Chapter 6

Ultimate Bearing Capacity
of Shallow Foundations



Ultimate Bearing Capacity of Shallow Foundations

To perform satisfactorily, shallow foundations must have two main
characteristics:

1. They have to be safe against overall shear failure in the soil that
supports them.

2. They cannot undergo excessive displacement, or excessive

settlement.

The term excessive is relative, because the degree of settlement
allowed for a structure depends on several considerations.



TYPES OF SHEAR FAILURE
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There are three types of shear failure
in the soil:

a) General Shear Failure

b) Local Shear Failure

c) Punching Shear Failure
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GENERAL SHEAR FAILURE

The following are some characteristics of general Load

shear failure: el

O Occurs over dense sand or stiff cohesive soil.

QO Involves total rupture of the underlying soil. Initial Ground —>

O There is a continuous shear failure of the soil from
below the footing to the ground surface (solid lines in
the figure).

0 When the (load / unit area) plotted versus settlement
of the footing, there is a distinct load at which the

Final Ground
Surface

\ Shear Surfaces

foundation fails (Q) RS
4 The value of (Q,) divided by the area of the footing is

considered to be the ultimate bearing capacity of the G

footing(q,).

O For general shear failure, the ultimate bearing capacity
has been defined as the bearing stress that causes a
sudden catastrophic failure of the foundation.

: ) . v

O As shown in the figure, a general shear failure St
ruptures occur and pushed up the soil on both sides of >¢ttement
the footing (In laboratory).




GENERAL SHEAR FAILURE

For actual failures on the field, the soil is often pushed up on only one side of
the footing with subsequent tilting of the structure as shown in figure below:




LOCAL SHEAR FAILURE

The following are some characteristics of local il
shear failure: 4
. . Final
O Occurs over sand or clayey soil of medium " rince”

. P4
Compactlon. Initial Ground—> —

O Involves rupture of the soil only immediately °*"**
below the footing. A

O There is soil bulging on both sides of the
footing, but the bulging is not as significant as in
general shear. That's because the underlying
soil compacted less than the soil in general
shear.

O The failure surface of the soil will gradually (not
sudden) extend outward from the foundation
(not the ground surface) as shown by solid
lines in the figure.

O So, local shear failure can be considered as a v
transitional phase between general shear and Settlement
punching shear.




LOCAL SHEAR FAILURE

 Because of the transitional nature of local shear failure, the ultimate bearing
capacity could be defined as the firs failure load (q,,1) which occur at the point
which have the first measure nonlinearity in the load/unit area-settlement curve
(open circle), or at the point where the settlement starts rabidly increase (q,)
(closed circle).

4 This value of (q,) Is the required (load/unit area) to extends the failure surface to
the ground surface (dashed lines in the figure).

4 In this type of failure, the value of (q,) is not the peak value so, this failure called
(Local Shear Failure).

O The actual local shear failure in field is proceed as shown in the figure below:




PUNSHING SHEAR FAILURE

The following are some characteristics of punching

shear failure:

L Occurs over fairly loose soil.

U Punching shear failure does not develop the distinct
shear surfaces associated with a general shear
failure.

U The soil outside the loaded area remains relatively
uninvolved and there is a minimal movement of soil
on both sides of the footing. Load/unit area, g

U The process of deformation of the footing involves
compression of the soil directly below the footing as
well as the vertical shearing of soil around the
footing perimeter.

O As shown in figure, the (g)-settlement curve does
not have a dramatic break and the bearing capacity Surface
is often defined as the first measure nonlinearity in y footing
the (q)-settlement curve(q,,1).

Shear Surfaces

Settlement



PUNSHING SHEAR FAILURE

O Beyond the ultimate failure (load/unit area) (q,,1), the (load/unit area)-
settlement curve will be steep and practically linear.

U The actual punching shear failure in field is proceed as shown in the figure
below:




Modes of Foundation Failure in Sand

Relative density, D,
0 0.2 0.4 0.6 0.8 1.0

5 4
Figure 6.4 Muodes of foundation failure in sand ( After Vesic, 1973)



TERZAGHI'S BEARING CAPACITY THEORY

Terzaghi was the first to present a comprehensive theory for evaluation of the
ultimate bearing capacity of rough shallow foundation.
This theory is based on the following assumptions:

1. The foundation is considered to be shallow if (D;<B).

2. The foundation is considered to be strip or continuous if (B/L—0.0). (Width to
length ratio is very small and goes to zero), and the derivation of the equation is
to a strip footing.

3. The effect of soil above the bottom of the foundation may be assumed to be
replaced by an equivalent surcharge (g=yD;). So, the shearing resistance of this
soil along the failure surfaces is neglected (Lines Gl and HJ in the figure)

4. The failure surface of the soil is similar to general shear failure (i.e. equation
is derived for general shear failure) as shown in the figure.

