
Chapter 23 – Project planning

Lecture 1

Topics covered

 Software pricing

 Plan-driven development

 Project scheduling

 Agile planning

 Estimation techniques

12/15/2014 2

Project planning

 Project planning involves breaking down the work into

parts and assign these to project team members,

anticipate problems that might arise and prepare

tentative solutions to those problems.

 The project plan, which is created at the start of a

project, is used to communicate how the work will be

done to the project team and customers, and to help

assess progress on the project.

12/15/2014 3

Planning stages

 At the proposal stage, when you are bidding for a

contract to develop or provide a software system.

 During the project startup phase, when you have to

plan who will work on the project, how the project will be

broken down into increments, how resources will be

allocated across your company, etc.

 Periodically throughout the project, when you modify

your plan in the light of experience gained and

information from monitoring the progress of the work.

12/15/2014 4

Proposal planning

 Planning may be necessary with only outline software

requirements.

 The aim of planning at this stage is to provide

information that will be used in setting a price for the

system to customers.

12/15/2014 5

Software pricing

 Estimates are made to discover the cost, to the

developer, of producing a software system.

 You take into account, hardware, software, travel, training and

effort costs.

 There is not a simple relationship between the

development cost and the price charged to the

customer.

 Broader organisational, economic, political and business

considerations influence the price charged.

12/15/2014 6

Factors affecting software pricing

Factor Description

Market opportunity A development organization may quote a low price

because it wishes to move into a new segment of the

software market. Accepting a low profit on one project may

give the organization the opportunity to make a greater

profit later. The experience gained may also help it develop

new products.

Cost estimate

uncertainty

If an organization is unsure of its cost estimate, it may

increase its price by a contingency over and above its

normal profit.

Contractual terms A customer may be willing to allow the developer to retain

ownership of the source code and reuse it in other

projects. The price charged may then be less than if the

software source code is handed over to the customer.

12/15/2014 7

Factors affecting software pricing

Factor Description

Requirements volatility If the requirements are likely to change, an organization

may lower its price to win a contract. After the contract

is awarded, high prices can be charged for changes to

the requirements.

Financial health Developers in financial difficulty may lower their price to

gain a contract. It is better to make a smaller than normal

profit or break even than to go out of business. Cash

flow is more important than profit in difficult economic

times.

12/15/2014 8

Plan-driven development

 Plan-driven or plan-based development is an approach

to software engineering where the development

process is planned in detail.

 Plan-driven development is based on engineering project

management techniques and is the ‘traditional’ way of

managing large software development projects.

 A project plan is created that records the work to be

done, who will do it, the development schedule and

the work products.

 Managers use the plan to support project decision

making and as a way of measuring progress.

12/15/2014 9

Plan-driven development – pros and cons

 The arguments in favor of a plan-driven approach are

that early planning allows organizational issues

(availability of staff, other projects, etc.) to be closely

taken into account, and that potential problems and

dependencies are discovered before the project starts,

rather than once the project is underway.

 The principal argument against plan-driven

development is that many early decisions have to be

revised because of changes to the environment in

which the software is to be developed and used.

12/15/2014 10

Project plans

 In a plan-driven development project, a project plan sets

out the resources available to the project, the work

breakdown and a schedule for carrying out the work.

 Plan sections

 Introduction

 Project organization

 Risk analysis

 Hardware and software resource requirements

 Work breakdown

 Project schedule

 Monitoring and reporting mechanisms
12/15/2014 11

Project plan supplements

Plan Description

Quality plan Describes the quality procedures and standards that

will be used in a project.

Validation plan Describes the approach, resources, and schedule used

for system validation.

Configuration management plan Describes the configuration management procedures

and structures to be used.

Maintenance plan Predicts the maintenance requirements, costs, and

effort.

Staff development plan Describes how the skills and experience of the project

team members will be developed.

12/15/2014 12

The planning process

 Project planning is an iterative process that starts when

you create an initial project plan during the project

startup phase.

 Plan changes are inevitable.

