King Saud University
 College of Engineering
 Department of Civil Engineering

FINAL EXAM
CE302 Mechanics of Materials - First Semester 1432-33 (2011-12)
Sunday, 14 Safar 1433-8 January 2012
Time allowed: 3 hours

Student Name	
Student Number	
Section (put X please)	\square 29484 (from 9:00 to 10:00 A.M.) \square $\square 33488$ (from 10:00 to 11:00 A.M.)
Name of Instructor	Dr. Ahmet TUKEN

Questions	Maximum Marks	Marks obtained
$\mathbf{Q} \neq \mathbf{1}$	6	
$\mathbf{Q} \neq \mathbf{2}$	6	
$\mathbf{Q} \neq \mathbf{3}$	9	
$\mathbf{Q} \neq \mathbf{4}$	9	
$\mathbf{Q} \neq \mathbf{5}$	10	
$\mathbf{Q} \neq \mathbf{6}$	10	

Total marks obtained (in words): \qquad

Question $=1$ (6 points):

The rectangular concrete beam is reinforced with three $20-\mathrm{mm}$ diameter steel rods as shown. If the allowable compressive stress for concrete is $\left(\sigma_{\text {all }}\right)_{\text {concrete }}=12.5 \mathrm{MPa}$ and the allowable tensile stress for steel is $\left(\sigma_{\text {all }}\right)_{\text {steel }}=220 \mathrm{MPa}$, determine the required dimension d so that both the concrete and the steel achieve their allowable stress simultaneously (i.e. at the same time). The modulus of elasticity for concrete and steel are $\mathrm{E}_{\text {concrete }}=25 \mathrm{GPa}$ and $\mathrm{E}_{\text {steel }}=200 \mathrm{GPa}$, respectively.

$$
\begin{aligned}
& n=\frac{E_{s}}{E_{c}}=\frac{200}{25}=8 \\
& \sigma_{c}=\frac{M x}{I} \quad \text { and } \quad \sigma_{s}=n \cdot \frac{M(d-x)}{I} \\
& \frac{\sigma_{s}}{\sigma_{c}}=\frac{\frac{n M(d-x)}{I}}{\frac{M x}{I}}=\frac{n(d-x)}{x}=n\left(\frac{d}{x}-1\right) \\
& \frac{d}{x}=\frac{\sigma_{s}}{n \sigma_{c}}+1
\end{aligned}
$$

Substituting the known values for $\sigma_{\mathrm{s}}, \sigma_{\mathrm{c}}$ and n
$\frac{d}{x}=\frac{\sigma_{s}}{n \sigma_{c}}+1=\frac{220}{8(12.5)}+1=3.2$
$\therefore d=3.2 x$

$b x \cdot \frac{x}{2}=n A_{s}(d-x)$
$A_{s}=\frac{b x^{2}}{2 n(d-x)} \quad$ and $\quad A_{s}=3\left[\frac{\pi}{4}(20)^{2}\right]=942.48 \mathrm{~mm}^{2}$
Substituting the known values for $\mathrm{A}_{\mathrm{s}}, \mathrm{n}, \mathrm{b}$ and $\mathrm{d}=3.2 \mathrm{x}$ $942.48=\frac{200 x^{2}}{2(8)(3.2 x-x)}=\frac{200 x^{2}}{35.2 x}=5.682 x$
$\therefore x=165.87 \mathrm{~mm}$
Therefore $\quad d=3.2 x=3.2(165.87)=531 \mathrm{~mm}$

Question $=2$ (6 points):

The offset link shown supports the loading of $\mathrm{P}=30 \mathrm{kN}$.
Determine its required width w if the allowable normal stress is $\sigma_{\text {all }}=73 \mathrm{MPa}$. The link has a thickness of 40 mm .
σ due to axial force:

$$
\sigma_{a}=\frac{P}{A}=\frac{30\left(10^{3}\right)}{(w)(0.04)}=\frac{750\left(10^{3}\right)}{w}
$$