Note:

1. In recent studies, investigators have suggested that, foundations are
considered to be shallow if [ D;s(3—4)B], otherwise, the foundation is deep.

2. Always the value of (q) is the effective stress at the bottom of the foundation.



TERZAGHI'S BEARING CAPACITY THEORY
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Figure 6.7 Bearing capacity failure in soil under a rough rigid
continuous (strip) foundation

The failure zone under the foundation can be separated into three parts:

1. The triangular zone ACD immediately under the foundation

2. The radial shear zones ADF and CDE with the curves DE and DF being
arcs of a logarithmic spiral

3. Two triangular Rankine passive zones AFH and CEG



TERZAGHI'S BEARING CAPACITY EQUATION

The equation was derived for a strip footing and general shear failure:
q,=¢’N.+qN,+0.5yBN, (for continuous or strip footing)

Where

g,=Ultimate bearing capacity of the soil (KN/m?)

c’=Cohesion of soil (KN/m?)

g = Effective stress at the bottom of the foundation (KN/m?)

N., Ny, N,= Bearing capacity factors (non-dimensional) and are functions only

of the soil friction angle, ¢’

The variations of bearing capacity factors and underlying soil friction angle are

given in (Table 4.1) for general shear failure.

The equation above (for strip footing) was modified to be useful for both

square and circular footings as following:

For square footing: d,=1.3¢’N.+qN,+0.4yBN,
B=The dimension of each side of the foundation .
For circular footing: d,=1.3¢’N.+gqN,+0.3yBN,

B=The diameter of the foundation .
Note:
These two equations are also for general shear failure, and all factors in the
two equations (except, B,) are the same as explained for strip footing.



TERZAGHI'S BEARING CAPACITY FACTORS

Table 6.1  Terzaghi's Bearing Capacity Factors—Egs. (4.15), (4.13), and (4.11).*

¢ N, N, Ny ¥ N, N, Ny
0 5.70 1.00 0.00 26 27.09 14.21 954
| .00 1.10 0.01 27 20.24 15.90 11.60
2 .30 1.22 0.04 28 3161 17.81 13.70
3 G6.62 1.35 0.06 20 34.24 19.98 16.18
4 6.97 1.49 0.10 30 3716 22.46 19.13
5 7.34 1.64 0.14 31 40.41 2528 2265
[ 1.73 1.81 0.20 32 44.04 28.52 26.87
T 8.15 2.00 0.27 33 48.09 32.23 31.94
8 8.60 2.21 0.35 34 52.64 36.50 3804
Q9 9.09 2.44 0.44 35 57.75 41.44 45.41
10 9.61 2.69 0.56 36 63.53 47.16 54.36
11 10.16 2.08 0.69 17 T0.01 53.80 63.27
12 10.76 3.29 0.85 38 T7.50 61.55 T8.61
13 11.41 363 1.04 30 85.97 T0.61 05.03
14 12.11 4.02 1.26 40 05.66 8127 115.31
15 12,86 4.45 1.52 41 106.81 03,85 140.51
16 13.68 4.92 1.82 42 119.67 108.75 171.99
17 14.60 5.45 2.18 43 134.58 126.50 211.56
18 15.12 .04 2.59 44 151.95 147.74 261.60
19 16.56 6.70 3.07 45 172,28 173.28 32534
20 17.69 T.44 364 46 196,22 204.19 407.11
21 18.92 826 4.31 47 22455 241.80 51284
22 20.27 g.19 5.00 48 258.28 287.85 650,67
23 21.75 10.23 .00 49 208.71 34463 831.99
24 23.36 11.40 T.08 50 347.50 415.14 1072.80
25 25.13 12.72 8.34

"From Kumbhojkar (1993)



FACTOR OF SAFETY

Ultimate bearing capacity is the maximum value the soil can bear it.

l.e. if the bearing stress from foundation exceeds the ultimate bearing capacity of the
soil, shear failure in soil will be occur.

so we must design a foundation for a bearing capacity less than the ultimate bearing
capacity to prevent shear failure in the solil. This bearing capacity is “Allowable
Bearing Capacity” and we design for it.

l.e. the applied stress from foundation must not exceed the allowable bearing capacity

f soall.
or S0l q _qu,gross

all,gross ES

Qall gross = Gross allowable bearing capacity
JQugross = Gross ultimate bearing capacity (Terzaghi equation)
FS = Factor of safety for bearing capacity =3

However, practicing engineers prefer to use the “net allowable bearing capacity” such

that: —
., =00

all (net) ~ ES

q=7D



Example 6.1




Example 6.2




Modification of Bearing Capacity Equations for Water Table

Terzaghi equation gives the ultimate bearing capacity based on the assumption
that the water table is located well below the foundation.

