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First Order Differential Equation

Here we will start to study some methods which might use to solve first
order differential equations.
Consider the equation of order one

F (x, y, y′) = 0 (1)

We suppose that the equation (1) can be written as the form

y′ =
dy

dx
= f(x, y). (2)

The equation (2) can be written as follows

M(x, y)dx+N(x, y)dy = 0, (3)

where M and N are two functions of x and y.
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First Order Differential Equation Initial Value Problem (IVP)

Initial Value Problem (IVP)

We are interested in problems in which we seek a solution y(x) of
differential equation which satisfies some conditions imposed on the
unknown y(x) or its derivatives. On some interval I containing x0, the
problem

Solve:
dny

dxn
= f(x, y, y′, . . . , y(n−1))

Subject to: y(x0) = y0, y
′(x0) = y1, . . . , y

(n−1)(x0) = yn−1,

where y0, y1, . . . , yn−1 are arbitrary specified real constants, is clled an
initial-values problem (IVP) and its n− 1 derivatives at a single point x0:
y(x0) = y0, y

′(x0) = y1, . . . , y
(n−1)(x0) = yn−1 are called initial

conditions.
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First Order Differential Equation Initial Value Problem (IVP)

Special cases

First and second-order IVPs

Solve:
dy

dx
= f(x, y)

Subject to: y(x0) = y0.

Solve:
d2y

dx2
= f(x, y, y′)

Subject to: y(x0) = y0, y
′(x0) = y1.
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First Order Differential Equation Initial Value Problem (IVP)

Example (1)

Solve the initial value problem y′ = 10− x

Subject to: y(0) = −1.

Solution

y′ = 10− x→ dy

dx
= 10− x→ dy = (10− x)dx

by integrating both sides with respect to x

⇒ y = 10x− x2

2
+ c

Now by using the initial data, plug it into the general solution and solve
for c

⇒ −1 = 10(0)− (0)2

2
+ c⇒ c = −1

∴ solution: y = 10x− x2

2
− 1
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First Order Differential Equation Initial Value Problem (IVP)

Example (2)

Solve the initial value problem

dy

dx
= 9x2 − 4x+ 5, y(−1) = 0

Solution
Step 1:
dy
dx = 9x2 − 4x+ 5⇒ dy = (9x2 − 4x+ 5)dx∫
dy =

∫
(9x2 − 4x+ 5)dx⇒ y = 3x3 − 2x2 + 5x+ c

Step 2: When x = −1, y = 0,
0 = 3(−1)3 − 2(−1)2 + 5(−1) + c⇒ 0 = −3− 2− 5 + c⇒ c = 10

The solution is: y = 3x3 − 2x2 + 5x+ 10

MATH204-Differential Equations Center of Excellence in Learning and Teaching 7 / 84



First Order Differential Equation Initial Value Problem (IVP)

Exercises

Exercise 1

Solve the initial value problem y′ + 2xy2 = 0

Subject to: y(0) = −1.

Exercise 2

Solve the initial value problem y′′ = x

Subject to: y(0) = 1, y′(0) = −1.
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First Order Differential Equation Existence of a Unique Solution

Existence of a Unique Solution

Theorem

Consider a first order differential equation

dy

dx
= f(x, y),with the initial value y(x0) = y0,

there exists a unique solution if

f(x, y) and ∂f(x,y)
∂y are continuous with in the region R2 of xy-plane.

(x0, y0) be a point in the region R2
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First Order Differential Equation Existence of a Unique Solution

Example

Find the largest region of the xy-plane for which the following initial value
problems have unique solutions:

(a)
√
x2 − 4y′ = 1 + sin(x) ln(y),with initial condition y(3) = 4.

Solution

y′ =
1 + sin(x) ln y√

x2 − 4
= f(x, y)

y′ =
1√

x2 − 4
+

sin(x)√
x2 − 4

ln y; y > 0 and |x| > 2

∂f

∂y
=

sinx√
x2 − 4

1

y
.

Then f and ∂f
∂y are continuous on

R = {(x, y) ∈ R2; |x| > 2, y > 0}

R1 = {(x, y) ∈ R2; x > 2, y > 0} ∪R2 = {(x, y) ∈ R2; x < −2, y > 0}
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First Order Differential Equation Existence of a Unique Solution

2

R1

x

y

Figure: Largest Region in xy−plane for IVP (3, 4)

As we see the point (3, 4) ∈ R1 = {(x, y); x > 2, y > 0}, so the largest
region in xy-plane for which the IVP has a unique solution is R1. If we
take any rectangular R2 with center (3, 4) such that R2 ⊂ R1, then the
IVP has also a unique solution, but R2 is not the largest region.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 11 / 84



First Order Differential Equation Existence of a Unique Solution

(b) ln(x− 2)
dy

dx
=
√
y − 2,with initial condition y

(
5

2

)
= 4.

