |x− a| < δ1 and 0 < |x− a| < δ2 (5)

Now suppose x is a number in the domains of both f and g such that

0 < |x− a| < δ. (6)
Then,
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|(f(x) + g(x))− (L+M)|
= |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M | / Abs. (1)

<
ε

2
+
ε

2
(7)

= ε.
Thus,

|(f(x) + g(x))− (L+M)| < ε

Since we are assuming (6), the inequalities on the right-hand side of
(5). Since those inequalities are obtained, then the right-hand sides of
(3) and (4) are true as well. This is were we obtained the inequality
in (7).

We have shown that

0 < |x− a| < δ =⇒ |(f(x) + g(x))− (L+M)| < ε.

This is the definition of lim
x→a(f(x) + g(x)) = L+M . �
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Proof of (2). Let ε > 0. We need to find a number δ > 0 such that

0 < |x− a| < δ =⇒ |(cf(x))− cL| < ε. (8)

Now, since lim
x→a f(x) = L, and ε > 0 has been given, from the definition

of limit, there exists a δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− L| < ε

1 + |c| . (9)

Now suppose,

0 < |x− a| < δ
then,

|(cf(x))− cL| = |c||f(x)− L| / Abs. (3)

< |c| ε

1 + |c|
=

|c|
1 + |c|ε

≤ ε.
Thus,
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|(cf(x))− cL| < ε

Note: We utilized the fact that
|c|

1 + |c| ≤ 1, for any number c ∈ R.

The denominator, 1 + |c|, was chosen instead of |c| to account for the
possibility that c might be zero.

Thus, we have shown that for the δ > 0 produced in (9), (8) is ob-
tained. �
Proof of (3). Let ε > 0 be given. We want to find a δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)g(x)− LM | < ε. (10)

Consider the following series of manipulations:

|f(x)g(x)− LM |
= |f(x)g(x)− f(x)M + f(x)M − LM |
≤ |f(x)g(x)− f(x)M |+ |f(x)M − LM | / Abs. (1)

= |f(x)||g(x)−M |+ |M ||f(x)− L|. / Abs. (3) (11)
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We can make the second term in (11) “small” since lim
x→a f(x) = L:

Choose δ1 > 0 such that

0 < |x− a| < δ1 =⇒ |f(x)− L| < ε

2(1 + |M | . (12)

Now for the problem of the first term of (11). We can make the factor
|g(x) −M | as small as we wish since limx→a g(x) = M but we have
to make sure that the smallest of this factor is not counter-balanced
by the factor |f(x)|. (That factor might be large — we have to make
sure that it is not.) To that end, for 0 < |x − a| < δ1, we have, by
(12),

|f(x)− L| < ε

2(1 + |M |)
then,

|f(x)| = |f(x)− L+ L| ≤ |f(x)− L|+ |L| / Abs. (1)

≤ ε

2(1 + |M |+ |L|)
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For the purpose of convenience, let C =
ε

2(1 + |M |+ |L|) . Thus, there
is a constant, C, such that

0 < |x− a| < δ1 =⇒ |f(x)| < C. (13)

Continuing our quest for the ultimate δ > 0 for which (10) is valid,
choose δ2 > 0 such that

0 < |x− a| < δ2 =⇒ |g(x)−M | < ε

2(1 + C)
. (14)

This is possible since lim
x→a g(x) = M .

Finally, choose the ultimate δ-value as

δ = min{δ1, δ2}, (15)

and suppose 0 < |x−a| < δ. Then 0 < |x−a| < δ1 and 0 < |x−a| < δ2
form (15) and, as a consequence, the inequalities in (12), (14) and (13)
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are valid. Thus, for 0 < |x− a| < δ, we have,

|f(x)g(x)− LM |
≤ |f(x)||g(x)−M |+ |M ||f(x)− L| / (11)

< C
ε

2(1 + C)
+ |M | ε

2(1 + |M |) / (13), (14), (12)

<
C

1 + C

ε

2
+
|M |

1 + |M |
ε

2
≤ ε.

Thus, we have shown that for any ε > 0, there exists a δ > 0 such
that

0 < |x− a| < δ =⇒ |f(x)g(x)− LM | < ε.