However, if the water table is close to the foundation, the bearing capacity will
decrease due to the effect of water table, so, some modification of the bearing
capacity equation will be necessary.

The values which will be modified are:

1. q (for soil above the foundation) in the second term of equation.

2. v (for the underlying soil) in the third term of equation .

There are three cases according to location of water table:
Case I. The water table is located so that 0sD,<D;

q — D17+ DZ('Ysat_ YW) R Y_ — _!_ — —-[i ——Case 1
’— Df Ysat
Y=Y = Ysat™ Yw D>
- B =

Ysat



Modification of Bearing Capacity Equations for Water Table

Case ll. The water table is located so that 0sd<B :

g = yDy i

T=v + 2 —7)

Case lll. The water table is located so that d=B

in this case the water table is assumed have no effect on the ultimate
bearing capacity.




The General Bearing Capacity Equation

Terzagi’s equations shortcomings:

U They don’t deal with rectangular foundations (0<B/L<1).

O The equations do not take into account the shearing resistance along the
failure surface in soil above the bottom of the foundation.

O Theinclination of the load on the foundation is not considered (if exist).

To account for all these shortcomings, Meyerhof suggested the following
form of the general bearing capacity equation:

q,=¢ N.F..F.4F.tQ NyFgsFqaFgit 0.5 B Y NJF o F4F,
Where
C’=Cohesion of the underlying soil

g = Effective stress at the level of the bottom of the foundation.
v = Unit weight of the underlying soil

B = Width of footing (=diameter for a circular foundation).

N., Ny, N,= Bearing capacity factors (Table 4.2)

Fess Fgss Fys= Shape factors.

Fear Fqar Fya = Depth factors.

Fei» Fgir Fyi = Inclination factors.

In the case of inclined loading on a foundation, the general equation provides
the vertical component.

ci?



The General Bearing Capacity Equation

Notes:
1. This equation is valid for both general and local shear failure.

2. This equation is similar to original equation for ultimate bearing capacity
(Terzaghi’s equation) which was derived for continuous foundation, but the
shape, depth, and load inclination factors are added to Terzaghi’s equation to

be suitable for any case may exist.

Bearing Capacity Factors: N, Ng, N,
The angle a=¢’ (according Terzaghi theory) was replaced by a=45+¢’/2.
So, the bearing capacity factor will be changed.

The variations of bearing capacity factors (N, Ny, N, ) and underlying soil
friction angle (¢’) are given in Table 4.2.



The General Bearing Capacity Equation

Table 6.2  Bearing Capacity Factors

N N N, ¢ N, N, N,

4 ° 7 T 7 T
0 5.14 100 0.00 16 11.63 434 3.06
1 5.38 L09 0.07 17 12.34 477 3.53
2 5.63 1.20 0.15 18 13.10 5.26 4.07
3 5.90 1.31 0.24 19 13.93 5.80 4.68
4 6.19 1.43 0.34 20 14.83 6.40 5.39
5 6.49 1.57 0.45 21 15.82 1.07 6.20
6 6.81 1.72 0.57 22 16.88 7.82 7.13
7 T.16 1.88 0.71 23 18.05 8.66 8.20
8 1.53 2.06 0.86 24 19.32 9.60 0.44
9 .92 225 1.03 25 20,72 10,66 10.88
10 8.35 247 1.22 26 22125 11.85 12.54
11 8.80 271 1.44 27 2394 13.20 14.47
12 0.28 2.97 1.69 28 25.80 14.72 16.72
13 0.81 3.26 1.97 29 27.86 16.44 19.34
14 10.37 3.59 229 30 30.14 18.40 22.40
15 10.98 3.04 2.65 31 32.67 20.63 25.99
32 3549 2318 30.22 42 93.71 85.38 155.55
i3 38.64 26,09 35.19 43 105.11 99.02 186.54
34 42.16 29.44 41.06 4 118.37 115.31 22464
35 46.12 33.30 48.03 45 133.88 134.88 27176
36 50.59 3175 56.31 46 152.10 158.51 330.35
37 55.63 4292 66.19 47 173.64 187.21 403.67
38 61.35 48.93 78.03 48 199.26 22231 496.01
39 67.87 55.96 9225 49 229.93 265.51 613.16
40 7531 64.20 109.41 30 266.89 319.07 T62.89

=

83.86 73.90 130.22




The General Bearing Capacity Equation

Shape factors:

Shape

3) (nr,,) DeBeer (1970)
N.

F,=1+|~—
(=1 (L

B I
F,,,=1+(E)mn¢.

