
Ch 2: Linear Time-Invariant System
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A system is said to be Linear Time-Invariant (LTI) if it possesses the basic 
system properties of linearity and time-invariance.

Consider a system with an output signal 𝑦(𝑡) corresponding 
to an input signal 𝑥 𝑡 . The system will be called a time-
invariant system, if for an arbitrary time shift 𝑇0 in the input 
signal, i.e., 𝑥(𝑡 + 𝑇0), the output signal is time-shifted by the 
same amount 𝑇0, i.e., 𝑦(𝑡 + 𝑇0). 

If 𝑥𝑘[𝑛], 𝑘 = 1, 2, 3, … , are a set of inputs to a discrete-time linear

system with corresponding outputs 𝑦𝑘[𝑛], 𝑘 = 1, 2, 3, … , then we

get

𝑥 𝑛 =෍

𝑘

𝑎𝑘𝑥𝑘[𝑛] = 𝑎1𝑥1 𝑛 + 𝑎2𝑥2 𝑛 + 𝑎3𝑥3 𝑛 +⋯

𝑦 𝑛 =෍

𝑘

𝑎𝑘𝑦𝑘[𝑛] = 𝑎1𝑦1 𝑛 + 𝑎2𝑦2 𝑛 + 𝑎3𝑦3 𝑛 +⋯

INPUT:

OUTPUT:



CEN340: Signals and Systems - Dr. Ghulam Muhammad 2

2. Discrete-Time LTI Systems: the 
Convolution Sum

Any discrete-time signal x[n] can be represented as a function of shifted unit 
impulses [n-k], where the weights in this linear combination are x[k].

[ ] [ ] [ ]
k

x n x k n k




  Original Signal

+ +

+ + + ….
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The Convolution Sum

[ ] [ ] [ ]
k

x n x k n k




 

For a particular case of unit step function:

1 for 0
[ ]

0 for 0

n
u n

n


 



We can write:
0

[ ] [ ] [ ]
k

u n u k n k




 
Shifting property of the 
discrete-time unit impulse

Scaled impulses
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The Convolution Sum – contd.

Linear Time-Invariant System,
Impulse response (?)

[n] h[n]

Impulse input with 
zero initial conditions

Impulse Response

Linear Time-Invariant System,
Impulse response, h[n]

x[n] y[n]

Input Output

y[n] = x[n]h[n]

[ ] [ ] [ ]
k

y n x k h n k




 
Convolution
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Example: Convolution – (1)

Impulse response 
of an LTI system

Input

Find output.

There are only two non-zero values for 
the input. 

y[n] = x[0]h[n-0] + x[1]h[n-1]
= 0.5h[n] + 2h[n-1]

Output
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Example: Convolution – (2)

Solution:
Length = 3 Length = 3

Convolution length = 3 +3 – 1 = 5
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Example: Convolution – (3)

Solution:

Convolution length = 3 + 2 – 1 = 4

Length = 3 Length = 2
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Example: Convolution – (4)

Find the output of an LTI system having unit impulse response, h[n], for the input, x[n], 
as given below.

[ ] [ ],    0 1

[ ] [ ]

nx n u n

h n u n

   


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Example: Convolution – (4) – contd.

, 0
[ ] [ ]

0, otherwise

k k n
x k h n k

  
  



Thus, for n  0, 

1

0

1
[ ] ,    for 0

1

nn
k

k

y n n










  




Thus, for all n, 
11

[ ] [ ].
1

n

y n u n




 
  

 
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Representation of Continuous-Time 
Signals in Terms of Impulses

A continuous-time signal, x(t), is approximated 
in terms of pulses or a ‘staircase’.

Defining:

1/ , 0
( )

0, otherwise

1, 0
( )

0, otherwise

t
t

t
t









   
 


  
   



Pulse or ‘staircase’ approximation of x(t) at t = 0:

(0), 0
ˆ (0) (0) ( )

0, otherwise

x t
x x t

  
   


0 

1/

(t)

t
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Continuous-Time Signals in Terms 
of Impulses – contd.

