5.2: The cost function of a large railroad corporation is $Y=10^{7}+0.5 T$, where Y is the total cost of shipping in US dollars and T is the tons shipped. Last year the company charged on average $88 \not \subset$ for each ton of freight. Their annual shipments total 48 million tons. This year they are considering geographical expansion through the purchase of a smaller railroad corporation that last year shipped total of 21 million tons. Economists estimated that the total cost of function (for the merged corporation) will be $Y=10.5^{7}+03 . T$, while 10% more freight should be expected due to the better geographic coverage, at a price discounted by $8 \mathbb{C}$.

Show that the large and the merged railroad realize substantial economies of scale (EOS). Which railroad realizes greater EOS? Use a numerical example or a graphic for proof. Show numerically that the large railroad should merge with the smaller one.

Large railroad corporation:
Cost Function: $Y=10^{7}+0.5 T$.
Unit Revenue: 88【゙/ton.
Total shipment: 48 million tons $=48 \times 10^{6}$ tons.
Total cost $=10^{7}+(0.5) \times\left(48 \times 10^{6}\right)=\$ 34 \times 10^{6}$
Unit cost $=Y / T=\$ 34 \times 10^{6} / 48 \times 10^{6}=71 \mathbb{C} /$ ton.
Unit cost for 20×10^{6} tons shipped $\left(u_{20}\right)=$

$$
u_{20}=\frac{Y_{20}}{T_{20}}=\frac{10^{7}+0.5\left(20 \times 10^{6}\right)}{20 \times 10^{6}}=\$ 1 / \mathrm{ton}
$$

Unit cost for 10×10^{6} tons shipped $\left(u_{10}\right)=$

$$
u_{10}=\frac{Y_{10}}{T_{10}}=\frac{10^{7}+0.5\left(10 \times 10^{6}\right)}{10 \times 10^{6}}=\$ 1.5 / \mathrm{ton}
$$

Percentage of cost reduction:

$$
\%=\frac{u_{10}-u_{20}}{u_{10}}=\frac{1.5-1}{1.5}=33.3 \%
$$

\rightarrow large railroad corporation realizes EOS.

Merged railroad corporation:
Cost Function: $Y=10.5^{7}+0.3 T$.
Unit Revenue: 80巛/ton.
Total shipment:
48 million tons $=48 \times 10^{6}$ tons. From large corporation.
21 million tons $=21 \times 10^{6}$ tons. From small corporation.
10\% increase
\rightarrow Total shipment $=1.1 \times\left(69 \times 10^{6}\right)=75.9 \times 10^{6}$ tons
Total cost $=10.5^{7}+(0.3) \times\left(75.9 \times 10^{6}\right)=\$ 36.841 \times 10^{6}$
Unit cost $=Y / T=\$ 36.841 \times 10^{6} / 75.9 \times 10^{6}=49 \mathbb{C} /$ ton.
Unit cost for 20×10^{6} tons shipped $\left(u_{20}\right)=$

$$
u_{20}=\frac{Y_{20}}{T_{20}}=\frac{10.5^{7}+0.3\left(20 \times 10^{6}\right)}{20 \times 10^{6}}=\$ 1.003 / \mathrm{ton}
$$

Unit cost for 10×10^{6} tons shipped $\left(u_{10}\right)=$

$$
u_{10}=\frac{Y_{10}}{T_{10}}=\frac{10.5^{7}+0.3\left(10 \times 10^{6}\right)}{10 \times 10^{6}}=\$ 1.707 / \mathrm{ton}
$$

Percentage of cost reduction:

$$
\%=\frac{u_{10}-u_{20}}{u_{10}}=\frac{1.707-1.003}{1.707}=41.2 \%
$$

\rightarrow Merged railroad corporation realizes EOS.
Since the merged corporation realizes more EOS, the large railroad should merge with the smaller one.
5.9: A businessman residing in Chicago considers his options for a trip to Detroit. His options are private car, rental car, bus, or airplane. Given the following data, suggest the best mode for his travel.

Distance between cities (one way) $=425 \mathrm{~km}$.
Estimated access travel at origin and destination $=38 \mathrm{~km}$ at each city; the access distance and access trips are the same for all modes.

Costs:
(1) private auto: $20 \mathbb{C} / \mathrm{km}$ (all costs combined); no access mode required;
(2) rental car (2 days): \$50/day plus \$12/day for insurance and tax; $11 \mathrm{l} / 100 \mathrm{~km}$ fuel efficiency and gas price is $40 \mathbb{C} / l$; no access mode required;
(3) bus: round-trip fare $\$ 55$; access mode required;
(4) air: round-trip fare $\$ 100$; access mode required.

Access modes and costs:

In Chicago taxies charge $\$ 2$ plus $20 \mathbb{C} / \mathrm{km}$, buses charge $\$ 1$ per ride (assume two rides);
In Detroit taxies charge $\$ 2.40$ plus $15 \mathbb{C} / \mathrm{km}$, buses charge $\$ 1.5$ per ride (assume two rides).
The door-to-door travel times by mode are as follows:

	Private auto	Rental car	Bus	Air
Best	4.5	5.0	6.0	1.5
Worst	6.0^{a}	6.5^{a}	8.0^{b}	3.0^{b}

${ }^{a}$ Accounts for potentially congested conditions.
${ }^{\mathrm{b}}$ Use of bus for access.
In order to make his selection, the businessman assumed a disutility function (a measure of discomfort due to the cost and travel time encountered):

$$
\text { Disutility }=(\text { total trip cost }) / 5+8 \text { (one-way travel time })
$$

Which mode did the businessman select? (Round out all the cost estimates to the nearest integer)

ANSWER IS BASED ON THE BEST DOOR-TO-DOOR TRAVEL TIME ONLY.