This completes the proof of this part. �
Proof of (4). Let ε > 0. From the definition, we want to find a number
δ > 0 such that

0 < |x− a| < δ =⇒
∣∣∣∣f(x)
g(x)

− L

M

∣∣∣∣ < ε,
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here, we are assuming M 6= 0.

Towards this end, consider the following:∣∣∣∣f(x)
g(x)

− L

M

∣∣∣∣ =
∣∣∣∣f(x)M − g(x)L

Mg(x)

∣∣∣∣
=
∣∣∣∣ (f(x)M − LM) + (LM − g(x)L)

Mg(x)

∣∣∣∣
=
∣∣∣∣M(f(x)− L) + L(M − g(x))

Mg(x)

∣∣∣∣
≤
∣∣∣∣M(f(x)− L)

Mg(x)

∣∣∣∣+
∣∣∣∣L(M − g(x))

Mg(x)

∣∣∣∣ / Abs. (1)

=
1
|g(x)| |f(x)− L|+ |L|

|Mg(x)| |g(x)−M | / Abs. (3)

Do you see where I am going with this calculation? To summarize, we
have shown that∣∣∣∣f(x)

g(x)
− L

M

∣∣∣∣ ≤ 1
|g(x)| |f(x)− L|+ |L|

|Mg(x)| |g(x)−M | (16)
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Now, for some details. The |g(x)| in the denominator is bothersome.
Since lim

x→a g(x) = M 6= 0, there is a δ1 > 0 such that

0 < |x− a| < δ1 =⇒ |g(x)−M | < M

2
/ definition

Now, for 0 < |x− a| < δ1,

|g(x)| = |M − (M − g(x))|
≥ |M | − |M − g(x)| / Abs. (2)

≥ |M | − M

2

≥ M

2
.

This establishes the inequality,

0 < |x− a| < δ1 =⇒ |g(x)| ≥ M

2

=⇒ 1
|g(x)| ≤

2
M

(18)



Section 9: Presentation of the Theory

Let’s put this back into the inequality (16) to get∣∣∣∣f(x)
g(x)

− L

M

∣∣∣∣ ≤ 1
|g(x)| |f(x)− L|+ |L|

|Mg(x)| |g(x)−M |

≤ 2
|M | |f(x)− L|+ 2|L|

M2 |g(x)−M | (20)

Now for our final calculations! Since lim
x→a f(x) = L, there is a δ2 > 0

such that

0 < |x− a| < δ2 =⇒ |f(x)− L| < ε|M |
4

. (21)

Since lim
x→a g(x) = M , there is a δ3 > 0 such that

0 < |x− a| < δ3 =⇒ |g(x)−M | < εM2

4(1 + |L|) . (22)
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Choose δ = min{δ1, δ2, δ3}. Consequently, if x satisfies the inequality
0 < |x− a| < δ, then all three of the inequalities (18), (21), and (22)
hold. Thus, if we take x to satisfy,

0 < |x− a| < δ,

then, from (20), we have∣∣∣∣f(x)
g(x)

− L

M

∣∣∣∣ ≤ 2
|M | |f(x)− L|+ 2|L|

M2 |g(x)−M |

≤ 2
|M |

ε|M |
4

+
2|L|
M2

εM2

4(1 + |L|) / from (21) and (22)

≤ ε

2
+
ε

2
= ε

That does it! We have found the δ > 0 that “works.” �
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Theorem 9.4. (Continuity of Power Functions) Let a ∈ R and n ∈
N. Then

lim
x→ax

n = an. (23)

Proof : By Theorem 9.2, we have lim
x→ax = a. Therefore, by Theo-

rem 9.3 (3),

lim
x→ax

2 = lim
x→axx = lim

x→ax lim
x→ax = aa = a2.

Similarly, by Theorem 9.3 (3),

lim
x→ax

2 = lim
x→ax

2x = lim
x→ax

2 lim
x→ax = a2a = a3.

The formal mechanism for finishing the proof in Mathemtical Induc-
tion: Suppose we have shown that

lim
x→ax

n−1 = an−1,

then, from Theorem 9.3 (3) and Theorem 9.2,

lim
x→ax

n = lim
x→ax

n−1x = lim
x→ax

n−1 lim
x→ax = an−1a = an.
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By the Principle of Mathematical Induction, we have proved the the-
orem. �

Theorem 9.5. (Continuity of Polynomial Functions) Let p be a poly-
nomial and a ∈ R. Then

lim
x→a p(x) = p(a). (24)

Proof : Let p(x) be a polynomial of degree n ∈ N. This means that
the functional form of p is

p(x) = b0 + b1x+ b2x
2 + b3x

3 + · · ·+ bn−1x
n−1 + bnx

n,

for some set of coefficients b0, b1, b2, . . . , bn.

