

King Saud University College of Engineering Department of Civil Engineering

FINAL EXAM

CE302 Mechanics of Materials – First Semester 1432-33 (2011-12)

Sunday, 14 Safar 1433 - 8 January 2012 Time allowed: 3 hours

Student Name	
Student Number	
Section (put X please)	□ 29484 (from 9:00 to 10:00 A.M.) □ 33488 (from 10:00 to 11:00 A.M.)
Name of Instructor	Dr. Ahmet TUKEN

Questions	Maximum Marks	Marks obtained
$\mathbf{Q} \neq 1$	6	
$\mathbf{Q} eq 2$	6	
$\mathbf{Q} \neq 3$	9	
$\mathbf{Q} \neq 4$	9	
$\mathbf{Q} \neq 5$	10	
$\mathbf{Q} \neq 6$	10	
	Total marks	50

Total marks obtained (in words):

Instructor's Signature

The rectangular concrete beam is reinforced with three 20-mm diameter steel rods as shown. If the allowable compressive stress for concrete is $(\sigma_{all})_{concrete} = 12.5$ MPa and the allowable tensile stress for steel is $(\sigma_{all})_{steel} = 220$ MPa , determine the required dimension d so that both the concrete and the steel achieve their allowable stress simultaneously (i.e. at the same time). The modulus of elasticity for concrete and steel are $E_{concrete} = 25$ GPa and $E_{steel} = 200$ GPa, respectively.

The shear-stress variation caused by a vertical shear force over the cross section will be as below:

Question \neq 6 (10 points):

Column AB has a uniform rectangular cross section with b=12 mm and d=22 mm. The column is braced in the xz-plane at its midpoint C and carries a centric load P of magnitude 3.8 kN. Knowing that a factor of safety of 3.2 is required, determine the largest allowable length L. Use E=200 GPa. (Hint: Consider buckling in xz-plane and yz-plane separately).

$$P_{er} = (F.S.)P = (3.2)(3.8 \times 10^{3}) = 12.16 \times 10^{3} N$$

$$P_{er} = \frac{\pi^{2} EI}{Le^{2}} \qquad L_{e} = \pi \sqrt{\frac{EI}{P_{er}}}$$

$$\frac{Buckling in \times 2 - plane}{I = \frac{1}{12} db^{3} = \frac{1}{12}(22)(12)^{3} = 3.168 \times 10^{3} mm^{4}}$$

$$= 3.168 \times 10^{-9} nn^{4}$$

$$L = \pi \sqrt{\frac{(200 \times 10^{9})(3.168 \times 10^{-9})}{12.16 \times 10^{3}}} = 0.717 m$$

$$\frac{Buckling in \times 2 - plane}{I = \frac{1}{12} bd^{3} = \frac{1}{12}(12)(22)^{3} = 10.648 \times 10^{3} mm^{4}} = 10.648 \times 10^{9} m^{4}}$$

$$L = \frac{\pi}{2} \sqrt{\frac{(200 \times 10^{9})(10.648 \times 10^{-9})}{12.16 \times 10^{3}}} = 0.657 m$$
The smaller length governs. $L = 0.657 m = 657 mm$