Solution we have
dy

dx
=

√
y − 2

ln(x− 2)
= f(x, y)

by taking the derivative of f(x, y) with respect to y, thus

∂f

∂y
=

1

ln(x− 2)

1

2
√
y − 2

Then f and ∂f
∂y are continuous on

R = {(x, y) ∈ R2; x 6= 2, x 6= 3, y > 2}.
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First Order Differential Equation Existence of a Unique Solution

But
R = R1 = {(x, y) ∈ R2; 2 < x < 3, y > 2}

∪ R2 = {(x, y) ∈ R2; x > 3, y > 2},

As (
5

2
, 4

)
∈ R1 = {(x, y) ∈ R2; 2 < x < 3, y > 2},

then the largest region in xy-plane for which the IVP has a unique
solution is R1.

2 3

2

R1

x

y

Figure: Largest Region in xy−plane for IVP ( 52 , 4)
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First Order Differential Equation Existence of a Unique Solution

(c)
√
x/yy′ = cos(x+ y); y 6= 0, with initial condition y(1) = 1.

Solution we have

y′ = cos(x+ y)

(
x

y

)−1/2
= f(x, y),

thus,

∂f

∂y
= − sin(x, y)

(
x

y

)−1/2
− (1/2) cos(x+ y)

(
x

y

)−3/2(−x
y2

)′
so f and ∂f

∂y are continuous on

R = {(x, y); (x/y) > 0}.

or
R = R1 = {(x, y) ∈ R2; x < 0 andy < 0}

∪R2 = {(x, y) ∈ R2; x > 0 andy > 0}.
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First Order Differential Equation Existence of a Unique Solution

But
(1, 1) ∈ R2 = {(x, y); x > 0 andy > 0},

then the largest region in xy-plane for which the IVP has a unique
solution is R2.

R2

x

y

Figure: Largest Region in xy−plane for IVP (1, 1)
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First Order Differential Equation Existence of a Unique Solution

Exercise

Determine the largest region of the xy-plane for which the following initial
value problem has a unique solution:

dy

dx
=
y + 2x

y − 2x
,with initial condition y(1) = 0.
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First Order Differential Equation Separable Equations

Separable Equations

We begin to study the methods for solving the first-order differential
equations. Consider a first-order differential equation of the form

M(x, y)dx+N(x, y)dy = 0, (4)

where M and N are two functions of x and y. Sometimes we can write
the equation (4) as

F (x)dx+G(y)dy = 0, (5)

which is said to be variables separable equation. We solve a variables
separable equation by separating the variables and integrating.

dy

G(y)
= f(x) dx⇒

∫
dy

G(y)
=

∫
f(x) dx+ c

Since we have one arbitrary constant in the solution, we have found the
general solution of the variables separable equation.
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First Order Differential Equation Separable Equations

Separable Equations

Example

Solve the following differential equations:

(a)
dy

dx
= 2x

Solution we can separate the variables of the equation to be

dy = 2xdx

by integrating the both sides ∫
dy =

∫
2xdx

thus,
y = x2 + c.
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First Order Differential Equation Separable Equations

(b)
dy

dx
= 2xy

Solution we can separate the variables of the equation to be

dy

y
= 2xdx

by integrating the both sides∫
dy

y
=

∫
2xdx

thus,
ln |y| = x2 + c.
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First Order Differential Equation Separable Equations

(c) ex cos y dx+ (1 + ex) sin y dy = 0

Solution we can separate the variables of the equation to be

sin y

cos y
dy +

ex

1 + ex
dx = 0

tan y dy +
ex

1 + ex
dx = 0

by integrating we have∫
tan y dy +

∫
ex

1 + ex
dx = c

thus,
ln |1 + ex|+ ln | sec y| = ln c1,

ln(|(1 + ex) sec y|) = ln c1,
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First Order Differential Equation Separable Equations

by taking the Exponential for both side, and from the properties of
exponential and logarithmic equations, thus

(1 + ex) sec y = c1.

We have found the general solution of the variables separable equation.
Now Find the particular solution at the point (0, 0). So we have

(1 + e0) sec 0 = c1. (sec θ = 1/ cos θ)

c1 = 2

thus, the particular solution is

(1 + ex) sec y = 2.
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First Order Differential Equation Separable Equations

(d) 2x(y2 + y)dx+ (x2 − 1)ydy = 0, y 6= 0

Solution we can separate the variables of the equation to be

2x

x2 − 1
dx =

−1
y + 1

dy

by integrating the both sides∫
2x

x2 − 1
dx =

∫
−1
y + 1

dy

thus,
ln |x2 − 1| = − ln |y + 1|+ c

ln |x2 − 1|+ ln |y + 1| = c

ln |(x2 − 1)(y + 1)| = c

|(x2 − 1)(y + 1)| = ec

|(x2 − 1)(y + 1)| = c1.
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First Order Differential Equation Separable Equations

