
Chapter 6

Ultimate Bearing Capacity 
of Shallow Foundations 



To perform satisfactorily, shallow foundations must have two main

characteristics:

1. They have to be safe against overall shear failure in the soil that

supports them.

2. They cannot undergo excessive displacement, or excessive

settlement.

The term excessive is relative, because the degree of settlement

allowed for a structure depends on several considerations.

Ultimate Bearing Capacity of Shallow Foundations 



TYPES OF SHEAR FAILURE  

Types of Shear Failure 

Shear Failure: Also called “Bearing 

capacity failure” and it’s occur when 

the shear stresses in the soil exceed 

the shear strength of the soil. 

There are three types of shear failure 

in the soil: 

a) General Shear Failure

b) Local Shear Failure

c) Punching Shear Failure 



GENERAL SHEAR FAILURE

The following are some characteristics of general 

shear failure:

 Occurs over dense sand or stiff cohesive soil.

 Involves total rupture of the underlying soil.

 There is a continuous shear failure of the soil from 

below the footing to the ground surface (solid lines in 

the figure).

 When the (load / unit area) plotted versus settlement 

of the footing, there is a distinct load at which the 

foundation fails (Qu)

 The value of (Qu) divided by the area of the footing is 

considered to be the ultimate bearing capacity of the 

footing(qu).

 For general shear failure, the ultimate bearing capacity 

has been defined as the bearing stress that causes a 

sudden catastrophic failure of the foundation.

 As shown in the  figure, a general shear failure 

ruptures occur and pushed up the soil on both sides of 

the footing (In laboratory).



For actual failures on the field, the soil is often pushed up on only one side of 

the footing with subsequent tilting of the structure as shown in figure below:

GENERAL SHEAR FAILURE



The following are some characteristics of local 

shear failure:

 Occurs over sand or clayey soil of medium 

compaction.

 Involves rupture of the soil only immediately 

below the footing.

 There is soil bulging on both sides of the 

footing, but the bulging is not as significant as in 

general shear. That’s because the underlying 

soil compacted less than the soil in general 

shear.

 The failure surface of the soil will gradually (not 

sudden) extend outward from the foundation 

(not the ground surface) as shown by solid 

lines in the figure.

 So, local shear failure can be considered as a 

transitional phase between general shear and 

punching shear.

LOCAL SHEAR FAILURE



LOCAL SHEAR FAILURE

 Because of the transitional nature of local shear failure, the ultimate bearing 

capacity could be defined as the firs failure load (qu,1) which occur at the point 

which have the first measure nonlinearity in the load/unit area-settlement curve 

(open circle), or at the point where the settlement starts rabidly increase (qu) 

(closed circle).

 This value of (qu) is the required (load/unit area) to extends the failure surface to 

the ground surface (dashed lines in the figure).

 In this type of failure, the value of (qu) is not the peak value so, this failure called 

(Local Shear Failure).

 The actual local shear failure in field is proceed as shown in the figure below:



PUNSHING SHEAR FAILURE

The following are some characteristics of punching 

shear failure:

 Occurs over fairly loose soil.

 Punching shear failure does not develop the distinct 

shear surfaces associated with a general shear 

failure.

 The soil outside the loaded area remains relatively 

uninvolved and there is a minimal movement of soil 

on both sides of the footing.

 The process of deformation of the footing involves 

compression of the soil directly below the footing as 

well as the vertical shearing of soil around the 

footing perimeter.

 As shown in figure, the (q)-settlement curve does 

not have a dramatic break and the bearing capacity 

is often defined as the first measure nonlinearity in 

the (q)-settlement curve(qu,1).



PUNSHING SHEAR FAILURE

 Beyond the ultimate failure (load/unit area) (qu,1), the (load/unit area)-

settlement curve will be steep and practically linear.

 The actual punching shear failure in field is proceed as shown in the figure 

below:



Modes of Foundation Failure in Sand 

Figure 6.4



TERZAGHI’S BEARING CAPACITY THEORY 

Terzaghi was the first to present a comprehensive theory for evaluation of the 

ultimate bearing capacity of rough shallow foundation. 

This theory is based on the following assumptions:

1. The foundation is considered to be shallow if (Df≤B).

2. The foundation is considered to be strip or continuous if (B/L→0.0). (Width to 

length ratio is very small and goes to zero), and the derivation of the equation is 

to a strip footing.

3. The effect of soil above the bottom of the foundation may be assumed to be 

replaced by an equivalent surcharge (q=gDf). So, the shearing resistance of this 

soil along the failure surfaces is neglected (Lines GI and HJ in the figure)

4. The failure surface of the soil is similar to general shear failure (i.e. equation 

is derived for general shear failure) as shown in the figure.