B
F,=1-04 (E)

Notes:
1. If the foundation is continuous or strip —B/L=0.0
2. If the foundation is circular—B=L=diameter—B/L=1



The General Bearing Capacity Equation

Depth D, Hansen (1970)
Depth Factors: 3=
Important Notes: For ¢ = 0:
1. If the value of (B) or (Dy)is required, you Fo- ﬂu(%‘}
should do the following: ;o
Assume (D,/B<1) and calculate depth factors in Fl=1
term of (B) or (Dy). For ¢ > 0:
Substitute in the general equation, then gy fe
calculate (B) or (Dy). S .
After calculating the required value, you must e 'Z'—ﬁiw"f(gf_)
check your assumption—(D;/B<1). Fu=1
If the assumption is true, the calculated value D,
is the final required value. o d

If the assumption is wrong, you must calculate D
depth factors in case of (D;/B>1) and then Fu=1+04tn ZLEJ

radians

calculate (B) or (D;) to get the true value. Fa=1
Frg=1
2. For both cases (D/Bsl)and(D;/B>1) For ' > 0:
if $>0— calculate F, firstly, because F4 cr : ;HF;.!
depends on Fg. o D

|

Fo=1+2tand'(1 — sin ') tan IE

radians

'}\J



The General Bearing Capacity Equation

Inclination Factors:

Inclination B2 Meyerhof (1963); Hanna and
( ) Meyerhof (1981)

B = inclination of the load on the
foundation with respect to the vertical

Note:
If B°=¢p— F,; =0.0, so you don't need to calculate F,, and F,4, because
the last term in Meyerhof equation will be zero.



Example 6.3




Read Examples 6.4 & 6.5



N, Relationships

L. I 4+ iy Es

-

L 4
'{!‘\.4 3

.

Table 6.5










EFFECT OF SOIL COMPRESSIBILITY

The change of failure mode is due to soil compressibility.

Vesic (1973) proposed the following modification to the
general bearing capacity equation:

qu =c’ Nchchchc+ q Nquququc+ 0.5B Y NyFys Fdeyc

Step 1. Calculate the rigidity index, I, of the soil at a depth approximately Bf2
below the bottom of the foundation, or

where F., F,., and F,. are soil compressibility

qc! G,
factors. b= ey e

where

&, = shear modulus of the soil
q =eﬂe-;ﬂveuvelhmdeupresmntndqnhufﬂf+ﬂf2

Steps for calculating the soil compressibility Step 2. The critical rigidity index, L, can be expressed as

factors. I =] (320 — 0 P er( 15 - £ |

The variations of I, with B/L are given in Table 4.8,
Step 3. TF I, = Fy, then

Page 232

Fe=Fp=F,=1
However, if [, << [, then

B , (3.07 sin '){log 240,
w« = FF = El]){(—4.4-+ 0.6 E]tﬂﬂ¢ -+ I:W ]



EFFECT OF SOIL COMPRESSIBILITY

Table 6.8 vagiation of 1, with &' and BIL

. bien
&
(degd B/Ll=0 B/l=02 Bil=0s Bil=06 B/l=08 B/L=10
0 13.56 12.39 11.32 10.35 D46 B.64
5 18.30 16.59 1504 13.63 1236 1130
10 25.53 22.93 201,60 18.50 16.62 14,93
15 36,85 3277 29.14 2592 23.05 20.49
20 55.66 48,95 43,04 37.85 33,29 29,27
25 88.93 77.21 6704 58.20 50,53 43,88
30 151.78 129.88 111.13 95,00 EL36 6962
35 283.20 238.24 200,41 168.59 141.82 119.31
40 503,00 48897 403,13 332,35 274.01 225,90
45 144094 1159 .56 933,19 TH0.90 604,26 486,26
B
F.=032 +ﬂ.lIE+ 0.60 log T,
Figure 6.17 Variation of F,. = F_ with I, and ¢’
For¢' =0,



EXAMPLE 6.6

Example 6.6

For a shallow foundation, B =0.6m,L = 1.2 m, and D, = 0.6 m. The known soil
characteristics are
Soil:

@' =25
¢’ = 48 kN/m*
= 18 kN/m’
Modulus of elasticity. E, = 620 kN/m*
Poisson’s ratio, g, = 0.3
Calculate the ultimate bearing capacity.