(e) (xy + x)dx = (x2y2 + x2 + y2 + 1)dy = 0

Solution we have

x(y + 1)dx = x2(y2 + 1) + (y2 + 1)dy

x(y + 1)dx = (x2 + 1)(y2 + 1)dy

we can separate the variables of the equation to be

x

x2 + 1
dx =

y2 + 1

y + 1
dy

by integrating the both sides∫
x

x2 + 1
dx =

∫
y2 + 1

y + 1
dy + c

thus,
(1/2) ln

(
x2 + 1

)
− (1/2)y2 + y − 2 ln(y + 1) = c.
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First Order Differential Equation Separable Equations

Separable Equations

Exercises

Solve the following differential equations:

1
dy

dx
=
y(1− y2)
x(1− x2)

2
dy

dx
=
x(1− y2)
y(1− x2)

3 (x− 1)
dy

dx
= x(y + 1)

4 y lnxdx+ (1 + 2y)dy = 0

5 ex+y
dy

dx
= e2x−y
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First Order Differential Equation Equations With Homogeneous Coefficients

Equations With Homogeneous Coefficients

Definition

A function F (x, y) is called homogeneous of degree n if

F (tx, ty) = tnF (x, y), for all t > 0; t ∈ R.

A first-order differential equation form

M(x, y)dx+N(x, y)dy, (6)

is said to be homogeneous if both coefficient functions M and N are
homogeneous equations of the same degree.
In other words, (6) is homogeneous if

M(tx, ty) = tnM(x, y) and N(tx, ty) = tnN(x, y).
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First Order Differential Equation Equations With Homogeneous Coefficients

Example

1 If M(x, y) and N(x, y) are both homogeneous of the same degree,

then M(x,y)
N(x,y) is homogeneous of degree zero. For example

f(x, y) = x2−y2
x2+y2

is homogeneous of degree zero.

2 The function f(x, y) = x− 5y +
√
x2 + 3y2, is homogeneous of

degree one, for

f(tx, ty) = tx− 5ty +
√

(tx)2 + 3(ty)2

= t
[
x− 5y +

√
x2 + ty2

]
= tf(x, y)

3 The function F (x, y) = x7 ln(x)− x7 ln(y), is homogeneous of degree
7, because f(x, y) = x ln(x/y) and

f(tx, ty) = (tx)7 ln(tx/ty) = t7[x ln(x/y)] = t7f(x, y).
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First Order Differential Equation Equations With Homogeneous Coefficients

4 The functions

f(x, y) = x2 + y2 +
x+ y

x− y
and g(x, y) = 3x− 2y + ex−y,

are not homogeneous.
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First Order Differential Equation Homogeneous Equations

General Method

A first order differential equation dy
dx = f(x, y) which can be written in the

form
dy

dx
= F

(y
x

)
is called a homogeneous differential equation.

To solve the homogeneous differential equation:

by letting u = y
x , that is let y = xu⇒ dy

dx = xdu
dx + u, the equation then

becomes
xdu
dx + u = F (u).

Hence
xdu
dx = F (u)− u.

This equation is clearly separable, and can be solved as such.
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First Order Differential Equation Homogeneous Equations

Or

by letting

u =
x

y
; y 6= 0,

that is let x = yu⇒ dx
dy = y du

dy + u,

the equation then becomes

y
du

dy
+ u = F (u).

Hence

y
du

dy
= F (u)− u.

This equation also is clearly separable, and can be solved as such.
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First Order Differential Equation Homogeneous Equations

Example

Solve the following differential equations:

1 (x2 − xy + y2)dx− xydy = 0.

2
dy

dx
+

3xy + y2

x2 + xy
= 0; x 6= 0 and y 6= −x.

3 ydx+ x(ln
(
x
y

)
− 1)dy = 0, y(1) = e.

4 x dydx − y =
√
x2 + y2; x > 0.
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First Order Differential Equation Homogeneous Equations

Solution

1. (x2 − xy + y2)dx− xydy = 0.

Solution The coefficients in this equation are both homogeneous and
degree two in x and y. Let u = y

x ;x 6= 0. Thus

y = ux⇒ dy = udx+ xdu

So the equation becomes

(x2 − x(xu) + (xu)2)dx− x(xu)(udx+ xdu) = 0

(x2 − x2u+ x2u2)dx− x2u(udx+ xdu) = 0

x2(1− u+ u2)dx− x2u(udx+ xdu) = 0

by dividing this equation by x2 we obtain

(1− u+ u2)dx− u(udx+ xdu) = 0

(1− u+ u2)dx− u2dx− xudu = 0

(1− u+ u2 − u2)dx− xudu = 0
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First Order Differential Equation Homogeneous Equations

(1− u)dx− xudu = 0

hence we separate variables to get

dx

x
− u

1− u
du = 0;u 6= 1

dx

x
+

u

u− 1
du = 0

dx

x
+

[
1 +

1

u− 1

]
du = 0

a family of solutions is seen to be

lnx+ u+ ln(u− 1) = ln c; c 6= 0

lnx(u− 1) + u = ln c

x(u− 1)eu = c

x
(y
x
− 1
)
e

y
x = c.
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First Order Differential Equation Homogeneous Equations

2.
dy

dx
+

3xy + y2

x2 + xy
= 0 ; x 6= 0 and y 6= −x.