 As more information about the system and the project team

becomes available during the project, you should regularly

revise the plan to reflect requirements, schedule and risk

changes.

 Changing business goals also leads to changes in project

plans. As business goals change, this could affect all projects,

which may then have to be re-planned.

12/15/2014 13

The project planning process

12/15/2014 14

Project scheduling

 Project scheduling is the process of deciding how the

work in a project will be organized as separate tasks,

and when and how these tasks will be executed.

 You estimate the calendar time needed to complete

each task, the effort required and who will work on

the tasks that have been identified.

 You also have to estimate the resources needed to

complete each task, such as the disk space required

on a server, the time required on specialized

hardware, such as a simulator, and what the travel

budget will be.

12/15/2014 15

Project scheduling activities

 Split project into tasks and estimate time and

resources required to complete each task.

 Organize tasks concurrently to make optimal

use of workforce.

 Minimize task dependencies to avoid delays

caused by one task waiting for another to complete.

 Dependent on project managers intuition and

experience.

12/15/2014 16

Milestones and deliverables

 Milestones are points in the schedule against which

you can assess progress, for example, the handover

of the system for testing.

 Deliverables are work products that are delivered to

the customer, e.g. a requirements document for the

system.

12/15/2014 17

The project scheduling process

12/15/2014 18

Scheduling problems

 Estimating the difficulty of problems and hence the

cost of developing a solution is hard.

 Productivity is not proportional to the number of

people working on a task.

 Adding people to a late project makes it later because of

communication overheads.

 The unexpected always happens. Always allow

contingency in planning.

12/15/2014 19

Schedule representation

 Graphical notations are normally used to illustrate the

project schedule.

 These show the project breakdown into tasks.

 Tasks should not be too small.

 They should take about a week or two.

 Bar charts are the most commonly used

representation for project schedules.

 They show the schedule as activities or resources

against time.

12/15/2014 20

Tasks, durations, and dependencies

Task Effort (person-

days)

Duration (days) Dependencies

T1 15 10

T2 8 15

T3 20 15 T1 (M1)

T4 5 10

T5 5 10 T2, T4 (M3)

T6 10 5 T1, T2 (M4)

T7 25 20 T1 (M1)

T8 75 25 T4 (M2)

T9 10 15 T3, T6 (M5)

T10 20 15 T7, T8 (M6)

T11 10 10 T9 (M7)

T12 20 10 T10, T11 (M8)
12/15/2014 21

Activity bar chart

12/15/2014 22

Staff allocation chart

12/15/2014 23

Activity Network and Critical Path

12/15/2014 24

12/15/2014 25

Agile planning

 Agile methods of software development are iterative

approaches where the software is developed and

delivered to customers in increments.

 Unlike plan-driven approaches, the functionality of

these increments is not planned in advance but is

decided during the development.

 The decision on what to include in an increment depends on

progress and on the customer’s priorities.

 The customer’s priorities and requirements change so

it makes sense to have a flexible plan that can

accommodate these changes.

12/15/2014 26

Agile planning stages

 Release planning, which looks ahead for several

months and decides on the features that should be

included in a release of a system.

 Iteration planning, which has a shorter term outlook,

and focuses on planning the next increment of a

system. This is typically 2-4 weeks of work for the

team.

12/15/2014 27

Planning in XP (Extreme programming

)

12/15/2014 28

Story-based planning

 The system specification in XP is based on user stories that

reflect the features that should be included in the system.

 The project team read and discuss the stories and rank them in

order of the amount of time they think it will take to implement the

story.

 Release planning involves selecting and refining the stories that

will reflect the features to be implemented in a release of a system

and the order in which the stories should be

implemented.

 Stories to be implemented in each iteration are chosen, with the

number of stories reflecting the time to deliver an iteration (usually 2

or 3 weeks).

12/15/2014 29

Key points

 The price charged for a system does not just depend on its

estimated development costs; it may be adjusted depending on the

market and organizational priorities.

 Plan-driven development is organized around a complete project

plan that defines the project activities, the planned effort, the activity

schedule and who is responsible for each activity.