Notice that p(a)b0 + b1a+ b2a
2 + b3a

3 + · · ·+ bn−1a
n−1 + bna

n.



Section 9: Presentation of the Theory

Now apply Theorem 9.3 (1), Theorem 9.3 (2) as well as Theorem 9.4
to obtain

lim
x→a p(x) = limx→a(b0 + b1x+ b2x

2 + b3x
3 + · · ·+ bn−1x

n−1 + bnx
n)

= lim
x→a b0 + lim

x→a b1x+ lim
x→a b2x

2 + · · ·+ lim
x→a bnx

n
/ (1)

= b0 + b1 lim
x→ax+ b2 lim

x→ax
2 + · · ·+ bn lim

x→ax
n

/ (2)
Rule 1

= b0 + b1a+ b2a
2 + · · ·+ bna

n
/ Thm 9.4

= p(a) �

Theorem 9.6. (Continuity of Rational Functions) Let f be a rational
function, and let a ∈ Dom(f). Then

lim
x→a f(x) = f(a). (25)
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Proof : A rational function is a quotient of two polynomials. Let p and
q be two polynomials such that

f(x) =
p(x)
q(x)

.

The natural domain of f is given by

Dom(f) = {x ∈ R | g(x) 6= 0 }
Let a ∈ Dom(f); thus, g(a) 6= 0. This observation is important as we
are about to cite Theorem 9.3 (4). In that theorem, we require the
limit of the denominator to be nonzero. Read on.

lim
x→a f(x) = lim

x→a
p(x)
q(x)

=
lim
x→a p(x)

lim
x→a q(x)

/ Thm 9.3 (4)

=
p(a)
q(a)

/ Thm 9.5
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Thus,

lim
x→a f(x) =

p(a)
q(a)

= f(a).

This is equation (25) that was asserted in the theorem. �

Theorem 9.7. Let f and g be functions that are compatible for com-
position, let a ∈ R. Suppose,

(1) limx→a g(x) exists, let b = limx→a g(x);
(2) b ∈ Dom(f), and limy→b f(y) = f(b) exists.

Then

lim
x→a f(g(x)), exists

and,
lim
x→a f(g(x)) = f(b),

or,
lim
x→a f(g(x)) = f( lim

x→a g(x)). (26)
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Proof : Let ε > 0. We want to find a number δ > 0 such that

0 < |x− a| < δ =⇒ |f(g(x))− f(b)| < ε. (27)

To this end, since ε > 0 has been given, and it is assumed that
lim
y→b

f(y) = f(b), there is a γ > 0 such that

0 < |y − b| < γ =⇒ |f(y)− f(b)| < ε. (28)

Now, we have a number γ > 0 defined, since we are assuming that
lim
x→a g(x) = b, there is a number δ > 0 such that

0 < |x− a| < δ =⇒ |g(x)− b| < γ. (29)

Now we claim that the number, δ > 0, produced in the last paragraph
is the δ-value we seek. Indeed, suppose

0 < |x− a| < δ

Then, from (29),
|g(x)− b| < γ.



Section 9: Presentation of the Theory

But now, this inequality implies, by (28), that

|f(g(x))− f(b)| < ε.

This proves the theorem! �

Theorem 9.8. (Continuity of the Root Function) Let n ∈ N. Define
f(x) = n

√
x, for a ∈ Dom(f). Then

lim
x→a f(x) = f(a)

or,
lim
x→a

n
√
x = n

√
a (30)

Proof : The key to this proof is the observation that f(x) = n
√
x is an

increasing function; i.e.,

x1, x2 ∈ Dom(f) and x1 < x2 =⇒ f(x1) < f(x2)
or,

x1, x2 ∈ Dom(f) and x1 < x2 =⇒ n
√
x1 <

n
√
x2
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Let a ∈ Dom(f). Show limx→a n
√
x = n

√
a.