Note:

1. In recent studies, investigators have suggested that, foundations are 

considered to be shallow if [ Df≤(3→4)B], otherwise, the foundation is deep.

2. Always the value of (q) is the effective stress at the bottom of the foundation.



TERZAGHI’S BEARING CAPACITY THEORY 

The failure zone under the foundation can be separated into three parts:

1. The triangular zone ACD immediately under the foundation

2. The radial shear zones ADF and CDE with the curves DE and DF being

arcs of a logarithmic spiral

3. Two triangular Rankine passive zones AFH and CEG

Figure 6.7



TERZAGHI’S BEARING CAPACITY EQUATION

The equation was derived for a strip footing and general shear failure:

qu=c’Nc+qNq+0.5gBNg (for continuous or strip footing)

Where 

qu=Ultimate bearing capacity of the soil (KN/m2)

c’=Cohesion of soil (KN/m2) 

q = Effective stress at the bottom of the foundation (KN/m2) 

Nc, Nq, Ng= Bearing capacity factors (non-dimensional) and are functions 𝐨𝐧𝐥𝐲
of the soil friction angle, f’

The variations of bearing capacity factors and underlying soil friction angle are 

given in (Table 4.1) for general shear failure.

The equation above (for strip footing) was modified to be useful for both 

square and circular footings as following:

For square footing: qu=1.3c’Nc+qNq+0.4gBNg

B=The dimension of each side of the foundation .

For circular footing: qu=1.3c’Nc+qNq+0.3gBNg

B=The diameter of the foundation .

Note:

These two equations are also for general shear failure, and all factors in the 

two equations (except, B,) are the same as explained for strip footing.



TERZAGHI’S BEARING CAPACITY FACTORS 

Table 6.1



FACTOR OF SAFETY

Ultimate bearing capacity is the maximum value the soil can bear it.

i.e. if the bearing stress from foundation exceeds the ultimate bearing capacity of the 

soil, shear failure in soil will be occur. 

so we must design a foundation for a bearing capacity less than the ultimate bearing 

capacity to prevent shear failure in the soil. This bearing capacity is “Allowable 

Bearing Capacity” and we design for it.

i.e. the applied stress from foundation must not exceed the allowable bearing capacity 

of soil. 

qall,gross = Gross allowable bearing capacity

qu,gross   = Gross ultimate bearing capacity (Terzaghi equation) 

FS       = Factor of safety for bearing capacity ≥3

However, practicing engineers prefer to use the “net allowable bearing capacity” such 

that:

FS

qq gross u,

gross all, 

fDq

qqq
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g
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Modification of Bearing Capacity Equations for Water Table

Terzaghi equation gives the ultimate bearing capacity based on the assumption

that the water table is located well below the foundation.

However, if the water table is close to the foundation, the bearing capacity will

decrease due to the effect of water table, so, some modification of the bearing

capacity equation will be necessary.

The values which will be modified are:

1. q (for soil above the foundation) in the second term of equation.

2. g (for the underlying soil) in the third term of equation .

There are three cases according to location of water table:

Case I. The water table is located so that 0≤D1≤Df

q = D1g+ D2(gsat− gw)

g → g ′= gsat− gw



Modification of Bearing Capacity Equations for Water Table

Case II. The water table is located so that 0≤d≤B :

Case III. The water table is located so that d≥B 

in this case the water table is assumed have no effect on the ultimate 

bearing capacity.



The General Bearing Capacity Equation

Terzagi’s equations shortcomings:

 They don’t deal with rectangular foundations (0<B/L<1).

 The equations do not take into account the shearing resistance along the 

failure surface in soil above the bottom of the foundation.

 The inclination of the load on the foundation is not considered (if exist).

To account for all these shortcomings, Meyerhof suggested the following 

form of the general bearing capacity equation:

qu = c’ NcFcsFcdFci+ q NqFqsFqdFqi+ 0.5 B g NgFgs FgdFgi
Where 

C’=Cohesion of the underlying soil

q = Effective stress at the level of the bottom of the foundation. 

g  = Unit weight of the underlying soil

B = Width of footing (=diameter for a circular foundation). 

Nc, Nq, Ng = Bearing capacity factors (Table 4.2)

Fcs, Fqs, Fgs= Shape factors. 

Fcd, Fqd, Fgd = Depth factors. 

Fci, Fqi, Fgi = Inclination factors.

In the case of inclined loading on a foundation, the general equation provides 

the vertical component.