 Project scheduling involves the creation of graphical representations

the project plan. Bar charts show the activity duration and staffing

timelines, are the most commonly used schedule representations.

 The XP planning game involves the whole team in project planning.

The plan is developed incrementally and, if problems arise, is

adjusted. Software functionality is reduced instead of delaying

delivery of an increment.

12/15/2014 30

Chapter 23 – Project planning

Lecture 2

Estimation is Difficult

 You may have to make initial estimates on the basis of a

high-level user requirements definition.

 The software may have to run on unfamiliar computers

or use new development technology.

 The people involved in the project and their skills will

probably not be known.

 Project estimates are often self-fulfilling

12/15/2014 32

Estimation techniques

 Organizations need to make software effort and cost

estimates. There are two types of technique that can be

used to do this:

 Experience-based techniques The estimate of future effort

requirements is based on the manager’s experience of past

projects and the application domain. Essentially, the manager

makes an informed judgment of what the effort requirements are

likely to be.

 Algorithmic cost modeling In this approach, a formulaic

approach is used to compute the project effort based on

estimates of product attributes, such as size, and process

characteristics, such as experience of staff involved.

12/15/2014 33

Experience-based approaches

 Experience-based techniques rely on judgments based on

experience of past projects and the effort expended in these

projects on software development activities.

 Typically, you identify the deliverables to be produced in a project

and the different software components or systems that are to be

developed.

 You document these in a spreadsheet, estimate them individually

and compute the total effort required.

 It usually helps to get a group of people involved in the effort

estimation and to ask each member of the group to explain their

estimate (This often reveals factors that others have not

considered and you then iterate towards an agreed group

estimate).

12/15/2014 34

The difficulty with experience-based techniques

 a new software project may not have much in common

with previous projects.

 Software development changes very quickly

 and a project will often use unfamiliar techniques such

as web services, COTS-based development, or AJAX.

 If you have not worked with these techniques, your

previous experience may not help you to estimate the

effort required, making it more difficult to produce

accurate costs and schedule estimates.

12/15/2014 35

Algorithmic cost modelling

 Cost is estimated as a mathematical function of
product, project and process attributes whose
values are estimated by project managers:

 Effort = A x SizeB x M

 A is a constant factor which depends on local organizational
practices and the type of software that is developed

 B usually lies between 1 and 1.5

 reflects the fact that costs do not usually increase linearly with
project size.

 As the size and complexity of the software increases, extra
costs are incurred because of the communication overhead of
larger teams, more complex configuration management,
more difficult system integration, and so on.

12/15/2014 36

 and M is a multiplier reflecting product, process and people
attributes.

 Most models are similar but they use different values for
A, B and M.

12/15/2014 37

All algorithmic models have similar problems

1. It is often difficult to estimate Size at an early stage in

a project, when only the specification is available.

Function-point and application-point estimates are

easier to produce than estimates of code size but are

still often inaccurate.

2. The estimates of the factors contributing to B and M

are subjective.

3. Model users should calibrate their model and the

attribute values using their own historical project

data, as this reflects local practice and experience.

However, very few organizations have collected

enough data from past projects in a form that

supports model calibration.
12/15/2014 38

 The most commonly used product attribute for cost
estimation is code size.

 Size may be either an assessment of the code size of

the software or a functionality estimate expressed in

function or application points.

 Size estimation may involve

 estimation by analogy with other projects,

 estimation by converting function or application points to

code size

 estimation by ranking the sizes of system components and

using a known reference component to estimate the component

size,

 or it may simply be a question of engineering judgment.

12/15/2014 39

Estimation accuracy

 The size of a software system can only be known
accurately when it is finished.

 Several factors influence the final size

 Use of COTS and components;

 Programming language;

 Distribution of system.

 As the development process progresses then the size
estimate becomes more accurate.

 The estimates of the factors contributing to B and M
are subjective and vary according to the judgment of
the estimator.

12/15/2014 40

Estimate uncertainty

12/15/2014

X is the initial estimates in
months 41

The COCOMO II model

 This is an empirical model that was derived by

collecting data from a large number of software projects.