Solution The Coefficients of the differential equation are homogeneous,
and it can be written in the form

(x2 + xy)dy +
(
3xy + y2

)
dx = 0 .

Let
u =

x

y
; y 6= 0,

hence
x = yu =⇒ dx = ydu+ udy.
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First Order Differential Equation Homogeneous Equations

Then
(u2y2 + y2u)dy + (3y2u+ y2)(ydu+ udy) = 0 ,

or
2y2udy + 4y2u2dy = −y3(3u+ 1)du ,

−dy
y

=
3u+ 1

2u(2u+ 1)
du ; y 6= 0 , u 6= 0 and u 6= −1

2
,

but
3u+ 1

2u(2u+ 1)
=

1

2u
+

1

2(2u+ 1)
,
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First Order Differential Equation Homogeneous Equations

then

ln |y|+ 1

2
ln |u|+ 1

4
ln |2u+ 1| = ln |c| ; c 6= 0

or
ln
[
y4u2 |2u+ 1|

]
= ln c4,

ln

[
y2x2

∣∣∣∣2xy + 1

∣∣∣∣] = ln c4,

x2
∣∣2xy + y2

∣∣ = c4,

hence
yx2(2x+ y) = c1.

is the family of curves defines the solutions of the DE, where c1 = c4 is an
arbitrary constant.
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First Order Differential Equation Homogeneous Equations

3.

ydx+ x

(
ln
x

y
− 1

)
dy = 0 , y(1) = e

Solution The Coefficients of the differential equation are homogeneous
with degree one .So we can put u = x

y then

x = yu =⇒ dx = ydu+ udy ,

we can suppose that y > 0 because the initial condition y(1) > 0. We
obtain

y(ydu+ udy) + yu(lnu− 1)dy = 0,

y2du+ yu lnu dy = 0 ,

hence
du

u lnu
+
dy

y
= 0 ; u 6= 1,
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First Order Differential Equation Homogeneous Equations

ln |y lnu| = c =⇒ |y lnu| = ec,

or

y ln

∣∣∣∣xy
∣∣∣∣ = ∓ec = c1,

is the solution of differential equation. Now we use the initial condition
x = 1, y = e =⇒ c1 = −e, then the solution of the IV P for the DE is
given by

y ln

(
x

y

)
= −e , where x > 0 and y > 0
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First Order Differential Equation Homogeneous Equations

4.

x
dy

dx
− y =

√
x2 + y2 ; x > 0 .

Solution The differential equation is also homogeneous . Let u = y
x then

y = ux =⇒ dy

dx
= u+ xu′,

hence
u+ xu′ − u =

√
1 + u2 ,

or
du√
1 + u2

=
dx

x
=⇒ sinh−1(u)− lnx = c ,

So the solution of the DE is given by

sinh−1(
y

x
)− lnx = c, where c is an arbitrary constant .
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First Order Differential Equation Homogeneous Equations

Summary

Let us summarize the steps to follow

1 Recognize that your equation is an homogeneous equation; that is,
you need to check that f(tx, ty) = f(x, y), meaning that f(tx,ty) is
independent of the variable t;

2 Write out the substitution u = y/x;

3 Through easy differentiation, find the new equation satisfied by the
new function u. You may want to remember the form of the new
equation:

x
du

dx
= F (u)− u or y

du

dy
= F (u)− u

4 Solve the new equation (which is always separable) to find u;
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First Order Differential Equation Homogeneous Equations

5 Go back to the old function y through the substitution y = xu;

6 If you have an IVP, use the initial condition to find the particular
solution.
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First Order Differential Equation Homogeneous Equations

Exercise

Solve the following differential equations:

1 (x2 + y2)dx− 2xydy = 0.

2 (x− y)dx+ (2x+ y)dy = 0.

3 2x2y′ − y(2x+ y) = 0.

4 xdx+ sin2
(
x
y

)
[ydx− xdy] = 0.
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First Order Differential Equation Homogeneous Equations

Homogeneous Equations Requiring a Change of
Variables

Solving Some Differential Equations by Using Appropriate
Substitution

If we have a differential equation of the form

dy

dx
= f(ax+ by),

we use the substitution u = ax+ by, then we get

du

dx
= a+ b

dy

dx
.
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First Order Differential Equation Homogeneous Equations

Example

Solve the following differential equations by using appropriate substitution:

1
dy
dx = (−2x+ y)2 − 7, y(0) = 0.

2
dy
dx = 1−4x−4y

x+y ; y 6= −x
3

dy
dx = x−y−3

x+y−1 ; x+ y − 1 6= 0.

4
dy
dx = y(1+xy)

x(1−xy) ;x > 0, y > 0, xy 6= 1. (Use the substitution u = xy)
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First Order Differential Equation Homogeneous Equations

Solution

1. dy
dx = (−2x+ y)2 − 7, y(0) = 0.