Solution
From Eq. (4.39),
GJ
I =—2"
r c' + q' m ¢'
However,
E,
G =—2
o201 + )
So
= E
T 2(1 + p)ic’ + g tan &']
Now.
q = 'y(D!+ -:—) = I8(0.6 + 92—6-) = 16.2 kKN/m?
Thus,
620
b= 2(1 + 0.3)[48 + 162tan 25] 429
From Eq. (4.40),

-t st
-0 e

Since I, = I,. we use Eqgs. (4.41) and (4.43) to obtain

a) e [(307 sin ¢')los(2l,)]}

FF=F¢5exp{ —4.4+0.6i 1+ sing’

_e,p{(_“ + 0675 2s

(3.07 sin 25)log (2 X 4.29)
1 +sin2s

} =0.347

1-F,
. =
Foe = Foe = N_tan &'

For " = 25°, N. = 20.72 (see Table 4.2); therefore,
1 — 0347

P =0T — 2 an s~ 0270

Now, from Eq. (4.38),

G = C'NFoF coFoc + ANoF g FyaFyc + FYBNFooF b

From Table 4.2, for ¢’ = 25°, N, = 20.72, N, = 10.66, and N, = 10.88. Consequently,
e ) (B o
Fp=1 +%lanql-’= I+%I:m25= 1.233
F,=1 —u.4(%)= 1 —o.4%=u.s

Dy
Fga= 1+ 2tan ¢'(1 —smqa.]i( )

= 1+ 2tan 25(1 —sinZSF(g)= 1311

of = Tt Nmncp 20.72 tan 25
= 1.343
and
Fa=1
Thus,

= (4B)(20.72)(1.257)(1.343){(0.279) + (0.6 > 18)(10.66)(1.233)(1.311)

{0.34?}+{_';_){I3){D.G}{I0.BE]{U.E]{[}({}.34?] = 549.32 kN/m* ]



ECCENTRICALLY LOADED FOUNDATION

If the load applied on the foundation is in the center of the foundation
without eccentricity, the bearing capacity of the soil will be uniform at any
point under the foundation (as shown in figure) because there is no any
moments on the foundation, and the general equation for stress under the

foundation is: Stressq—Q |\/: Y I\/II X

X y
In this case, the load is in the center of the foundation and there are no
moments so,

Stress = (B (uniform at any point below the foundation)
Q

e

q=Q/(BXL)




ECCENTRICALLY LOADED FOUNDATION

However, in several cases, as with the base of a retaining wall or neighbor
footing, the loads does not exist in the center, so foundations are subjected to
moments in addition to the vertical load (as shown in the figure).

In such cases, the distribution of pressure by the foundation on the soil is not
uniform because there is a moment applied on the foundation and the stress
under the foundation will be calculated from:

Stress —g 'V: 3 NII X (two way eccentricity)
Stress g Q.M one way eccentricity

AT I

i —_*_&——d‘_‘_"___rt_
«g * o

| BxL BxL



ONE WAY ECCENTRICITY

_ Q Mc
I
one way eccentricity

Stress =

| BxL BxL

Since the pressure under the foundation is not
uniform, there are maximum and minimum pressures
(under the two edges of the foundation) and we
concerned about calculating these two pressures.

Assume the eccentricity is in direction of (B)
A=BxL

M=Qxe

c=B/2 (maximum distance from the center)

3
BL
| =—— (l'is about the axis that resists the moment)

12



ONE WAY ECCENTRICITY

q= Q Q**B_ Q  Q¥e*6
B*L " 2B3* TB*L B2*|
12
Q 1+ be
B*L( - )
There are three cases for calculating maximum and minimum pressures
according to the values of (e and B/6)

Q
Case|. (For e<B/6): o _ BgL(1+ 6e)
=g (1-58)
If eccentricity in (L) direction (For e<L/6):
Q= B*L<1+ %)
=g (-55)

In this case, q,,, IS positive



ONE WAY ECCENTRICITY

Case Il. (For e=B/6):.

If eccentricity in (L) direction (For e= L/6):

_ Q 6e
q"‘a"_ B*L(1+ L)

(1-1)=0

A= gL



ONE WAY ECCENTRICITY

Case lll. (For e>B/6): Q Q
K\“M :r-*e*-{B\"Z-e)-‘
i) I

As shown in the figure, the value of (q,,,)
IS negative (i.e. tension in soil), but we
know that soil can’t resist any tension, ..,
thus, negative pressure must be \
prevented by making (q,,,=0) at distance = 7
(x) from point (A) as shown in the figure, i\t !
and determine the new value of (q,,,,) by N
static equilibrium as following:

|
i |
|
B |
|
|
|

v

N N
Omax Omax,new

R=area of triangle*L X
=0.5*q max,new*X*L (1)

IF,=0.0 »R=Q (2)

2M@A=0.0 —-Q*(B/2—-e)=R*X/3

(but from Eq.2—R=Q)—X=3(B/2-e)

Substitute by Xin Eqg. (1) —

R=0Q=0.5*0 nax new*3(B/2—€)*L

—( max,neW:4Q/[3L(B_ze)]



ONE WAY ECCENTRICITY

Case lll. (For e>B/6):.