 These data were analyzed to discover the formulae

that were the best fit to the observations.

 These formulae linked the size of the system and

product, project and team factors to the effort to

develop the system.

 COCOMO II is a well-documented and nonproprietary

(not protected by trademark or patent or copyright)

estimation model.

12/15/2014 42

COCOMO vs COCOMO II

 COCOMO was largely based on original code

development.

 The COCOMO II model takes into account more

modern approaches to software development, such as

rapid development using dynamic languages,

development by component composition, and use of

database programming.

 Also, COCOMO II supports the spiral model of

development

12/15/2014 43

 COCOMO consists of a hierarchy of three increasingly

detailed and accurate forms.

 The first level, Basic COCOMO is good for quick, early,

rough order of magnitude estimates of software costs,

but its accuracy is limited due to its lack of factors to

account for difference in project attributes (Cost
Drivers).

 Intermediate COCOMO takes these Cost Drivers into

account

 and Detailed COCOMO additionally accounts for the

influence of individual project phases.

12/15/2014 44

Basic COCOMO

 The basic COCOMO equations take the form

 Effort Applied (E) = ab(KLOC)b
b [man-months]

 Development Time (D) = cb(Effort Applied)d
b [months]

 People required (P) = Effort Applied / Development

Time [count]

 The coefficients ab, bb, cb and db are given in the

following table:

12/15/2014 45

12/15/2014 46

Three classes of software projects:

 Organic projects - "small" teams with "good"

experience working with "less than rigid"

requirements

 Semi-detached projects - "medium" teams with mixed

experience working with a mix of rigid and less than

rigid requirements

 Embedded projects - developed within a set of "tight"

constraints. It is also combination of organic and

semi-detached projects.(hardware, software,

operational, ...)

12/15/2014 47

Intermediate COCOMOs

 Computes software development effort as function of

program size and a set of "cost drivers“

 Product attributes

 Required software reliability

 Size of application database

 Complexity of the product

 Hardware attributes

 Run-time performance constraints

 Memory constraints

 Volatility of the virtual machine environment

 Required turnabout time

12/15/2014 48

 Personnel attributes Analyst capability

 Software engineering capability

 Applications experience

 Virtual machine experience

 Programming language experience

 Project attributes

 Use of software tools

 Application of software engineering methods

 Required development schedule

12/15/2014 49

Detailed COCOMO

 Detailed COCOMO incorporates

 all characteristics of the intermediate version

 with an assessment of the cost driver's impact on each

step (analysis, design, etc.) of the software engineering

process.

12/15/2014 50

The COCOMO 2 model

 An empirical model based on project experience.

 Well-documented, ‘independent’ model which is not tied

to a specific software vendor.

 Long history from initial version published in 1981

(COCOMO-81) through various instantiations to

COCOMO 2.

 COCOMO 2 takes into account different approaches to

software development, reuse, etc.

12/15/2014 51

COCOMO 2 models

 COCOMO 2 incorporates a range of sub-models that
produce increasingly detailed software estimates.

 The sub-models in COCOMO 2 are:

 Application composition model. Used when software is
composed from existing parts.

 Early design model. Used when requirements are available but
design has not yet started.

 Reuse model. Used to compute the effort of integrating reusable
components.

 Post-architecture model. Used once the system architecture has
been designed and more information about the system is
available.

12/15/2014 52

COCOMO estimation models

12/15/2014 53

Application composition model

 This models the effort required to develop systems that

are created from reusable components, scripting, or

database programming.

 Software size estimates are based on application

points, and a simple size/productivity formula is used

to estimate the effort required.

 The number of application points in a program is a

weighted estimate of the number of separate screens

that are displayed, the number of reports that are

produced, the number of modules in imperative

programming languages (such as Java), and the number

of lines of scripting language or database programming

code.12/15/2014 54

 Supports prototyping projects and projects where

there is extensive reuse.

 Based on standard estimates of developer

productivity in application (object) points/month.

 It is based on an estimate of weighted application

points (sometimes called object points), divided by a

standard estimate of application point productivity.