If we let u = −2x+ y, then du
dx = −2 + dy

dx , so the equation is transformed
into

du

dx
+ 2 = u2 − 7 or

du

dx
= u2 − 9.

The last equation is separable, thus

du

u2 − 9
= dx.

Using partial fractions

du

(u− 3)(u+ 3)
= dx or

1

6

[
1

u− 3
− 1

u+ 3

]
and then integrating yields

1

6

[
ln
u− 3

u+ 3

]
= x+ c1 or

u− 3

u+ 3
= e6x+6c1 = ce6x.
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First Order Differential Equation Homogeneous Equations

Finally, applying the initial condition y(0) = 0 to get the particular solution

y = 2x+
3(1− e6x)
(1 + e6x)

.
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First Order Differential Equation Homogeneous Equations

2. dy
dx = 1−4x−4y

x+y ; y + x 6= 0.

We see that the two straight lines 1− 4x− 4y and x+ y are parallels, i.e
if we have equation in form

dy

dx
=
a1x+ b1y + c1
a2x+ b2y + c2

and
a1
b1

=
a2
b2
.

The figure below shows the nature of the two lines

a2x+ b2y + c2

a1x+ b1y + c1

In this case we let u = x+ y. Hence

y′ = u′ − 1,
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First Order Differential Equation Homogeneous Equations

and we have

dy

dx
=

1− 4u

u
=

du

dx
− 1 or

du

dx
=

1− 3u

u

The last equation is separable, thus

u

1− 3u
du = dx.

and then integrating yields

x+ y

3
+

1

9
ln |1− 3u|+ x = c.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 47 / 84



First Order Differential Equation Homogeneous Equations

3. dy
dx = x−y−3

x+y−1 ; x+ y − 1 6= 0.

We see that the two straight lines x− y − 3 and x+ y − 1 are not
parallels, i.e if we have equation in form

dy

dx
=
a1x+ b1y + c1
a2x+ b2y + c2

and
a1
b1
6= a2
b2
.

The figure below shows the nature of the two lines

a2x+ b2y + c2

a1x+ b1y + c1

(α, β)
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In this case we need first to find the intersection point (α, β), then we
use the substitutions

x = u+ α and y = v + β

Thus, in this example we need to solve the two equations to find the
intersection point which is (2,−1).

Now we will use the substitutions

x = u+ 2 and y = v − 1

thus,
dx = du and dy = dv.

Then
dv

du
=
u+ 2− (v − 1)− 3

u+ 2 + (v − 1)− 1
=
u− v
u+ v

.
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So now we have this homogeneous differential equation

dv

du
=
u− v
u+ v

,

so we let t = v
u , where u 6= 0. Then v = ut and

dv

du
= t+ u

dt

du
,

thus,

t+ u
dt

du
=
u− ut
u+ ut

or u
dt

du
=

1− t
1 + t

− t = 1− 2t− t2

1 + t

MATH204-Differential Equations Center of Excellence in Learning and Teaching 50 / 84



First Order Differential Equation Homogeneous Equations

by integrating ∫
du

u
=

∫
1 + t

1− 2t− t2
dt∫

du

u
= −1

2

∫
−2− 2t

1− 2t− t2
dt

lnu+
1

2
ln
(
1− 2t− t2

)
= c

ln

[
u2(1− 2

v

u
− v2

u2

]
= 2c

ln
[
u2 − 2vu− v2

]
= 2c

eln[u
2−2vu−v2] = e2c

u2 − 2vu− v2 = c1

thus, the solution is (x− 2)2 − 2(x− 2)(y + 1)− (y + 1)2 = c1.
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Exact Differential Equations

A differential equation of the form

M(x, y)dx+N(x, y)dy = 0,

is called exact, if there is a function F of x and y such that

dF (x, y) =M(x, y)dx+N(x, y)dy = 0.

Recall that the total differential of a function F (x, y) is

dF (x, y) =
∂F

∂x
dx+

∂F

∂y
dy.

provided that the partial derivatives of the function F is exists.
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Theorem (Criterion for an Exact Differential)

Let M(x, y) and N(x, y) be continuous and have continuous first partial
derivatives in a rectangular region R defined by a < x < b, c < y < d.
Then a necessary and sufficient condition that M(x, y)dx+N(x, y)dy be
an exact differential is

∂M

∂y
=
∂N

∂x
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Example

Prove that the following differential equations are exact and find their
solutions

1 (6x2 + 4xy + y2)dx+ (2x2 + 2xy − 3y2)dy = 0

2
[
cosx ln(2y − 8) + 1

x

]
dx+ sinx

y−4 dy; x 6= 0 and y > 4.