Going one step further, shifted  can be written as:

1/ , 2
( )

0, otherwise

t
t

    
  



0 

1/

(t - )

t2

Pulse or ‘staircase’ approximation of x(t) at t = :

( ), 2
ˆ ( ) ( ) ( )

0, otherwise

x t
x x t

    
      


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Continuous-Time Signals in Terms 
of Impulses – contd.

In general, for an arbitrary k, we write

1/ , ( 1)
( )

0, otherwise

k t k
t k

     
   



Pulse or ‘staircase’ approximation of x(t) at t = k:

( ), ( 1)
ˆ ( ) ( ) ( )

0, otherwise

x k k t k
x k x k t k

     
       



Combining all individual approximations, we get the 
complete pulse/staircase approximation of x(t) as: 

ˆ ˆ ˆ ˆ ˆ( ) ... ( ) (0) ( ) ... ( ) ( ) ( )
k k

x t x x x x k x k t k
 



 

              
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Continuous-Time Signals in Terms 
of Impulses – contd.

If we keep on reducing the value of , the approximation becomes closer and 
closer to the original value.

0 0
ˆ( ) lim ( ) lim ( ) ( )

k

x t x t x k t k



 



     

In the limiting case: 0;    ( ) ( )

... ...
k

t t

d


 







 

 

  ( ) ( ) ( )x t x t d   




 

Consequently,
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The Convolution Integral

( ) ( ) ( ) ( )* ( )y t x h t d x t h t  




  

Let, the input x(t) to an LTI system with unit impulse response h(t) be given as 
x(t) = e-at u(t) for a > 0 and h(t) = u(t).

Find the output y(t) of the system.
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The Convolution Integral – contd.

 

0

0

0

( ) ( ) ( ) ( ) ,    for 0

1 1
        = . | 1

a

t

a a t at

y t x h t d e h t d t

e d e e
a a



 

    



 





  

    


  

 



Thus, for all t, we can write

 
1

( ) 1 ( )aty t e u t
a

 
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Example: The Convolution Integral

Find y(t) = x(t)*h(t), where
2( ) ( )

( ) ( 3)

tx t e u t

h t u t

 

 





We observe that there is nonzero overlap.

3

2 2( 3)

0

2

1
For 3,   ( )

2

1
For 0,   ( )

2

t

tt y t e d e

y t e d





 

 









     

    





t-3  0:

t-3 > 0:
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Example: The Convolution Integral

( ) ( ) ( ) ( )* ( )y t x h t d x t h t  




  
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Example: The Convolution Integral – contd.

x()



x()

t < 2



CEN340: Signals and Systems - Dr. Ghulam Muhammad 19

Example: The Convolution Integral – contd.

x()

x()
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Properties of LTI Systems

 The characteristics of an LTI system are completely determined by its impulse 
response. This property holds in general for LTI systems only. 

 The unit impulse response of a nonlinear system does not completely 
characterize the behavior of the system.

Consider a discrete-time system with unit impulse response:
1, 0,1

[ ]
0,

n
h n

otherwise


 


If the system is LTI, we get (by convolution): [ ] [ ] [ 1]y n x n x n  

There is only one such LTI system for the given h[n].

However, there are many nonlinear systems with the same response, h[n].

 

 

2
[ ] [ ] [ 1]

[ ] max [ ], [ 1]

y n x n x n

y n x n x n

  

 
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Commutative Property

( )* ( ) ( )* ( )

[ ]* [ ] [ ]* [ ]

x t h t h t x t

x n h n h n x n





Proof: (discrete domain)

[ ]* [ ] [ ] [ ]
k

x n h n x k h n k




 

Put r = n – k  k = n - r

[ ]* [ ] [ ] [ ] [ ] [ ] [ ]* [ ]
r r

x n h n x n r h r h r x n r h n x n
 

 

     

Similarly, we can prove it for continuous domain.
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Distributive Property

][*][][*][])[][(*][ 2121 nhnxnhnxnhnhnx 
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Example: Distributive Property

y[n] =  x[n] * h[n] 

1
[ ] [ ] 2 [ ]

2

[ ] [ ]

n

nx n u n u n

h n u n

 
   
 



x[n] in nonzero for entire n, so direct convolution is difficult. Therefore, we 
will use commutative property. 