If eccentricity in (L) direction
(For e> L/6):

q max,new=4QI[3B(L_ze)]

Note:
If the foundation is circular

Calculate q,,,, and q,,,




Ultimate Bearing Capacity under Eccentric
Loading One-Way Eccentricity

Effective Area Method.:

If the load does not exist in the center of the foundation, or if the
foundation located to moment in addition to the vertical loads, the
stress distribution under the foundation is not uniform. So, to
calculate the ultimate (uniform) bearing capacity under the foundation,
new area should be determined to make the applied load in the center
of this area and to develop uniform pressure under this new area. This

new area is called Effective area.



Ultimate Bearing Capacity under Eccentric
Loading One-Way Eccentricity

Effective Area Method (Meyerhoff, 1953)

In 1953, Meyerhof proposed a theory that is generally referred to as the effective area
method.

The following is a step-by-step procedure for determining the ultimate load that the
z0il can support and the factor of safety against bearing capacity failure:

Step 1. Determine the effective dimensions of the fojndation
B' = effective width = B — 2¢
L' = effective length = L
Note that if the eccentricity were in the direction of the length of the foun-
dation, the value of L" would be equal to . — 2e. The value of B' would
equal B. The smaller of the two dimensions (i.e., L" and B’) is the effective
width of the foundation.
Step 2. Use Eq. for the ultimate bearing capacity:

Gu = O'NF o FogF s + GNGF o FoaF i + 3YB'N F F JF

To evaluate F, Fy,, and F.,, use the relationships given in Table
with effective length and effective width dimensions instead of L and B,
respectively. To determine Fy, Fyp and F ;. use the relationships given in
Table However, do not replace B with B'.

Step 3. The total ultimate load that the foundation can sustain is
Af
QI = ] ¥ I
q. (B') (L")

where A" = effective area.



Ultimate Bearing Capacity under Eccentric

Loading One-Way Eccentricity

Step 4. The factor of safety against bearing capacity failure 1s

_
0

It 1s important to note that g, 1s the ultimate bearing capacity of a foundation
width B' = B — 2e with a centric load However, the actual distribution
soil reaction at ultimate load will be of the type shown in
(ue 18 the average load per unit area of the foundation. Thus,

g(B — 2e)
Quie) = B

F§

i,
&-‘—.

|..._

9,

!

®
+

T

__.l'____r'___l—r‘___.v‘___f____

—_—— —_—
-~
-~

-
-

-

-
-

rd

¥
A
B

-

-
-~

-

-
-
-

-
e

-

— _f.i__j,.-i'_?!__?i_

|-r.?l,':£r — 2|

ia)

Definition of g and q,,,,

1
|
|

[

|.(_
Q,

I

F]

i

B

Note: Juie) =

(b}

qulB — 2¢)
B



EXAMPLE 6.7

A continuous foundation is shown in Figure i. If the load eccentricity is 0.2 m,
determine the ultimate load, ., per unit length of the foundation. Use Meverhof™ s
effective area method.

Solution

Forc' =0,

= GNF oy + 5 Y BN FF ol

where g = (16.5) (1.5) = 24.75 kN/m>.

‘j_m ] b &ﬂ:r
' I—l 165 KN : ——
i _ A continuous foundation with load
I"'""_'I“:"—"{ eccentricity

HJ"!-&.
‘ll.u”

For &* =4D“,fmmTﬂJle4£,Nq=ﬁ4£mdNT= 109.41. Also,
B' =2 — (202} = 1.6 m
Because the foundation in question is a continuous foundation, 8"/ is 2ero. Hence,
Fg =1, F, = |. From Table
Fe—F_ =1
Far=1+ 2tan ¢'(1 —in¢-'}1%= 1 +{:L214(%)= .16

= (24.75064.2)(1M1.16){(1)

e (%]{1&5}(1.5}(109.41}[1}(1}(1) = I2E7.30 kMN/m>

0, = (BN 1Ngy = (L6} 1)(3287.30) = 5260 kN =



Ultimate Bearing Capacity under Eccentric
Loading Two-Way Eccentricity

This conditinn is aivalant tn a Inad 1 placed eccentrically on the foundation with 1 = e,
ﬂ.“d_'r' = rl'.' Figure 625

d,
and
M
E’;_ = EI
If {7, is needed, it can be obtained from Eq. that is,
0. = @A’

where, from Eg. (4.31),

o = ONF F gy + qNFF Fy + TyBN F F F
and
A" = pifective area = B'L

As before, to evaluate F_, Fq,, and Fw . _we use the effective length L7 and
effective width B’ instead of L and B, respectively. To calculate Fiy, Fo, and F g, we do not
replace B with B'. In determining the effective area A", effective width B, and effective
length L, five possible cases may arise (Highter and Anders, 1985,

ia)