3 (e2y − y cosxy)dx+ (2xe2y − x cosxy + 2y)dy = 0

To prove that we need to check for the differential equation

M(x, y)dx+N(x, y)dy = 0,

if
∂M

∂y
=
∂N

∂x

then the differential equation is exact.
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Solution

1. (6x2 + 4xy + y2)dx+ (2x2 + 2xy − 3y2)dy = 0

M(x, y) = 6x2 + 4xy + y2 ⇒ ∂M
∂y = 4x+ 2y N(x, y) = 2x2 + 2xy − 3y2

⇒ ∂N
∂x = 4x+ 2y i.e. ∂M

∂y = 4x+ 2y = ∂N
∂x . Thus, the differential

equation is exact.

Now to find the solution∫
(6x2 + 4xy + y2)dx = 2x3 + 2x2y + y2x.∫
(2x2 + 2xy − 3y2)dy = 2x2y + xy − y3.

Thus, the family solution is
2x3 + 2x2y + y2x− y3 = c

.
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2.
[
cosx ln(2y − 8) + 1

x

]
dx+ sinx

y−4 dy; x 6= 0 and y > 4.

M(x, y) =
[
cosx ln(2y − 8) + 1

x

]
⇒ ∂M

∂y = 2 cosx 1
2y−8 = cosx 1

y−4
N(x, y) = sinx

y−4 ⇒
∂N
∂x = cosx 1

y−4

i.e. ∂M
∂y = cosx 1

y−4 = ∂N
∂x .

Thus, the differential equation is exact.

Now to find the solution∫ [
cosx ln(2y − 8) +

1

x

]
dx = sinx ln(2y − 8) + lnx

= sinx ln[2(y − 4)] + lnx∫
sinx

y − 4
dy = sinx ln(y − 4),

Thus, the family solution is

sinx ln(y − 4) + lnx+ c = 0
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3. (e2y − y cosxy)dx+ (2xe2y − x cosxy + 2y)dy = 0

M(x, y) = e2y − y cosxy ⇒ ∂M
∂y = 2e2y − cosxy + xy sinxy

N(x, y) = 2xe2y − x cosxy + 2y ⇒ ∂N
∂x = 2e2y − cosxy + xy sinxy

i.e. ∂M
∂y = 2e2y − cosxy + xy sinxy = ∂N

∂x .
Thus, the differential equation is exact.
Now to find the solution∫

(e2y − y cosxy) dx = xe2y − sinxy∫
(2xe2y − x cosxy + 2y) dy = xe2y − sinxy + y2,

Thus, the family solution is

xe2y − sinxy + y2 + c = 0

.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 57 / 84



First Order Differential Equation Integrating Factor

Integrating Factor

Consider a first order differential equation

M(x, y)dx+N(x, y)dy = 0, (7)

where M , N and ∂M
∂y and ∂N

∂x are continuous on a certain region R in
xy-plane. Suppose that the equation (7) is not exact, i.e

∂M

∂y
6= ∂N

∂x
.

Definition

A function µ(x, y) is called an integrating factor of (7) if the differential
equation

(µM)dx+ (µN)dy = 0, (8)

is exact, i.e
∂(µM)

∂y
=
∂(µN)

∂x
. (9)
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In other words, if the equation (7) is not exact, we can often make it so by
multiplying throughout by an integrating factor µ(x, y) and the finding
∂M
∂y and ∂N

∂x . The integrating factors are able to be determined by solving

∂M

∂y
=
∂N

∂x
.

for µ.
The integrating factor will be in one of the following forms

1 µ = µ(x)

2 µ = µ(y)

3 µ = µ(x, y) = xmyn

We can rewrite the equation (9) as follows:

Nµx −Mµy = (My −Nx)µ (10)
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In general, it is very difficult to solve the equation (10). In this section we
will only consider that µ is a one variable function (x or y, not both).
There are two cases:

1 If µ depends on x (µ = µ(x)). Then µy = 0, so the equation (10)
becomes

1

µ
µx =

1

µ

dµ

dx
=
My −Nx

N
,

so
µ(x) = e

∫ My−Nx
N

dx.

2 If µ depends on y (µ = µ(y)). Then µx = 0, so the equation (10)
becomes

1

µ
µy =

1

µ

dµ

dy
=
Nx −My

M
,

so
µ(y) = e

∫ Nx−My
M

dy.
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We summarize that for the differential equation

M(x, y)dx+N(x, y)dy = 0,

as following

1 If (My −Nx)/N is a function of x only, then the integrating factor
for the differential equation is

µ(x) = e
∫ My−Nx

N
dx.

2 If (Nx −my)/M is a function of y only, then the integrating factor
for the differential equation is

µ(y) = e
∫ Nx−My

M
dy.
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Example

Solve the following differential equations:

1 xydx+ (2x2 + 3y2 − 20)dy = 0;x 6= 0, y > 0.

2 (4xy + 3y2 − x)dx+ x(x+ 2y)dy = 0, x(x+ 2y) 6= 0.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 62 / 84



First Order Differential Equation Integrating Factor

Solution

1. xydx+ (2x2 + 3y2 − 20)dy = 0;x 6= 0, y > 0.

M(x, y) = xy ⇒ ∂M
∂y = x

N(x, y) = 2x2 + 3y2 − 20 ⇒ ∂N
∂x = 4x so, ∂M

∂y 6=
∂N
∂x .