Case I : a = 0. Let ε > 0, choose δ = εn. Then it is obvious that, since
n
√

0 = 0,

x ∈ Dom(f) and |x| < δ = εn =⇒ | n√x| < ε

This is the trivial case.

Case II : a > 0. Let ε > 0. We can assume ε is so small that n
√
a−ε > 0.

(Why?) Then,

0 < n
√
a− ε < n

√
a < n

√
a+ ε =⇒ 0 < ( n

√
a− ε)n < a < ( n

√
a+ ε)n

This is because the function x 7→ xn is increasing on the interval
( 0,∞ ); i.e., 0 < x1 < x2 =⇒ xn1 < xn2 .

Define the δ > 0 we are looking for as

δ := min{ a− ( n
√
a− ε)n, ( n

√
a+ ε)n − a }
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Now suppose 0 < |x− a| < δ. Notice that such an x must necessarily
belong to the domain of f . (Why?) Then

0 < |x− a| < δ =⇒ a− δ < x < a+ δ

=⇒ ( n
√
a− ε)n < a− δ < x < a+ δ < ( n

√
a+ ε)n

(32)

Thus, we have,

0 < |x− a| < δ =⇒ ( n
√
a− ε)n < x < ( n

√
a+ ε)n.

Now we use the increasing property of n
√
n:

0 < |x− a| < δ =⇒ ( n
√
a− ε)n < x < ( n

√
a+ ε)n

=⇒ n
√

( n
√
a− εn) < n

√
x < n

√
( n
√
a+ εn)

=⇒ n
√
a− ε < n

√
x < n

√
a+ ε

=⇒ | n√x− n
√
a| < ε.

Thus, we have shown that

0 < |x− a| < δ =⇒ | n√x− n
√
a| < ε (33)
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This proves that limx→a n
√
x = n

√
a in this case.

Case III : a < 0. This case is only present with n, the root being
extracted, is an odd integer. The proof is left to the reader — it is
similar to Case II. The student need only study the previous case,
make appropriate changes in the steps. �
Proof Notes: How can we assume that ε is such that n

√
a − ε > 0? If

ε does not satisfy this inequality, then choose another ε-value, say ε1
that does satisfy the desired inequality. Now use ε1 throughout the
rest of the proof instead of ε. We would finished the proof with the
declaration that

0 < |x− a| < δ =⇒ | n√x− n
√
a| < ε1,

but since ε1 < ε, we would have had

0 < |x− a| < δ =⇒ | n√x− n
√
a| < ε1 < ε,

which is (33). That being the case, we might as well assume at the
beginning that a− ε > 0 and avoid the introduction of ε1.
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If you go to the trouble of studying the proof given in Case II,
it would appear that the only property of n

√
x used in the proof was

that it was increasing. (I used that fact that x 7→ xn is increasing as
well.) That being the case, can this proof be modified to argue that
any increasing function f has the property that limx→a f(x) = f(a)?

Having read the previous paragraph, now consider the function

f(x) =
{
x x < 0
1 + x x ≥ 0

This function is strictly increasing over R, but limx→0 f(x) 6= f(0)
since the two-sided limit does not exist?

Can you resolve the seeming contradiction between the two
paragraphs? e-mail me with your thoughts.

Exercise 9.1. Draw the graph of f(x) = n
√
x, and use it to illustrate

the main idea of the proof of Case II of Theorem 9.8.

Exercise 9.2. Let n ∈ N be odd, and let a ∈ R be negative. Prove

lim
x→a

n
√
x = n

√
a.
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Corollary 9.9. Suppose lim
x→a g(x) exists, then

lim
x→a

n
√
g(x) = n

√
lim
x→a g(x), (34)

provided that the number b := lim
x→a g(x) is within the domain of the

nth-root function.

Proof : All the heavy lifting has been done. We apply Theorem 9.7
with the function f in that theorem as f(x) = n

√
x and the function

g in that theorem, the function g in this corollary! Now the point of
Theorem 9.8 was that it is a verification of condition (2). Of course,
condition (1) is apart of the assumptions of this corollary. Therefore,
we can conclude by Theorem 9.7 that

lim
x→a

n
√
g(x) = n

√
lim
x→a g(x),

which is (34). �
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Theorem 9.10. (Continuity of Algebraic Functions) Let f be an al-
gebraic function, and let a ∈ Dom(f). Then

lim
x→a f(x) = f(a).

