Assume that you have a sample of $n 1=8$, ivith the sample mean $\bar{X}_{1}=42$, and a sample standard deviation $S_{1}=4$, and you have an independent sample of $n_{2}=15$ from another population with a sample mean of $\bar{X}_{2}=34$ and a sample deviation $S_{2}=5$.

$$
\begin{array}{lll}
n_{1}=8, & \bar{X}_{1}=42, & S_{1}=4 \\
n_{2}=15, & \bar{X}_{2}=34, & S_{2}=5
\end{array}
$$

a. What is the value of the pooled-variance t-Stat test statistic for testing $H_{0}: \mu_{1}=\mu_{2}$?

$$
\begin{gathered}
\mathbf{t}=\frac{\overline{\boldsymbol{X}}_{1}-\overline{\boldsymbol{X}}_{2}}{\sqrt{S_{p}^{2}\left(\frac{\mathbf{1}}{n_{1}}+\frac{\mathbf{1}}{n_{2}}\right)}} \\
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}=\frac{(8-1) \times 4^{2}+(15-1) \times 5^{2}}{(8-1)+(15-1)}=22 \\
t_{S T A T}=\frac{42-34}{\sqrt{22\left(\frac{1}{8}+\frac{1}{15}\right)}}=\frac{8}{2.0536}=3.8959
\end{gathered}
$$

b- In finding the critical value, how many degrees of freedom are there?
degrees of freedom (d.f) $=n_{1}+n_{2}-2=(8+15)-2=21$
c. Using the level of significance $\alpha=0.01$, what is the critical value for a one-tail test for the hypothesis $H_{0}: \mu_{1} \leq \mu_{2}$ against the alternative, $H_{1}: \mu_{1}>\mu_{2}$? $\mathrm{t}_{0.01,21}=2.5177$
d. What is your statistical decision?

$$
\text { Reject } H_{0} \text { because } \quad t_{\text {stat }}>t_{\alpha}
$$

(10.4)
referring to problem 10.2, construct a 95% confidence interval estimate of the population mean difference between μ_{1} and μ_{2}

$$
\begin{aligned}
& \quad \mu_{1}-\mu_{2}=\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{\alpha / 2} \sqrt{S_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\
& =(42-34) \pm 2.0796 \sqrt{22\left(\frac{1}{8}+\frac{1}{15}\right)} \\
& =8 \pm 2.0796 \times 2.0536 \\
& =8 \pm 4.2705
\end{aligned}
$$

(10.20) Nine experts rated two brands of coffee and its taste testing experiment. A rating on a 1 to 7-point scale
[1 = extremely unpleasing, $7=$ extremely pleasing] is given for each of four characteristics: taste, aroma, richness, and acidity. The accompanying data table contains the ratings accumulated over all four characteristics.

Brand

Expert	A	B
C.C.	26	27
S.E.	27	27
E.G.	19	21
B.L.	22	24
C.M.	22	25
C.N.	25	26
G.N.	25	24
R.M.	25	26
P.V.	21	23

a. At the 0.05 level of significance, is there evidence of a difference in the mean ratings between the two brands?

Solution:

Step 1: state the hypothesis: $\quad H_{0}: \mu_{D}=0$

$$
H_{1}: \mu_{D} \neq 0
$$

Step2: Select the level of significance and critical value:

$$
\text { d.f }=\mathrm{n}-1=9-1=8 \quad t_{0.025,8}= \pm 2.3060
$$

Step 3: Find the appropriate test statistic.

$$
t_{\text {stat }}=\frac{\bar{D}}{S_{D} / \sqrt{n}} \quad \bar{D}=\frac{\sum D_{i}}{n} \quad \mathrm{~S}_{\mathrm{D}}=\sqrt{\frac{\sum\left(D_{i}-\overline{\mathrm{D}}\right)^{2}}{\mathrm{n}-1}}
$$

Expert	A	B	$\mathrm{D}=\mathrm{A}-\mathrm{B}$	$\mathrm{D}-\bar{D}$	$(\mathrm{D}-\bar{D})^{2}$
C.C.	26	27	-1	0.2222	0.0494
S.E.	27	27	0	1.2222	1.4938
E.G.	19	21	-2	-0.7778	0.6050
B.L.	22	24	-2	-0.7778	0.6050
C.M.	22	25	-3	-1.7778	3.1606
C.N.	25	26	-1	0.2222	0.0494
G.M.	25	24	1	2.2222	4.9382
R.M.	25	26	-1	0.2222	0.0494
P.V.	21	23	-2	-0.7778	0.6050
			$=-11$		$\sum=11.558$

$$
\begin{aligned}
& \bar{D}=\frac{\sum D_{i}}{n}=\frac{-11}{9}=-1.2222 \\
& \mathrm{~S}_{\mathrm{D}}=\sqrt{\frac{\sum\left(D_{i}-\overline{\mathrm{D}}\right)^{2}}{\mathrm{n}-1}}=\sqrt{\frac{11.5558}{8}}=1.2019 \\
& t_{\text {stat }}=\frac{\bar{D}}{S_{D} / \sqrt{n}}=\frac{-1.2222}{1.2019 / 3}=\frac{-1.2222}{0.4006}=-3.05
\end{aligned}
$$

Step 4: State the decision rule
Reject H_{0} if $t_{\text {stat }}>2.3060$ or $t_{\text {stat }}<-2.3060$
Step 5: Decision Reject H_{0} ($t_{\text {stat }}$ is in the rejection region)

b. Construct and interpret a 95% confidence interval estimate of the difference in the mean ratings between the two brands.

$$
\begin{aligned}
& \hat{\mu}_{D}=\bar{D} \pm t_{\alpha / 2} \frac{S_{D}}{\sqrt{n}} \\
& =-1.222 \pm 2.3060 \frac{1.2019}{\sqrt{9}} \\
& =-1.222 \pm 0.9238 \\
& -2.146<\hat{\mu}_{D}<-.2984
\end{aligned}
$$

(10.27)

Let $\mathrm{n} 1=80, \mathrm{X} 1=70$, and $\mathrm{n} 2=80$, and $\mathrm{X} 2=50$.
a. at the 0.10 level of significance, is there evidence of a significant difference t between the two population proportions?