Thus, the differential equation is not exact.

Now let’s us find the solution
My −Nx

N
=

4x− x
2x2 + 3y2 − 20

=
−3x

2x2 + 3y2 − 20
,

we note that the quotient is depended on x and y.

So we need to find

Nx −My

M
=

4x− x
xy

=
3

y
= g(y),
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we note that the quotient is depended only on y, thus the integrating
factor

µ(y) = e
∫ Nx−My

M
dy = e

∫
g(y)dy = e

∫
3
y
dy

= e3 ln y = eln y
3
= y3.

Then we multiply the equation by µ(y) = y3,
thus, the equation becomes

xy4dx+ (2x2y3 + 3y5 − 20y3)dy = 0

this equation is exact now, that is because
∂M

∂y
= 4xy3 =

∂N

∂x
.

So ∫
xy4 dx =

1

2
x2y4∫

(2x2y3 + 3y5 − 20y3) dy =
1

2
x2y4 +

1

2
y6 − 5y4,

Thus, the family solution is
1

2
x2y4 +

1

2
y6 − 5y4 + c = 0

.
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2. (4xy + 3y2 − x)dx+ x(x+ 2y)dy = 0, x(x+ 2y) 6= 0.

M(x, y) = 4xy + 3y2 − x ⇒ ∂M
∂y = 4x+ 6y

N(x, y) = x(x+ 2y) ⇒ ∂N
∂x = 2x+ 2y,

so, ∂M
∂y 6=

∂N
∂x .

Thus, the differential equation is not exact.
Now let’s us find the solution

My −Nx

N
=

4x+ 6y − 2x− 2y

x(x+ 2y)
=

2(x+ 2y)

x(x+ 2y)
=

2

x
= f(x),

we note that the quotient is depended on x, thus the integrating factor

µ(x) = e
∫ My−Nx

N
dx = e

∫
f(x)dx = e

∫
2
x
dy = e2 lnx = elnx

2
= x2.
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Then we multiply the equation by µ(x) = x2,
thus, the equation becomes

(4x3y + 3x2y2 − x3)dx+ (x4 + 2x3y)dy = 0

this equation is exact now, that is because

∂M

∂y
= 4x3 + 6x3y =

∂N

∂x
.

So ∫
(4x3y + 3x2y2 − x3) dx = x4y + x3y2 − 1

4
x4,∫

(x4 + 2x3y) dy = x4y + x3y2.

Thus, the family solution is

x4y + x3y2 − 1

4
x4 + c = 0
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Example

Find m, n such that
µ(x, y) = xmyn,

is an integrating factor of the differential equation

(2y2 + 4x2y)dx+ (4xy + 3x3)dy = 0.

Solution
(2y2 + 4x2y)dx+ (4xy + 3x3)dy = 0,

we need to find m and n such that the equation

(2xmyn+2 + 4xm+2yn+1)dx+ (4xm+1yn+1 + 3xm+3yn)dy = 0,

thus,
∂M

∂y
= 2(n+ 2)xmyn+1 + 4(n+ 1)xm+2yn,

∂N

∂x
= 4(m+ 1)xmyn+1 + 3(m+ 3)xm+2yn.
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For the exactness we require that

∂M

∂y
=
∂N

∂x
,

by equating coefficients we have that

2(n+ 2) = 4(m+ 1)⇒ 2n− 4m = 0⇒ n = 2m,

and
4(n+ 1) = 3(m+ 3)⇒ 4n− 3m− 5 = 0.

Therefor,
m = 1 and n = 2.

Thus, integrating factor of the differential equation

µ(x, y) = xy2.

Therefor the solution for the given differential equation is

x2y4 + x4y3 = c.
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Exercises

Solve the following differential equations:

1 (x2 + y2 + 1)dx+ x(x− 2y)dy = 0.

2 y(x+ y + 1)dx+ x(x+ 3y + 2)dy = 0; y(x+ y + 1) 6= 0
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The General Solution of a Linear Differential
Equations

Consider the linear differential equation

dy

dx
+ P (x)y = Q(x), (11)

where P and Q are continuous function on the interval (a, b).
The integrating factor of the differential equation (11) is

µ(x) = e
∫
P (x)dx.

The general solution of equation (11) is given by

yµ(x) =

∫
µ(x)Q(x)dx+ C.
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Since µ(x) 6= 0, for x ∈ (a, b), then we can write

yµ(x) =

∫
µ(x)Q(x)dx+ C,

y(x) = e−
∫
P (x)dx

∫
µ(x)Q(x)dx+ Ce−

∫
P (x)dx.
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Example

Solve the following differential equations:

1 xdy
dx + 2y = x3.

2 (1 + x2)dydx + xy + x3 + x = 0.

3 (y − x+ xy cotx)dx+ xy + xdy = 0; 0 < y < π with initial value
problem y(π/2) = 0.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 72 / 84



First Order Differential Equation The General Solution of a Linear Differential Equations

Solution

1. xdy
dx + 2y = x3.