G

My
A EN 2N
2y

o, I

I|I|I“"‘1—.
E
)
=

]
(b icl {d)

Figure 6.25 Analysis of foundation with two-way eccentricity



Ultimate Bearing Capacity under Eccentric
Loading Two-Way Eccentricity

Case [ e;_,.I’LEé and e,B E;l. The effective area for this condition is shown in

Figure 6.26
Ar=éﬂl'['l
where
3ey
B,=B15——
—s(1s-2)
and
3¢,
=Ll 15 ——
e
The effective length L' is the larger of the two dimensions B, and I,. So the effective width is
AF
B =—
Lr
Effiective
B
. |“_I _.ll..""/m

4 : Figure 6.26 Effective arca for the case of e/l = } and

fe— it —] eplB =1




Ultimate Bearing Capacity under Eccentric
Loading Two-Way Eccentricity

Case N e, /L <05 and 0 < ¢,/B < é—. The effective area for this case, shown in
Figure 6.27

A" =HL, + L)B
The magnitudes of L, and L, can be determined from Figure 4.26b. The effective width is

v "4-
b= L orl, (whichever is larger)

The effective length is
L' =[L,or L, (whichever is larger)

Figure 6.27  Effective area for the case of e,/L < 0.5 and 0 < gg/B < }



Ultimate Bearing Capacity under Eccentric
Loading Two-Way Eccentricity

Case lll. &,/I. <t and 0 < g,/B < 0.5. The effective area, shown in Figure 6.28

A" =3(B, + B)L
The effective width is
AF
B =—
L
The effective length is
L'=L

The magrnitudes of B, and B, can be determined from Figure 6.28

ex'B

Figure 6.28 r Effcctive area for the case of e/ « £ and 0 < e5/B < 0.5



Ultimate Bearing Capacity under Eccentric
Loading Two-Way Eccentricity

Case V. ¢/ = ig and /B = é. Figure 6.29 ows the effective area for this case. The
ratio #,/8. and thus B,, can be determined bv using the & /I corves that slope upward.
Similarly, the ratio L,/L, and thus L, can be determined by using the e, /L curves that
slope downward. The effective area is then

A" = LB+ 3(B + B)L - L)

The effective width is Py TI;/_!F//
B =—
' Bk T
The effective length is . L
Effactive
L'=L | / area
-l

Figure 6.29 . . . orthe
case of g/L < 1 and e/ < §
{Based on Highter, W. H. and
Anders, 1. C. {1985). “Dimensioning
Footings Subjected to Eccentric
Loads” Journal of Geotechnical

10 Engineering, American Society of

Civil Engineers, Vol. 111, No. GT5,

Pp. 659665}




Ultimate Bearing Capacity under Eccentric
Loading Two-Way Eccentricity

Case V. (Circuflar Foundation) In the case of circular foundations under eccentric
loading  Figure 6.30 the eccentricity is always one way. The effective area A" and
the effective width B’ for a circular foundation are given in a nondimensional form in
Table 610 Once A" and B’ are determined, the effective length can be obtained as

—.'4r

L'==—
Hr

Table 6.10 Variation of A'/F* and B'/R with

£g/ R for Circular Foundations
op/R AR B /R
0.1 2.8 1.85
0.z 14 1.32
03 20 1.2
0.4 1.61 (LB
0.5 1.23 6T
0.6 0.493 050
0.7 .62 037
0.8 0.35 23 =
09 0.1z 012 |
1.0 0 0

Figure 6.30 Effective area for circular foundation



EXAMPLE 6.10

A square foundation is showr with e, = 0.3 m and &z = 0.15 m. Assume (E

two-way eccentricity, and determine the ultimate load, @,.
Solution 1 Sml .
We have D:fm A g 'r = 18 kNm®
- 3].:-.
3=E=u1 _l‘i |_1ma<15m | P
L 15 RN |- R : e
|
and L..|z,=|:r]5m
ey 015 |,
B-as o |2 am
This case is similar to that shown in for e, /L. =02 |
and e,/B = 0.1, i
L' - — — I | An eccentrically loaded
7= 0.85; L, =(085){15)=1275m %m dation
and
L, : _ _
rﬂdllzl, L, = (021)(1.5) = 0315 m AT 1193
ST T 175 096m
ic' =10,
=YL, + LB = H1.275 + 0315)(15) = 1.193 m*
= qNFouFodFy + 1YB'NF oFoaF oy

L'=L=1315m where g = (0.7)(18) = 12.6 kN/m®.