   1 2 1 2 1 2[ ] [ ]* [ ] [ ] [ ] * [ ] [ ]* [ ] [ ]* [ ] [ ] [ ]y n x n h n x n x n h n x n h n x n h n y n y n      

1 1 1

1
[ ] [ ]* [ ] [ ] [ ] [ ] [ ]

2

k

k k

y n x n h n x k h n k u k u n k
 

 

 
     

 
 

 
1

11 (1/ 2)
[ ] 2 1 (1/ 2) [ ]

1 (1/ 2)

n
nu n u n


 

   
 

1

2 2[ ] [ ]* [ ] 2 [ ] [ ] 2k n

k

y n x n h n u k u n k






    

 1 1

1 2[ ] [ ] [ ] 2 1 (1/ 2) [ ] 2n ny n y n y n u n     
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Associative Property

   

   
1 2 1 2

1 2 1 2

( )* ( )* ( ) ( )* ( ) * ( )

[ ]* [ ]* [ ] [ ]* [ ] * [ ]

x t h t h t x t h t h t

x n h n h n x n h n h n





h1[n] h1[n]
w[n] y[n]x[n]

h[n] = h1[n]*h2[n]
x[n] y[n]

Proof:

(A)

(B)

From (A),  2 1 2[ ] [ ]* [ ] [ ]* [ ] * [ ]y n w n h n x n h n h n 

From (B),
1 2[ ] [ ]* [ ] [ ]*( [ ]* [ ])y n x n h n x n h n h n 
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LTI Systems With and Without Memory

A discrete-time LTI system can be memoryless if only: [ ] 0,    for 0h n n 

Thus, the impulse response have the form: [ ] [ ],     is a constanth n K n K

[ ] [ ]y n Kx n

If K = 1, then the system is called identity system.

Invertibility of LTI Systems: The system with impulse 
response h1[n] is inverse 
of the system with 
impulse response h(t), if 

1( )* ( ) ( )h t h t t

Similarly for 
continuous LTI 
systems.



CEN340: Signals and Systems - Dr. Ghulam Muhammad 26

Example: LTI Systems Properties

Consider, the following LTI system with pure time-shift.

0( ) ( )y t x t t 

 Such a system is a ‘delay’ if t0 > 0, and an ‘advance’ if t0 < 0.

 If t0 = 0, the system is an identity system and is memoryless.

 For t0  0, the system has memory.

 The impulse response of the system is h(t) = (t – t0), therefore, 

0 0( ) ( )* ( )x t t x t t t  

The convolution of a signal with a shifted impulse simply shifts the signal.

To recover the input (i.e. to invert the system), we simply need to shift the output back.

1 0( ) ( )h t t t The impulse response of the inverted system:

1 0 0( )* ( ) ( )* ( ) ( )h t h t t t t t t     
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Example: LTI Systems Properties

Consider, an LTI system with impulse response: [ ] [ ]h n u n

[ ] [ ] [ ] [ ]
n

k k

y n x k u n k x k


 

   

 The system is a summer or accumulator.

 The system is invertible and its inverse is given by: y[n] = x[n] – x[n-1], 

which is a first difference equation.

By putting, x[n] = [n], we find the impulse response of the inverse system: 
hr[n] = [n] – [n-1]

To check that h[n] and hr[n] are impulse responses of the systems 
that are inverse of each other, we do the following calculation:

 1[ ]* [ ] [ ]* [ ] [ 1]

[ ]* [ ] [ ]* [ 1] [ ] [ 1] [ ]

h n h n u n n n

u n n u n n u n u n n

 

  

  

      

Therefore, the two systems are inverses of each other.
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Causality of LTI Systems

[ ] [ ] [ ]
k

y n x k h n k




 

y[n] must not depend on x[k] for k > n, to be causal.

Therefore, for a discrete-time LTI system to be causal: h[n] = 0, for n < 0.