σ due to bending:

$$
\begin{aligned}
& \begin{array}{l}
\sigma_{b}=\frac{M c}{I}=\frac{30\left(10^{3}\right)\left(0.05+\frac{w}{2}\right)\left(\frac{w}{2}\right)}{\frac{1}{12}(0.04)(w)^{3}} \\
\quad=\frac{4500\left(10^{3}\right)\left(0.05+\frac{w}{2}\right)}{w^{2}} \\
\sigma_{\max }=\sigma_{\text {allow }}=\sigma_{a}+\sigma_{b} \\
73\left(10^{6}\right)=\frac{750\left(10^{3}\right)}{w}+\frac{4500\left(10^{3}\right)\left(0.05+\frac{w}{2}\right)}{w^{2}} \\
73 w^{2}=0.75 w+0.225+2.25 w \\
73 w^{2}-3 w-0.225=0 \\
w=0.0797 \mathrm{~m}=79.7 \mathrm{~mm}
\end{array}
\end{aligned}
$$

Question $\neq 3$ (9 points):

For the beam and loading shown;
a) determine the support reactions
b) draw the shear and bending moment diagram
c) determine the maximum absolute value of the shear and bending moment
d) determine shear and moment as a function of x for the region $2<x<4$

a) Support Reactions

$\sum M_{A}=0: \quad 18(2)+6(6)+10-4 B_{y}=0$
$\therefore B_{y}=20.5 \mathrm{~N}$
$\sum F_{y}=0: \quad A_{y}+20.5-18-6=0$
$\therefore A_{y}=3.5 \mathrm{~N}$
$\sum F_{x}=0: \quad A_{x}=0$
b)

moment diagram
Maximum absolute value of the shear is 14.5 kN

$M(k N \cdot m)$

Maximum absolute value of bending moment is $22 \mathrm{kN} . \mathrm{m}$
d) shear and moment as a function of x for $2<\mathbf{x}<\mathbf{4}$
$\sum M_{\text {cut }}=0: \quad M+18(x-2)-3.5 x=0$
$\therefore M=-14.5 x+36$
$\sum F_{y}=0: \quad 3.5-18-V=0$
$\therefore V=-14.5$

Question $\neq 4$ (9 points):

The wood beam given has an allowable shear stress of $\tau_{\text {all }}=7 \mathrm{MPa}$.
a) Determine the maximum shear force V that can be applied to the cross section shown.
b) Plot the shear-stress variation over the cross section roughly.

$$
\begin{aligned}
& I=\frac{1}{12}(0.2)(0.2)^{3}-\frac{1}{12}(0.1)(0.1)^{3}=125\left(10^{-6}\right) \mathrm{m}^{4} \\
& \tau_{\text {allow }}=\frac{V Q_{\text {max }}}{I t} \\
& 7\left(10^{6}\right)=\frac{V[(0.075)(0.1)(0.05)+2(0.05)(0.1)(0.05)]}{125\left(10^{-6}\right)(0.1)} \\
& V=100 \mathrm{kN}
\end{aligned}
$$

The shear-stress variation caused by a vertical shear force over the cross section will be as below:

Question $=5$ (10 points):

A steel pipe of $300-\mathrm{mm}$ outer diameter is fabricated from 6-mm-thick plate by welding along a helix which forms an angle of 22.50 with a plane perpendicular to the axis of the pipe. Knowing that a $160-\mathrm{kN}$ axial force P and an 800 N.m torque T, each directed as shown, are applied to the pipe, determine σ and τ in directions respectively normal and tangential to the weld. (Hint: Firstly find the state of stress and then calculate the transformed stresses with $\Theta=22.5^{\circ}$).

$$
\begin{aligned}
& d_{2}=0.3 \mathrm{~m}, \quad c_{2}=\frac{1}{2} d_{2}=0.15 \mathrm{~m}, \quad t=0.006 \mathrm{~m} \\
& c_{1}=c_{2}-t=0.144 \\
& A=\pi\left(c_{2}^{2}-c_{1}^{2}\right)=\pi\left(0.15^{2}-0.144^{2}\right)=5541.8 \times 10^{-6} \mathrm{~m}^{2} \\
& J=\frac{\pi}{2}\left(c_{2}^{4}-c_{1}^{4}\right)=\frac{\pi}{2}\left(0.15^{4}-0.144^{4}\right)=119.8 \times 10^{-6} \mathrm{~m}^{4}
\end{aligned}
$$