 The estimate is then adjusted according to the difficulty

of developing each application point (Boehm, et al.,

2000).

12/15/2014 55

 Productivity depends on the developer’s experience

and capability as well as the capabilities of the

software tools (ICASE) used to support development.

 Takes CASE tool used into account.

 See table below (next slide)

12/15/2014 56

Application-point productivity

Developer’s

experience

and capability

Very low Low Nominal High Very high

ICASE maturity

and capability

Very low Low Nominal High Very high

PROD

(NAP/month)

4 7 13 25 50

12/15/2014 57

 Formula is

 PM = (NAP X (1 - %reuse/100)) / PROD

 PM is the effort in person-months (taken from the table above),

NAP is the number of application points and

 PROD is the productivity (as shown in the table above).

 “%reuse” is an estimate of the amount of reused code in the

development

 It is almost certain that some of the application points in

the system will be implemented using reusable

components.

 Consequently, you have to adjust the estimate to take

into account the percentage of reuse expected.
12/15/2014 58

Early design model

 Estimates can be made after the requirements have
been agreed.

 before a detailed architectural design for the system is
available

 most useful for option exploration where you need to
compare different ways of implementing the user
requirements.

 assumes that user requirements have been agreed
and initial stages of the system design process are under
way

 make simplifying assumptions, for example, that the
effort involved in integrating reusable code is zero.

12/15/2014 59

 Based on a standard formula for algorithmic models

 PM = A x SizeB x M

 where

 M = PERS x RCPX x RUSE x PDIF x PREX x FCIL x
SCED;

 A = 2.94 in initial calibration,

 Size in KLOC (or KSLOC),

 You calculate KSLOC by

• estimating the number of function points in the software.

• You then use standard tables that relate software size to
function points for different programming languages,

12/15/2014 60

 B varies from 1.1 to 1.24 depending on novelty of the

project, development flexibility, risk management

approaches and the process maturity.

how the value of this exponent is calculated

using these parameters in the description of the

COCOMO II post-architecture model

This results in an effort computation as follows:

PM = 2.94 x Size(1.1 - 1.24) x M

12/15/2014 61

Multipliers:
M = PERS x RCPX x RUSE x PDIF x PREX x FCIL x SCED;

 Multipliers reflect the capability of the developers, the
non-functional requirements, the familiarity with the
development platform, etc.

 RCPX - product reliability and complexity;

 RUSE - the reuse required;

 PDIF - platform difficulty;

 PREX - personnel experience;

 PERS - personnel capability;

 SCED - required schedule;

 FCIL - the team support facilities.

 You estimate values for these attributes using a six-
point scale, where

 1 corresponds to ‘very low’ and 6 corresponds to
‘very high’

 See books web page for more details
12/15/2014 62

The reuse model

 Takes into account

 black-box code that is reused without change and

 code that has to be adapted to integrate it with new code.

 The reuse model is used to estimate the effort
required to integrate reusable or generated code.

 There are two versions (two types of reused code):

 Black-box reuse where code is not modified (code that can be
reused without understanding the code or making changes to
it).

 The development effort for black-box code is taken to be zero.

 An effort estimate (PM) is computed.

12/15/2014 63

 White-box reuse where code is modified (code has to be

adapted to integrate it with new code or other reused

components).

 A size estimate equivalent to the number of lines of new

source code is computed.

 This then adjusts the size estimate for new code.

 Many systems include automatically generated code from

system models

 E.g. a model (often in UML) is analyzed and code

is generated to implement the objects specified in

the model.

 The COCOMO II reuse model includes a formula

to estimate the effort required to integrate this

generated code:

12/15/2014 64

Reuse model estimates 1

 For generated code:

 PM = (ASLOC * AT/100)/ATPROD

 ASLOC is the number of lines of reused code, including code

that is automatically generated.

 AT is the percentage of code automatically generated.

 ATPROD is the productivity of engineers in integrating this code.

 Boehm, et al. (2000) have measured ATPROD to be about

2,400 source statements per month.