The equation can be written in the form dy
dx + 2y

x = x2, we can see that
the equation is in a Linear Differential Equation Form. Where P (x) = 2

x ,
and Q(x) = x2.

µ(x) = e
∫
P (x)dx = e

∫
2
x
dx = x2.

The general solution will be in form

yµ(x) =

∫
µ(x)Q(x)dx+ C,

so,

yx2 =

∫
x2x2dx⇒ yx2 =

∫
x4dx.

Thus, the general solution is

yx2 =
1

5
x5 + c.
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2. (1 + x2)dydx + xy + x3 + x = 0.

The equation can be written in the form dy
dx + x

1+x2
y = −x, we can see

that the equation is in a Linear Differential Equation Form. Where
P (x) = x

1+x2
, and Q(x) = −x.

µ(x) = e
∫
P (x)dx = e

∫
x

1+x2
dx

= e
1
2
ln(1+x2) = (1 + x2)

1
2 .

The general solution will be in form

yµ(x) =

∫
µ(x)Q(x)dx+ C,

so,

y
√

1 + x2 = −
∫
x
√

1 + x2dx,

thus, the general solution is

y
√

1 + x2 =
−1
3
(1 + x2)

3
2 + c.
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Exercise

Find the initial value problem (IVP)

(y − x+ xy cotx)dx+ xdy = 0; 0 < y < π

and
y(π/2) = 0.

(Hint: P (x) = 1−x cotx
x and Q(x) = 1)
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Bernoulli’s Equation

The Bernoulli’s equation is a first order differential equation, which can be
written in the form

y′ + P (x)y = Q(x)yn, (12)

where n ∈ R.

1 If n = 0 then the equation (12) is a linear first order differential
equation and we can solve it as we saw before.

2 If n = 1 then the equation (12) is becomes a differential equation with
separable variables, and we can solve it by by separating the variables.
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3 If n 6= 0 and n 6= 1 then the equation (12) can be written in the form

y−ny′ + P (x)y−n+1 = Q(x).

Now we let u = y−n+1, then we have

du

dx
= (−n+ 1)y−n

dy

dx

or
u′ = (−n+ 1)y−ny′.

1

−n+ 1
u′ + P (x)u = Q(x)

or
u′ + (−n+ 1)P (x)u = (−n+ 1)Q(x),

which is a linear first order differential equation and we can solve it.
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Bernoulli’s Equation

Example

Solve the following differential equations:

1
dy
dx + 2xy = xe−x

2
y3.

2 y(6y2 − x− 1)dx+ 2xdy = 0;x 6= 0.
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Solution

1. dy
dx + 2xy = xe−x

2
y3.

We can see that; the equation is in the Bernoulli’s Equation Form. The
equation can be written in the form

y−3
dy

dx
+ 2xy−2 = xe−x

2
.

Now we let u = y−2, thus we have

u′ = −2y−3y′.

Thus, the equation becomes

−1
2

du

dx
+ 2xu = xe−x

2
.

du

dx
− 4xu = −2xe−x2 , (13)
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thus, the equation (13) is in linear first order differential equation and we
can solve it. Where P (x) = −4x, and Q(x) = −2xe−x2 .

µ(x) = e
∫
P (x)dx = e

∫
−4x dx = e−2x

2
.

The general solution will be in form

uµ(x) =

∫
µ(x)Q(x)dx+ C,

so,

ue−2x
2
=

∫
e−2x

2
(−2xe−x2) dx

ue−2x
2
=
−2
−6

∫
−6xe−3x2 dx
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ue−2x
2
=

1

3
e−3x

2
+ c,

u =
1

3
e−x

2
+ ce−2x

2
,

thus, the general solution is

1

y2
=

1

3
e−x

2
+ ce−2x

2
.
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2. y(6y2 − x− 1)dx+ 2xdy = 0;x 6= 0.

The equation can be written in the form

dy

dx
− x+ 1

2x
y =
−3
x
y3.

So we have the Bernoulli’s Equation, and it might be written in the form

y−3
dy

dx
− x+ 1

2x
y−2 =

−3
x
.

Now we let u = y−2, thus we have

u′ = −2y−3y′.

Thus, this equation becomes

du

dx
+
x+ 1

2x
u =

6

x
. (14)
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Thus, the equation (14) is in linear first order differential equation and we
can solve it. Where P (x) = x+1

2x , and Q(x) = 6
x .

µ(x) = e
∫
P (x)dx = e

∫
x+1
2x

dx = xex.

The general solution will be in form

uµ(x) =

∫
µ(x)Q(x)dx+ C,

uxex = 6ex + C

thus, the general solution is

y2(6 + Ce−x) = x.
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Exercises

Solve the following differential equations:

1
dy
dx −

1
xy = −2exy2.

2 (2y3 − x3)dx+ 2xy2dy = 0;x 6= 0 with IV y(1) = 1.
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