EXAMPLE 6.10

For ¢’ = 30° 1 Ny = 184 and N, = 224
B . 0.936 -
FF—1+(F]tm:ﬁ —1+(—]m)tn13l]°— 1.424
B 0.936
Fo=1- UA(F) =1 —{}.4(ﬁ) = 0.706
D (0.289)(D.7)
= e —_— Fi_'r= _——
Foe =1+ 2tan ¢'(1 — sing’) o 1+ x 1.135
and
F,=1
So

O, = A'qe = A"(GNFpFoq + 1yB'N,F\F )
= (L.193)[(12.6)(18.4){1.424)(1.135)
+ (D.5)(18)(0.936)(22.4)(0.706)(1)] = 606 kN -



Read Examples 6.11 & 6.12



Bearing Capacity of a Continuous Foundation
Subjected to Eccentrically Inclined Loading

ey Q...[,,.;
Y | ”7/
I I
| |
| |
[ L
fe— e —! ¢ —>|
r B > i B |
(a) (b}

- Continuous foundation subjected to eccentrically inclined load:
(a) partially compensated case and (b) reinforced case

Partially Compensated Case
Meyerhof’s effective area method can be used to determine the ultimate load Qu(ei).

1
qu = C'NFouF o + GNFgaF g + S yN B F 4l
g, = the vertical component of the soil reaction.

(@)(B)(1) _ qi(B — 2e)
cos B cos B

Qu{e:} =




Bearing Capacity of a Continuous Foundation
Subjected to Eccentrically Inclined Loading

Patra et al. (2012a) proposed a reduction factor to estimate Qu(ei) for a foundation
on granular soil:

Quieiy = q.B(RF)

where RF = reduction factor

g, = ultimate bearing capacity of the foundation with centric vertical loading
(le.e=0,8=10)
The reduction factor can be expressed as

RF = (1 - 25)(1 - E)I_[Wm
B\ ¢

.Eﬂ 2— (D' B)
o)

Reinforced Case (Granular Soil)
Patra et al. (2012b) conducted several model tests on continuous foundations on granular soil and
gave the following correlation to estimate Qu(ei)

- e Be\15-070;B)
-



EXAMPLE 6.13

A continuous foundation is shown |
Qe per unit length of the foundation

Estimate the inclined ultimate load,

i Qe

and

Solution
(¢’ =0, we have
r 1 r
9 = ANeFaal'ai + VBN FodFy
g = yD; = (16)(1) = 16 kN/m’
and

B =B—-2=15-(2(0.15=12m
for &' = 35°, N, = 33.3, and N, = 48.03, we have

D, 1
Fa=1+2tang’'(1 — sin 4;']1(3’) =1+ 2tan 35(1 — sin 35)2(ﬁ) =1.17

(BN _(_2)_
F,,,-—(l 90‘,) —(1 90) = 0.605

_ ﬁoz_ 2{'2_
F.,—(l——,) —(1—3) =0.184

q, = (16)(33.3)(1.17)(0.605) + (%)(16](1 2)(48.03)(1)(0.184) = 461.98 kN/m?

_ qdB—2e) (461.98)(1.2)
B cos B N

Oupeny = 589.95 kN = 590 kN/m

cos 20




Read Example 6.14



IMPORTANT NOTES

1. The soil above the bottom of the foundation are used only to calculate the
term (g) in the second term of bearing capacity equations (Terzaghi and
Meyerhof) and all other factors are calculated for the underlying soil.

2. Always the value of (q) is the effective stress at the level of the bottom of
the foundation.

3. For the underlying soil, if the value of (c=cohesion=0.0) you don’t have to
calculate factors in the first term in equations (N, in Terzaghi’s equations)
and (N., F.s, F.4, F.; In Meyerhof equation).

4. For the underlying soil, if the value of ($=0.0) you don’t have to calculate
factors in the last term in equations (N, in Terzaghi’s equations) and

(N,, F\s,F,q,F, In Meyerhof equation).

5. If the load applied on the foundation is inclined with an angle (B=¢). The
value of (F,) will be zero, so you don’t have to calculate factors in the last
term of Meyerhof equation (N,, F.q,F.q).



IMPORTANT NOTES

6. Always if we want to calculate the eccentricity, it’s calculated as following:
__ Overall Moment

Vertical Loads

7. If the foundation is square, strip or circular, you may calculate (q,) from
Terzaghi or Meyerhof equations (should be specified in the problem).

8. But, if the foundation is rectangular, you must calculate (q,) from Meyerhof
general equation.

9. If the foundation width (B) is required, and there exist water table below
the foundation at distance (d), you should assume d<B, and calculate B, then
make a check for your assumption.