 Therefore, if there are a total of 20,000 lines of reused source

code in a system and 30% of this is automatically generated,

then the effort required to integrate the generated code is:

 (20,000 x 30/100) / 2400 = 2.5 person-months // Generated code

12/15/2014 65

Reuse model estimates 2

 A separate effort computation is used to estimate the

effort required to integrate the reused code from

other systems

 When code has to be understood and integrated:

 ESLOC = ASLOC * (1-AT/100) * AAM.

 ASLOC and AT as before.

 If some code adaptation can be done automatically, this

reduces the effort required.

 You therefore adjust the estimate by estimating the percentage

of automatically adapted code (AT) and using this to adjust

ASLOC

12/15/2014 66

 Simplistically, AAM is the sum of three components:

1. An adaptation component (referred to as AAF) that

represents the costs of making changes to the reused

code.

2. An understanding component (referred to as SU) that

represents the costs of understanding the code to be

reused and the familiarity of the engineer with the code.

SU ranges from 50 for complex unstructured code to 10 for

well-written, object-oriented code.

3. An assessment factor (referred to as AA) that represents

the costs of reuse decision making.

That is, some analysis is always required to decide whether or

not code can be reused, and this is included in the cost as

AA.

AA varies from 0 to 8 depending on the amount of analysis

effort required.

12/15/2014 67

 Once ESLOC has been calculated, you then apply the

standard estimation formula to calculate the total effort

required, where the Size parameter = ESLOC.

PM = A x SizeB x M

 You then add this to the effort to integrate

automatically generated code to get the total effort

required.

12/15/2014 68

Post-architecture level

 The post-architecture model is the most detailed of the

COCOMO II models

 used once an initial architectural design for the

system is available

 Once the subsystem structure is known, you can

then make estimates for each part of the system.

 Uses the same formula as the early design model but

with 17 rather than 7 associated multipliers (cost

drivers).

 PM = A x SizeB x M

12/15/2014 69

 You make this estimate of the code size using three

parameters

 Number of lines of new code to be developed;

 Estimate of equivalent number of lines of new code computed

using the reuse model;

 An estimate of the number of lines of code that have to be

modified according to requirements changes.

 You add the values of these parameters to compute the

total code size, in KSLOC, that you use in the effort

computation formula

12/15/2014 70

 The exponent term (B) in the effort computation formula

is related to the levels of project complexity.

 As projects become more complex, the effects of

increasing system size become more significant

 The value of the exponent B is therefore based on five

factors, as shown in the table below.

 These factors are rated on a six-point scale from 0 to

5, where 0 means ‘extra high’ and 5 means ‘very low’.

 To calculate B, you

 add the ratings,

 divide them by 100, and

 add the result to 1.01

The exponent term

12/15/2014 71

Scale factors used in the exponent computation

in the post-architecture model

Scale factor Explanation

Precedentedness Reflects the previous experience of the organization with this type of

project. Very low means no previous experience; extra-high means

that the organization is completely familiar with this application

domain.

Development flexibility Reflects the degree of flexibility in the development process. Very

low means a prescribed process is used; extra-high means that

the client sets only general goals.

Architecture/risk resolution Reflects the extent of risk analysis carried out. Very low means

little analysis; extra-high means a complete and thorough risk

analysis.

Team cohesion Reflects how well the development team knows each other and

work together. Very low means very difficult interactions; extra-high

means an integrated and effective team with no communication

problems.

Process maturity Reflects the process maturity of the organization. The computation

of this value depends on the CMM Maturity Questionnaire, but an

estimate can be achieved by subtracting the CMM process maturity

level from 5.

12/15/2014 72

Example

 A company takes on a project in a new domain. The

client has not defined the process to be used and has

not allowed time for risk analysis. The company has a

CMM level 2 rating. A new development team must be

put together to implement this system.

 Precedenteness - new project (4)

 Development flexibility - no client involvement - Very high (1)

 Architecture/risk resolution - No risk analysis - V. Low .(5)

 Team cohesion - new team - nominal (3)

 Process maturity - some control - nominal (3)

 Scale factor is therefore 1.17.

