5.2: The cost function of a large railroad corporation is $Y = 10^7 + 0.5T$, where Y is the total cost of shipping in US dollars and T is the tons shipped. Last year the company charged on average 88% for each ton of freight. Their annual shipments total 48 million tons. This year they are considering geographical expansion through the purchase of a smaller railroad corporation that last year shipped total of 21 million tons. Economists estimated that the total cost of function (for the merged corporation) will be $Y = 10.5^7 + 03.T$, while 10% more freight should be expected due to the better geographic coverage, at a price discounted by 8%.

Show that the large and the merged railroad realize substantial economies of scale (EOS). Which railroad realizes greater EOS? Use a numerical example or a graphic for proof. Show numerically that the large railroad should merge with the smaller one.

Large railroad corporation:

Cost Function: $Y = 10^7 + 0.5T$.

Unit Revenue: 88₡/ton.

Total shipment: 48 million tons = 48×10^6 tons.

Total cost = $10^7 + (0.5) \times (48 \times 10^6) = 34×10^6

Unit cost = $Y/T = $34 \times 10^6 / 48 \times 10^6 = 71$ @/ton.

Unit cost for 20×10^6 tons shipped (u_{20}) =

$$u_{20} = \frac{Y_{20}}{T_{20}} = \frac{10^7 + 0.5(20 \times 10^6)}{20 \times 10^6} = \$1/ton$$

Unit cost for 10×10^6 tons shipped (u_{10}) =

$$u_{10} = \frac{Y_{10}}{T_{10}} = \frac{10^7 + 0.5(10 \times 10^6)}{10 \times 10^6} = \$1.5/ton$$

Percentage of cost reduction:

$$\% = \frac{u_{10} - u_{20}}{u_{10}} = \frac{1.5 - 1}{1.5} = 33.3\%$$

 \rightarrow large railroad corporation realizes EOS.

Merged railroad corporation:

Cost Function: $Y = 10.5^7 + 0.3T$.

Unit Revenue: 80₡/ton.

Total shipment:

48 million tons = 48×10^6 tons. From large corporation.

21 million tons = 21×10^6 tons. From small corporation.

10% increase

 \rightarrow Total shipment = $1.1 \times (69 \times 10^6) = 75.9 \times 10^6$ tons

Total cost = $10.5^7 + (0.3) \times (75.9 \times 10^6) = 36.841×10^6

Unit cost = $Y/T = $36.841 \times 10^6 / 75.9 \times 10^6 = 49$ ¢/ton.

Unit cost for 20×10^6 tons shipped (u_{20}) =

$$u_{20} = \frac{Y_{20}}{T_{20}} = \frac{10.5^7 + 0.3(20 \times 10^6)}{20 \times 10^6} = \$1.003/ton$$

Unit cost for 10×10^6 tons shipped (u_{10}) =

$$u_{10} = \frac{Y_{10}}{T_{10}} = \frac{10.5^7 + 0.3(10 \times 10^6)}{10 \times 10^6} = \$1.707/ton$$

Percentage of cost reduction:

$$\% = \frac{u_{10} - u_{20}}{u_{10}} = \frac{1.707 - 1.003}{1.707} = 41.2\%$$

\rightarrow Merged railroad corporation realizes EOS.

Since the merged corporation realizes more EOS, the large railroad should merge with the smaller one.

5.9: A businessman residing in Chicago considers his options for a trip to Detroit. His options are private car, rental car, bus, or airplane. Given the following data, suggest the best mode for his travel.

Distance between cities (one way) = 425 km.

Estimated access travel at origin and destination = 38 km at each city; the access distance and access trips are the same for all modes.

Costs:

(1) private auto: 20@/km (all costs combined); no access mode required;

(2) rental car (2 days): 50/day plus 12/day for insurance and tax; 11 l/100 km fuel efficiency and gas price is 40 C/l; no access mode required;

(3) bus: round-trip fare \$55; access mode required;

(4) air: round-trip fare \$100; access mode required.

Access modes and costs:

In Chicago taxies charge \$2 plus 20@/km, buses charge \$1 per ride (assume two rides);

In Detroit taxies charge 2.40 plus 15 // km, buses charge 1.5 per ride (assume two rides).

The door-to-door travel times by mode are as follows:

	Private auto	Rental car	Bus	Air
Best	4.5	5.0	6.0	1.5
Worst	6.0 ^a	6.5 ^a	8.0 ^b	3.0 ^b

^a Accounts for potentially congested conditions.