Solution:

Step 1: State the null and alternate hypotheses.

$$
\begin{aligned}
& H_{0}: \pi 1-\pi 2=0 \\
& H_{1}: \pi 1-\pi 2 \neq 0
\end{aligned}
$$

Step 2: State the level of significance and critical value ($\alpha=0.10$).

$$
\pm Z_{\frac{\alpha}{2}}= \pm Z_{\frac{0.10}{2}}= \pm Z_{0.05}= \pm 1.645
$$

Step 3: $\quad z_{\text {stat }}=\frac{\left(p_{1}-p_{2}\right)-\left(\pi_{1}-\pi_{2}\right)}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$
The sample proportions are:
$\mathrm{p} 1=70 / 80=0.875$
$p 2=50 / 80=0.625$

$$
\begin{aligned}
& \bar{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}=\frac{70+50}{80+80}=0.75 \\
& z_{\text {stat }}=\frac{(0.875-0.625)-(0)}{\sqrt{0.75(1-0.75)\left(\frac{1}{80}+\frac{1}{80}\right)}}=3.6496
\end{aligned}
$$

Step 4: State the decision rule: Reject H_{0} if

$$
\begin{aligned}
& \quad z_{\text {stat }}>Z_{\frac{\alpha}{2}} \text { Or } \quad z_{\text {stat }}>-Z_{\frac{\alpha}{2}} \\
& \text { Decision: } \quad Z_{\text {stat }}>Z_{\frac{\alpha}{2}} \quad \text { Reject } H_{0}
\end{aligned}
$$

b. Construct a 90% confidence interval estimate of the difference between the two population proportions.

$$
\left(p_{1}-p_{2}\right) \pm Z_{\alpha / 2} \sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
$$

The 90% confidence interval for $\pi 1-\pi 2$ is:

$$
\begin{aligned}
& =(0.875-0.625) \pm 1.645 \sqrt{\frac{0.875(1-0.875)}{80}+\frac{0.625(1-0.625)}{80}} \\
& =(0.1422,0.3578)
\end{aligned}
$$

(10.39) The following information is available for two samples selected from independent normally distributed Populations

$$
\mathrm{n} 1=25 \quad s_{1}^{2}=161.9 \quad \mathrm{n} 2=25 \quad s_{2}^{2}=133.7
$$

What is the value of $F_{\text {STAT }}$ If you are testing the null hypothesis $\quad H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$?

$$
F_{S T A T}=\frac{S_{1}^{2}}{S_{2}^{2}}=\frac{161.9}{133.7}=1.2109
$$

(10.40) How many degrees of freedom are there in the numerator and denominator of the $\mathrm{F}_{\text {STAT }}$?

$$
\text { d.f1 (numerator) }=\mathrm{n} 1-1=25-1=24 \quad \text { d.f2 }(\text { denominator })=\mathrm{n} 2-1=25-1=24
$$

(10.41) What is the upper-tail critical value of F if the level of significance, $\alpha=0.05$ and the alternative hypothesis is $H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$

$$
F_{\frac{\alpha}{2} \text {, d.f1,d.f2 }}=F_{\frac{0.05}{2}, 24,24}=2.27
$$

(10.42) What is your statistical decision?

Decision: $\quad F_{S T A T}<F_{\frac{\alpha}{2}} \quad$, Don't reject

(10.51) An experiment has a single factor with three groups and six values in each group.
a) How many degrees of freedom are there in determining the among- group variation?

$$
C-1=3-1=2
$$

b) How many degrees of freedom are there in determining the within-group variation?

$$
n-c=18-3=15
$$

c) How many degrees of freedom are there in determining the total variation?

$$
n-1=18-1=17
$$

(10.52) If you are working with the same experiment as in problem 10.51,
a) If $S S A=60$, and $S S T=210$. What is the $S S W$?

$$
\text { SST }=\text { SSA }+ \text { SSW } \quad \text { SSW }=\text { SST }- \text { SSA }=210-60=150
$$

b) What is the MSA?

$$
\text { MSA }=\frac{S S A}{C-1}=\frac{60}{2}=30
$$

c) What is the MSW?

$$
\text { MSW }=\frac{S S W}{n-C}=\frac{150}{15}=10
$$

d) What is the value of $F_{\text {stat }} ? \quad F_{\text {stat }}=\frac{M S A}{M S W}=\frac{30}{10}=3$
(10.53)
a- Construct the ANOVA summary table and fill in all values in the table.

Source	d.f	Sum of Square	Mean Square	F
Among Groups	$\mathrm{c}-1=2$	$\mathrm{SSA}=60$	$\mathrm{MSA}=30$	3
Within Groups	$\mathrm{n}-\mathrm{c}=15$	$\mathrm{SSW}=150$	$\mathrm{MSW}=10$	
Total	$\mathrm{n}-1=17$	$\mathrm{SST}=210$		

b) At the 0.05 level of significance, what is the upper -tail critical value from F distribution?

$$
F_{0.05, \mathrm{c}-1, \mathrm{n}-1=}=3.68
$$

c) What is your statistical decision?

Don't reject ($F_{\text {stat }}<F_{\frac{\alpha}{2}}$).