Private Auto:

Outbound distance:

- Access distance out of Chicago $=38 \mathrm{~km} \quad$ driving
- Intercity distance $=\quad 425 \mathrm{~km}$ driving
- Access distance into Detroit $=38 \mathrm{~km}$ driving

Return distance:

- Access distance out of Detroit $=38 \mathrm{~km}$ driving
- Intercity distance $=\quad 425 \mathrm{~km}$ driving
- Access distance into Chicago $=38 \mathrm{~km}$ driving
\rightarrow Total distance $=$
1002 km driving
Cost per km driving $=\$ 0.2 / \mathrm{km}$
\rightarrow Total cost of private auto $=\$ 0.2 / \mathrm{km} \times 1002 \mathrm{~km}=\$ 200$
Disutility $=($ total trip cost $) / 5+8($ one-way travel time $)=200 / 5+8 \times 2.25=58$

Rental Car:

Outbound distance:

- Access distance out of Chicago $=38 \mathrm{~km}$ driving
- Intercity distance $=\quad 425 \mathrm{~km}$ driving
- Access distance into Detroit $=38 \mathrm{~km}$ driving

Return distance:

- Access distance out of Detroit $=38 \mathrm{~km}$ driving
- Intercity distance $=\quad 425 \mathrm{~km}$ driving
- Access distance into Chicago $=38 \mathrm{~km}$ driving
\rightarrow Total distance $=\quad 1002 \mathrm{~km} \quad$ driving

Fuel consumed $=1002 \mathrm{~km} \times 11 \mathrm{l} / 100 \mathrm{~km}=110 \mathrm{l}$
\rightarrow Cost of fuel $=110 l \times \$ 0.4 / l=\$ 44$
Cost of car rental $=2 \times(\$ 50+\$ 12)=\$ 124$
\rightarrow Total cost of rental car $=\$ 124+\$ 44=\$ 168$
Disutility $=($ total trip cost $) / 5+8($ one-way travel time $)=168 / 5+8 \times 2.5=53.6$

Bus:

Outbound distance:

- Access distance out of Chicago $=38 \mathrm{~km}$ taxi
- Intercity distance $=\quad 425 \mathrm{~km}$ bus
- Access distance into Detroit $=38 \mathrm{~km}$ taxi

Return distance:

- Access distance out of Detroit $=38 \mathrm{~km}$ taxi
- Intercity distance $=\quad 425 \mathrm{~km}$ bus
- Access distance into Chicago $=38 \mathrm{~km}$ taxi
\rightarrow Total distance $=$
76 km Chicago taxi
76 km Detroit taxi
850 km bus
Cost of Chicago taxi $=\$ 2+(\$ 0.2 / \mathrm{km} \times 76 \mathrm{~km}) \quad=\$ 17$
Cost of Detroit taxi $=\$ 2.4+(\$ 0.15 / \mathrm{km} \times 76 \mathrm{~km})=\$ 14$
Cost of round-trip bus fare $=\$ 55$
\rightarrow Total cost of bus trip $=\$ 17+\$ 14+\$ 55=\$ 86$
Disutility $=($ total trip cost $) / 5+8($ one-way travel time $)=86 / 5+8 \times 3=41.2$

Air:

Outbound distance:

- Access distance out of Chicago $=38 \mathrm{~km} \quad$ taxi
- Intercity distance $=\quad 425 \mathrm{~km}$ air
- Access distance into Detroit $=38 \mathrm{~km} \quad$ taxi

Return distance:

- Access distance out of Detroit $=38 \mathrm{~km} \quad$ taxi
- Intercity distance $=\quad 425 \mathrm{~km}$ air
- Access distance into Chicago $=38 \mathrm{~km}$ taxi
\rightarrow Total distance $=$

76 km	Chicago taxi
76 km	Detroit taxi
850 km	bus

Cost of Chicago taxi $=\$ 2+(\$ 0.2 / \mathrm{km} \times 76 \mathrm{~km}) \quad=\$ 17$
Cost of Detroit taxi $=\$ 2.4+(\$ 0.15 / \mathrm{km} \times 76 \mathrm{~km}) \quad=\$ 14$
Cost of round-trip airline fare $=\$ 100$
\rightarrow Total cost of bus trip $=\$ 17+\$ 14+\$ 100=\$ 131$
Disutility $=($ total trip cost $) / 5+8($ one-way travel time $)=131 / 5+8 \times 0.75=32.2$

	Private Auto	Rental Car	Bus	Air
Total Cost	$\$ 200$	$\$ 168$	$\$ 86$	$\$ 131$
One-way Time	2.25 hr	2.5 hr	3 ht	0.75 hr
Disutility	58	53.6	41.2	32.2

Assuming the best conditions, the businessman selected to travel by air since it had the least disutility.