Notes:

1. This equation is valid for both general and local shear failure.

2. This equation is similar to original equation for ultimate bearing capacity 

(Terzaghi’s equation) which was derived for continuous foundation, but the 

shape, depth, and load inclination factors are added to Terzaghi’s equation to 

be suitable for any case may exist.

The General Bearing Capacity Equation

Bearing Capacity Factors: Nc, Nq, Ng 

The angle α=ϕ’ (according Terzaghi theory) was replaced by α=45+ϕ’/2. 

So, the bearing capacity factor will be changed.

The variations of bearing capacity factors (Nc, Nq, Ng ) and underlying soil 

friction angle (ϕ’) are given in Table 4.2.



The General Bearing Capacity Equation

Table 6.2



The General Bearing Capacity Equation

Shape factors:

Notes:

1. If the foundation is continuous or strip →B/L=0.0

2. If the foundation is circular→B=L=diameter→B/L=1



The General Bearing Capacity Equation

Depth Factors:

Important Notes:

1. If the value of (B) or (Df)is required, you 

should do the following:

Assume (Df/B≤1) and calculate depth factors in 

term of (B) or (Df).

Substitute in the general equation, then 

calculate (B) or (Df).

After calculating the required value, you must 

check your assumption→(Df/B≤1).

If the assumption is true, the calculated value 

is the final required value.

If the assumption is wrong, you must calculate 

depth factors in case of (Df/B>1) and then 

calculate (B) or (Df) to get the true value.

2. For both cases (Df/B≤1)and(Df/B>1) 

if ϕ>0→ calculate Fqd firstly, because Fcd

depends on Fqd.



The General Bearing Capacity Equation

Inclination Factors:

Note:

If β°=ϕ→ Fgi =0.0, so you 𝐝𝐨𝐧′𝐭 𝐧𝐞𝐞𝐝 to calculate Fgs and Fgd, because 

the last term in Meyerhof equation will be zero.



Example 6.3

575 kN/m



Read Examples 6.4 & 6.5



Ng Relationships

Table 6.5







EFFECT OF SOIL COMPRESSIBILITY 

The change of failure mode is due to soil compressibility.

Vesic (1973) proposed the following modification to the 

general bearing capacity equation:

qu = c’ NcFcsFcdFcc+ q NqFqsFqdFqc+ 0.5 B g NgFgs FgdFgc

where Fcc, Fqc, and Fgc are soil  compressibility 

factors.

Steps for calculating  the soil compressibility 

factors.

Page 232



EFFECT OF SOIL COMPRESSIBILITY 

Table 6.8

Figure 6.17



EXAMPLE 6.6

Example 6.6



ECCENTRICALLY LOADED FOUNDATION

If the load applied on the foundation is in the center of the foundation

without eccentricity, the bearing capacity of the soil will be uniform at any

point under the foundation (as shown in figure) because there is no any

moments on the foundation, and the general equation for stress under the

foundation is:

In this case, the load is in the center of the foundation and there are no 

moments so, 

(uniform at any point below the foundation)
A

Qq  Stress

y

y

x

x Stress
I

xM
I

yMQq
A





ECCENTRICALLY LOADED FOUNDATION

However, in several cases, as with the base of a retaining wall or neighbor 

footing, the loads does not exist in the center, so foundations are subjected to 

moments in addition to the vertical load (as shown in the figure).

In such cases, the distribution of pressure by the foundation on the soil is not 

uniform because there is a moment applied on the foundation and the stress 

under the foundation will be calculated from:
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ONE WAY ECCENTRICITY

tyeccentrici way one

       Stress
I

Mc
A
Qq 

Since the pressure under the foundation is not 

uniform, there are maximum and minimum pressures 

(under the two edges of the foundation) and we 

concerned about calculating these two pressures.

Assume the eccentricity is in direction of (B)

A=B×L 

M=Q×e 

c=B/2 (maximum distance from the center)

(I is about the axis that resists the moment)
12

3

  
LB

I 



ONE WAY ECCENTRICITY

There are three cases for calculating maximum and minimum pressures 

according to the values of (e and B/6 )

Case I. (For 𝐞<𝐁/𝟔):
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If eccentricity in (L) direction (For e<L/6):
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In this case,  qmin is positive



ONE WAY ECCENTRICITY

Case II. (For 𝐞=𝐁/𝟔):
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ONE WAY ECCENTRICITY

Case III. (For 𝐞>𝐁/𝟔):