Proof : An algebraic function is constructed by sums, differences, prod-
ucts, quotients and compositions with functions of the form:

y = c y = xn y = m
√
x.

These are constant functions, power functions, and root functions,
respectively. For all three, we have shown the property:

lim
x→a c = c lim

x→ax
n = an lim

x→a
m
√
x = m

√
a.

The latter case is true provided a belongs to the domain of the mth-
root functions. (See theorems: 9.1, 9.4, and 9.8.)

These observations, combined with the Algebra of Limits Theorem,
which concerns sums, differences, products, and quotients of functions
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whose limits exist, and with Theorem 9.7, which concerns composi-
tions of functions whose limits exist, allows us to make the assertion
of the theorem. �

Theorem 9.11. Let g, f , and h be functions and a, L ∈ R. Suppose
there is some δ0 > 0 such that

g(x) ≤ f(x) ≤ h(x) |x− a| < δ0, (35)
and,

lim
x→a g(x) = lim

x→ah(x) = L.

Then
lim
x→a f(x) = L.

Proof : Let ε > 0.

Since limx→a g(x) = L, there is a δ1 > 0 such that

0 < |x− a| < δ1 =⇒ |g(x)− L| < ε.
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This inequality implies,

L− ε < g(x) whenever, 0 < |x− a| < δ1 (36)

(Do you know why?)

Now, since limx→a h(x) = L, there is a δ2 > 0 such that

0 < |x− a| < δ2 =⇒ |h(x)− L| < ε.

This implies

h(x) < L+ ε whenever, 0 < |x− a| < δ2 (37)

(Do you know why?)

Finally, choose δ = min{ δ0, δ1, δ2 }, then

0 < |x− a| < δ
implies,

L− ε <︸ ︷︷ ︸
(36)

g(x) ≤ f(x) ≤ h(x)︸ ︷︷ ︸
(35)

< L+ ε︸ ︷︷ ︸
(37)
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But this implies,

|f(x)− L| < ε, whenever 0 < |x− a| < δ.

which is what we wanted to prove. �

Theorem 9.12. The following limits are obtained.

lim
x→0

sin(x) = 0 lim
x→0

cos(x) = 1. (38)

Proof : Under construction.

Theorem 9.13. The following limits are obtained.

lim
x→0

sin(x)
x

= 1 lim
x→0

1− cos(x)
x

= 0. (39)

Proof : Under construction.



Appendix

Properties of Absolute Value. Let a, b, c ∈ R, then each of the
following inequalities are obtained:

1. |a+ b| ≤ |a|+ |b|.
2. |a− b| ≥ |a| − |b|.
3. |ab| = |a||b|.



Solutions to Exercises

9.1. Draw a graph that represents f . Designate a point on the hori-
zontal axis as a, then mark off the corresponding point on the vertical
axis — label this point n

√
a.

Now mark off a little distance, ε, equidistant above and below the
point labeled n

√
a. These are the points n

√
a − ε and n

√
a + ε. Label

them so.

Now starting at each of the points n
√
a − ε and n

√
a + ε, move hori-

zontally until you hit the graph of f , now move vertically downward
until you intersect the x-axis. The two points obtained in this way
are ( n

√
a− ε)n and ( n

√
a+ ε)n, respectively. These two points have the

number a between them.

The quantity δ is the shortest distance between a and each of the
two points constructed in the previous paragraph. Now mark off a
δ-distance on either side of a. Do you see that this δ interval lies com-
pletely inside the larger interval? (Because δ is the shortest distance



Solutions to Exercises (continued)

to the endpoints.) Now it is clear, at least geometrically, the validity
of the inequality (32). Can you show the inequality (32) algebraically?

Assuming you understand my verbal (bit-tell?) instructions, do you
see why

0 < |x− a| < δ =⇒ | n√x− n
√
a| < ε?

Exercise Notes: Review my question in the Proof Notes above. Does
this graphical construction give you additional insight into answering
the question?

Exercise 9.1.



9.2. I said — it is left to the reader! DPS
Study the proof of Case II of Theorem 9.8 and make appropriate
changes to correspond to a < 0.

Exercise 9.2.
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