12/15/2014 73

 Product attributes

 Concerned with required characteristics of the software
product being developed (e.g., reliability, complexity).

 Computer attributes

 Constraints imposed on the software by the hardware
platform (e.g., memory constraints).

 Personnel attributes

 Multipliers that take the experience and capabilities of the
people working on the project into account.

 Project attributes

 Concerned with the particular characteristics of the software
development project (e.g., tool use, Schedule).

Multipliers (cost drivers)

12/15/2014 74

Example Continues

 We have assigned maximum and minimum values to

the key cost drivers to show how they influence the effort

estimate.

 The values taken are those from the COCOMO II

reference manual (Boehm, 2000).

12/15/2014 75

The effect of cost drivers on effort estimates

Exponent value 1.17

System size (including

factors for reuse and

requirements volatility)

128,000 DSI

Initial COCOMO estimate

without cost drivers

730 person-months

Reliability Very high, multiplier = 1.39

Complexity Very high, multiplier = 1.3

Memory constraint High, multiplier = 1.21

Tool use Low, multiplier = 1.12

Schedule Accelerated, multiplier = 1.29

Adjusted COCOMO

estimate

2,306 person-months

12/15/2014 76

The effect of cost drivers on effort estimates

Exponent value 1.17

Reliability Very low, multiplier = 0.75

Complexity Very low, multiplier = 0.75

Memory constraint None, multiplier = 1

Tool use Very high, multiplier = 0.72

Schedule Normal, multiplier = 1

Adjusted COCOMO

estimate

295 person-months

12/15/2014 77

 You can see that high values for the cost drivers lead

an effort estimate that is more than three times the

initial estimate,

 whereas low values reduce the estimate to about

one-third of the original.

12/15/2014 78

Project duration and staffing

 As well as effort estimation, managers must estimate the
calendar time required to complete a project and when
staff will be required.

 Calendar time can be estimated using a COCOMO 2
formula

 TDEV = 3 x (PM)(0.33+0.2*(B-1.01))

 PM is the effort computation and B is the exponent computed as
discussed above (B is 1 for the early prototyping model). This
computation predicts the nominal schedule for the project.

 The time required is independent of the number of
people working on the project.

12/15/2014 79

 However, the nominal project schedule predicted by

the COCOMO model and the schedule required by the

project plan are not necessarily the same thing.

 There may be a requirement to deliver the software

earlier or (more rarely) later than the date suggested by

the nominal schedule.

 If the schedule is to be compressed, this increases

the effort required for the project.

 This is taken into account by the SCED multiplier in

the effort estimation computation.

12/15/2014 80

 There is a complex relationship between the number of

people working on a project, the effort that will be

devoted to the project, and the project delivery schedule.

 If four people can complete a project in 13 months

(i.e., 52 person-months of effort), then you might think

that by adding one more person, you can complete the

work in 11 months (55 person-months of effort).

 However, the COCOMO model suggests that you will, in

fact, need six people to finish the work in 11 months (66

person-months of effort).

12/15/2014 81

 The reason for this is that adding people actually

reduces the productivity of existing team members and

so the actual increment of effort added is less than one

person.

 As the project team increases in size, team members

spend more time communicating and defining

interfaces between the parts of the system developed

by other people.

 Doubling the number of staff (for example) therefore

does not mean that the duration of the project will be

halved

12/15/2014 82

Staffing requirements

 Staff required can’t be computed by diving the
development time by the required schedule.

 The number of people working on a project varies
depending on the phase of the project.

 The more people who work on the project, the more total
effort is usually required.

 A very rapid build-up of people often correlates with
schedule slippage.

12/15/2014 83

Key points

 Estimation techniques for software may be experience-

based, where managers judge the effort required, or

algorithmic, where the effort required is computed from

other estimated project parameters.

 The COCOMO II costing model is an algorithmic cost

model that uses project, product, hardware and

personnel attributes as well as product size and

complexity attributes to derive a cost estimate.

12/15/2014 Dr. Rachid Sammouda 84