As shown in the figure, the value of (qmin) 

is negative (i.e. tension in soil), but we 

know that soil can’t resist any tension, 

thus, negative pressure must be 

prevented by making (qmin=0) at distance 

(x) from point (A) as shown in the figure, 

and determine the new value of (qmax) by 

static equilibrium as following: 

R=area of triangle*L

=0.5*qmax,new*X*L             (1) 

ΣFy=0.0 →R=Q                  (2)

ΣM@A=0.0 →Q*(B/2−e)=R*X/3 

(but from Eq.2→R=Q)→X=3(B/2−e)

Substitute by X in Eq. (1) → 

R=Q=0.5*qmax,new*3(B/2−e)*L

→qmax,new=4Q/[3L(B−2e)]



ONE WAY ECCENTRICITY

Case III. (For 𝐞>𝐁/𝟔):

If eccentricity in (L) direction

(For e> L/6):

qmax,new=4Q/[3B(L−2e)]

Note:

If the foundation is circular 

Calculate qmax and qmin 64
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Ultimate Bearing Capacity under Eccentric 

Loading One-Way Eccentricity

Effective Area Method:

If the load does not exist in the center of the foundation, or if the

foundation located to moment in addition to the vertical loads, the

stress distribution under the foundation is not uniform. So, to

calculate the ultimate (uniform) bearing capacity under the foundation,

new area should be determined to make the applied load in the center

of this area and to develop uniform pressure under this new area. This

new area is called Effective area.



Ultimate Bearing Capacity under Eccentric 

Loading One-Way Eccentricity



Ultimate Bearing Capacity under Eccentric 

Loading One-Way Eccentricity



EXAMPLE 6.7



Ultimate Bearing Capacity under Eccentric 

Loading Two-Way Eccentricity

Figure 6.25

Figure 6.25



Ultimate Bearing Capacity under Eccentric 

Loading Two-Way Eccentricity

Figure 6.26

Figure 6.26



Ultimate Bearing Capacity under Eccentric 

Loading Two-Way Eccentricity

Figure 6.27

Figure 6.27



Ultimate Bearing Capacity under Eccentric 

Loading Two-Way Eccentricity

Figure 6.28

Figure 6.28
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Ultimate Bearing Capacity under Eccentric 

Loading Two-Way Eccentricity

Figure 6.29

Figure 6.29



Ultimate Bearing Capacity under Eccentric 

Loading Two-Way Eccentricity

Figure 6.30

Figure 6.30

6.10

Table 6.10



EXAMPLE 6.10
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Read Examples 6.11 & 6.12



Bearing Capacity of a Continuous Foundation 

Subjected to Eccentrically Inclined Loading

Partially Compensated Case

Meyerhof’s effective area method can be used to determine the ultimate load Qu(ei).

the vertical component of the soil reaction.



Bearing Capacity of a Continuous Foundation 

Subjected to Eccentrically Inclined Loading

Patra et al. (2012a) proposed a reduction factor to estimate Qu(ei) for a foundation 

on granular soil:

Reinforced Case (Granular Soil)

Patra et al. (2012b) conducted several model tests on continuous foundations on granular soil and 

gave the following correlation to estimate Qu(ei)



EXAMPLE 6.13



Read Example 6.14



IMPORTANT NOTES 

1. The soil above the bottom of the foundation are used only to calculate the

term (q) in the second term of bearing capacity equations (Terzaghi and

Meyerhof) and all other factors are calculated for the underlying soil.

2. Always the value of (q) is the effective stress at the level of the bottom of

the foundation.

3. For the underlying soil, if the value of (c=cohesion=0.0) you don’t have to

calculate factors in the first term in equations (Nc in Terzaghi’s equations)

and (Nc, Fcs, Fcd, Fci in Meyerhof equation).

4. For the underlying soil, if the value of (ϕ=0.0) you don’t have to calculate

factors in the last term in equations (Ng in Terzaghi’s equations) and

(Ng, Fgs,Fgd,Fgi in Meyerhof equation).

5. If the load applied on the foundation is inclined with an angle (β=ϕ). The

value of (Fgi) will be zero, so you don’t have to calculate factors in the last

term of Meyerhof equation (Ng, Fgs,Fgd).



IMPORTANT NOTES 

6. Always if we want to calculate the eccentricity, it’s calculated as following:

7. If the foundation is square, strip or circular, you may calculate (qu) from

Terzaghi or Meyerhof equations (should be specified in the problem).

8. But, if the foundation is rectangular, you must calculate (qu) from Meyerhof

general equation.

9. If the foundation width (B) is required, and there exist water table below

the foundation at distance (d), you should assume d≤B, and calculate B, then

make a check for your assumption.

Loads   Vertical

Moment  Overalle