0

[ ] [ ] [ ] [ ] [ ]
n

k k

y n x k h n k h k x n k


 

    

Similarly, for a continuous-time LTI system to be causal:

0

( ) ( ) ( )y t h x t d  


  Both the accumulator ( h[n] = u[n]) 
and its inverse (h[n] = [n] - [n-1]) 
are causal.
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Stability of LTI Systems

Consider, an input x[n] to an LTI system that is bounded in magnitude:

| [ ] | ,    for all x n B n

Suppose that we apply this to the LTI system with impulse response h[n].

| [ ] | | [ ] [ ] |

          | [ ] || [ ] |

           | [ ] |    for all  

k

k

k

y n h k x n k

h k x n k

B h k n













 

 







|x[n – k]| < B, for all n and k

Therefore, if  | [ ] | ,   then | [ ] |
k

h k y n




   

If the impulse response is absolutely summable, then y[n] is bounded in 
magnitude, and hence the system is stable.

Similar case in 
continuous-time 
LTI system.
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Example: Stability of LTI Systems

 An LTI system with pure time shift is stable.

0| [ ] | | [ ] | 1
n n

h n n n
 

 

   

 An accumulator (DT domain) system is unstable.

0

| [ ] | | [ ] | | [ ] |  
n n n

h n u n u n
  

  

     

 Similarly, an integrator (CT domain) system is unstable.
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Unit Step Response of An LTI System

[ ] [ ]* [ ] [ ]* [ ]s n u n h n h n u n 

[ ] [ ]

[ ] [ ] [ 1]

n

k

s n h k

h n s n s n



 

   

 Running Sum

First Difference

Discrete-
time domain

Continuous-
time domain

( ) ( )

( )
( ) ( )

t

s t h d

ds t
h t s t

ds

 




 

 Running Integral

First Derivative
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Linear Constant-Coefficient Differential Equation

Consider an LTI system described by the following differential equation:

( )
2 ( ) ( )

dy t
y t x t

dt
 

where the input to the system is: 3( ) ( )tx t Ke u t

Solve for y(t).

( ) ( ) ( )p hy t y t y t 

Particular solution

Homogeneous solution

3( ) t

py t Y e

Determine

From differential equation:

3 3 33 2 3 2
5

t t t K
Y e Y e Ke Y Y K Y      

3( ) ,   for 0
5

t

p

K
y t e t 

( ) st

hy t Ae

2 0 ( 2) 0 2st st stAse Ae A s e s       

2( ) t

hy t Ae 

3 2( )
5

t tK
y t e Ae  

Complete 
solution:
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Solution – contd.

 Still, the value of A is unknown. We can find it by using the auxiliary 
condition. Different auxiliary conditions lead to different solutions of y(t).

 Suppose that the auxiliary condition is y(0) = 0, i.e., at t = 0, y(t) = 0.

Using this condition into the complete solution, we get:

0
5 5

K K
A A    

3 2

3 2

( ) ,   0
5

        = ( )
5

t t

t t

K
y t e e t

K
e e u t





    

  

A general N-th order linear constant-coefficient differential equation is given by: 

0 0

( ) ( )k kN M

k kk k
k k

d y t d x t
a b

dt dt 

 

A particular case when N = 0: 00

1 ( )
( )

kM

k k
k

d x t
y t b

a dt

 
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Workout (1)
x()



1

Convolution 
Integral:

( ) ( )

( ) ( )

( ) ( )* ( ) ( ) ( )

at

at

x t e u t

h t e u t

y t x t h t x h t d  







 



  

h(-)



1

h(t - )



1

t

h()



1 Reflect
Shift

t < 0

h(t - )



1

t

t > 0
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Workout (1) – contd.

For t < 0, the overlap between x() and h(t - ) is between the range  = - and  = t. 

2
( ) 2( )

2 2

t t a at
a a t at a at

te e
y t e e d e e d e

a a


      

 

    
 

For t > 0, the overlap between x() and h(t - ) is between the range  = - and  = 0. 

0 2
( ) 2

0
( )

2 2

t a at
a a t at a at e e

y t e e d e e d e
a a


   


   

 

    
 

By combining,

| |1
( )

2

a ty t e
a



y(t)

t

1/2a
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