^b Use of bus for access.

In order to make his selection, the businessman assumed a disutility function (a measure of discomfort due to the cost and travel time encountered):

Disutility = (total trip cost)/5 + 8 (one-way travel time)

Which mode did the businessman select? (Round out all the cost estimates to the nearest integer)

ANSWER IS BASED ON THE BEST DOOR-TO-DOOR TRAVEL TIME ONLY.

Private Auto:

Outbound distance:

•	Access distance out of Chicago =	38 km	driving		
•	Intercity distance =	425 km	driving		
•	Access distance into Detroit =	38 km	driving		
Return	distance:				
•	Access distance out of Detroit =	38 km	driving		
•	Intercity distance =	425 km	driving		
٠	Access distance into Chicago =	38 km	driving		
\rightarrow Tota	al distance =	1002 km	driving		
Cost pe	er km driving = \$0.2/km				
\rightarrow Total cost of private auto = $0.2/km \times 1002km = 200$					
Disutility = (total trip cost)/5 + 8 (one-way travel time) = $200/5 + 8 \times 2.25 = 58$					
<u>Rental</u>	<u>Car:</u>				
Outbou	ind distance:				

•	Access distance out of Chicago =	38 km	driving
٠	Intercity distance =	425 km	driving
•	Access distance into Detroit =	38 km	driving
aturn	distance		

Return distance:

•	Access distance out of Detroit =	38 km	driving
•	Intercity distance =	425 km	driving
•	Access distance into Chicago =	38 km	driving

 \rightarrow Total distance = 1002 km driving

Fuel consumed = 1002km \times 11 l/100km = 110 l

 \rightarrow Cost of fuel = 110 $l \times$ \$0.4/l =\$44

Cost of car rental = $2 \times (\$50 + \$12) = \$124$

 \rightarrow Total cost of rental car = 124 + 44 = 168

Disutility = (total trip cost)/5 + 8 (one-way travel time) = $168/5 + 8 \times 2.5 = 53.6$

Bus:

Outbound distance:

•	Access distance out of Chicago =	38 km		taxi
•	Intercity distance =	425 km		bus
•	Access distance into Detroit =	38 km		taxi
Return	distance:			
•	Access distance out of Detroit =	38 km		taxi
•	Intercity distance =	425 km		bus
•	Access distance into Chicago =	38 km		taxi
\rightarrow Total distance =		76 km		Chicago taxi
		76 km		Detroit taxi
		850 km		bus
Cost of Chicago taxi = $2 + (0.2/\text{km} \times 76 \text{ km}) = 17$				
Cost of Detroit taxi = $2.4 + (0.15 \text{ km} \times 76 \text{ km})$			\$14	
Cost of round-trip bus fare			\$55	
\rightarrow Total cost of bus trip = $17 + 14 + 55 = 86$				
Disutili	ty = (total trip cost)/5 + 8 (one-way tr	ravel time) = 86	$5/5 + 8 \times 3 = 41.2$

<u>Air:</u>

Outbound distance:

• Access distance out of Chicago =	38 km	taxi			
• Intercity distance =	425 km	air			
• Access distance into Detroit =	38 km	taxi			
Return distance:					
• Access distance out of Detroit =	38 km	taxi			
• Intercity distance =	425 km	air			
• Access distance into Chicago =	38 km	taxi			
\rightarrow Total distance =	76 km	Chicago taxi			
	76 km	Detroit taxi			
	850 km	bus			
Cost of Chicago taxi = $2 + (0.2/\text{km} \times 76 \text{ km}) = 17$					
Cost of Detroit taxi = $2.4 + (0.15 / \text{km} \times 76 \text{ km}) = 14$					
Cost of round-trip airline fare $=$ \$100					
\rightarrow Total cost of bus trip = $17 + 14 + 100 = 131$					
Disutility = (total trip cost)/5 + 8 (one-way travel time) = $131/5 + 8 \times 0.75 = 32.2$					

	Private Auto	Rental Car	Bus	Air
Total Cost	\$200	\$168	\$86	\$131
One-way Time	2.25hr	2.5hr	3ht	0.75hr
Disutility	58	53.6	41.2	32.2

Assuming the best conditions, the businessman selected to travel by air since it had the least disutility.

####