Stresses

$$
\begin{aligned}
& \sigma=-\frac{P}{A}=-\frac{160 \times 10^{3}}{5541 \times 10^{-6}}=-28.88 \mathrm{MPa} \\
& \tau=\frac{T C_{2}}{J}=\frac{(800)(0.15)}{119.8 \times 10^{-6}}=1.002 \mathrm{MPa} \\
& \sigma_{x}=0, \quad \sigma_{y}=-28.88 \mathrm{MPa}, \quad \tau_{x y}=1.002 \mathrm{MPa}
\end{aligned}
$$

Choose the x^{\prime} and y^{\prime} axes respectively tangential andinormal to the weld. Then, $\sigma_{w}=\sigma_{y}$, and $\tau_{v}=\tau_{x^{\prime} y^{\prime}}$ $\theta=22.5^{\circ}$

$$
\sigma_{y}^{\prime}=\frac{\sigma_{x}+\sigma_{y}}{2}-\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta-\tau_{x y} \sin 2 \theta
$$

$$
=\frac{(-28.88)}{2}-\frac{[-(-28.88)]}{2} \cos 45^{\circ}-1.002 \sin 45^{\circ}
$$

$$
=-25.36 \mathrm{nPa}
$$

$$
\sigma_{\mathrm{w}}=-25.4 \mathrm{MPa}
$$

$$
\tau_{x y^{\prime}}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta
$$

$$
=-\frac{[-(-28.88)]}{2} \sin 45^{\circ}+1.002 \cos 45^{\circ}
$$

$$
=-9.5 \mathrm{MPa}
$$

$$
\tau_{\omega}=-9.5 \mathrm{MPa}
$$

Question $=6$ (10 points):

Column $A B$ has a uniform rectangular cross section with $b=12 \mathrm{~mm}$ and $\mathrm{d}=22 \mathrm{~mm}$. The column is braced in the xz-plane at its midpoint C and carries a centric load P of magnitude 3.8 kN . Knowing that a factor of safety of 3.2 is required, determine the largest allowable length L. Use E=200 GPa. (Hint: Consider buckling in xz-plane and yz-plane separately).

$$
\begin{aligned}
& P_{c r}=(F . S .) P=(3.2)\left(3.8 \times 10^{3}\right)=12.16 \times 10^{3} \\
& P_{c r}=\frac{\pi^{2} E I}{L_{e}^{2}} \quad L_{e}=\pi \sqrt{\frac{E I}{P_{c r}}}
\end{aligned}
$$

Buckling in $\times 2$-plane. $\quad L=L_{e}=\pi \sqrt{\frac{E I}{P_{e r}}}$

$$
I=\frac{1}{12} d b^{3}=\frac{1}{12}(22)(12)^{3}=3.168 \times 10^{3} \mathrm{~mm}
$$

$$
=3.168 \times 10^{-9} \mathrm{r}^{4}
$$

$$
L=\pi \sqrt{\frac{\left(200 \times 10^{9}\right)\left(3.168 \times 10^{-9}\right)}{12.16 \times 10^{3}}}=0.717 \mathrm{~m}
$$

Buckling in yz-plane. $\quad L_{e}=2 L \quad L=\frac{L_{e}}{2}=\frac{\pi}{2} \sqrt{\frac{E I}{P_{e r}}}$

$$
\begin{aligned}
& I=\frac{1}{12} b d^{3}=\frac{1}{12}(12)(22)^{3}=10.648 \times 10^{3} \mathrm{~mm}^{4}=10.648 \times 10^{-9} \mathrm{~m}^{4} \\
& L=\frac{\pi}{2} \sqrt{\frac{\left(200 \times 10^{9}\right)\left(10.648 \times 10^{-9}\right)}{12.16 \times 10^{3}}}=0.657 \mathrm{~m} \\
& \text { The smaller le.g.t governs. } L=0.657 \mathrm{~m}=657 \mathrm{~mm}
\end{aligned}
$$

