Chapter 2
 Mathematical Expectation:

2.1 Mean of a Random Variable:

Definition 1:

Let X be a random variable with a probability distribution $f(x)$. The mean (or expected value) of X is denoted by μ_{X} (or $\mathrm{E}(\mathrm{X})$) and is defined by:

$$
\mathrm{E}(\mathrm{X})=\mu_{\mathrm{X}}=\left\{\begin{array}{l}
\sum_{\text {all }} x f(x) ; \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} x f(x) d x ; \text { if } X \text { is continuous }
\end{array}\right.
$$

Example 1: (Example 4 in ch1)
A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective and 5 are non-defective. If a school makes a random purchase of 2 of these computers, find the expected number of defective computers purchased

Solution:

Let $\mathrm{X}=$ the number of defective computers purchased. In this example, we found that the probability distribution of X is:

x	0	1	2
$f(x)=p(X=x)$	$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$

or:

$$
f(x)=P(X=x)=\left\{\begin{array}{l}
\frac{\binom{3}{x} \times\binom{ 5}{2-x}}{\binom{8}{2}} ; x=0,1,2 \\
0 ; \text { otherwise }
\end{array}\right.
$$

The expected value of the number of defective computers purchased is the mean (or the expected value) of X, which is:

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X})=\mu_{\mathrm{X}}=\sum_{x=0}^{2} x f(x) \\
& =(0) \mathrm{f}(0)+(1) \mathrm{f}(1)+(2) \mathrm{f}(2) \\
& =(0) \frac{10}{28}+(1) \frac{15}{28}+(2) \frac{3}{28} \\
& =\frac{15}{28}+\frac{6}{28}=\frac{21}{28}=0.75 \quad \text { (computers) }
\end{aligned}
$$

Example 2:

Let X be a continuous random variable that represents the life (in hours) of a certain electronic device. The pdf of X is given by:

$$
f(x)=\left\{\begin{array}{l}
\frac{20,000}{x^{3}} ; x>100 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

Find the expected life of this type of devices.

Solution:

$$
\begin{aligned}
\mathrm{E}(\mathrm{X})=\mu_{\mathrm{X}} & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{100}^{\infty} \mathrm{x} \frac{20000}{\mathrm{x}^{3}} \mathrm{dx} \\
& =20000 \int_{100}^{\infty} \frac{1}{\mathrm{x}^{2}} \mathrm{dx} \\
& =20000\left[-\frac{1}{\mathrm{x}} \left\lvert\, \begin{array}{l}
\mathrm{x}=\infty \\
\mathrm{x}=100
\end{array}\right.\right] \\
& =-20000\left[0-\frac{1}{100}\right]=200 \text { (hours) }
\end{aligned}
$$

Therefore, we expect that this type of electronic devices to last, on average, 200 hours.

Theorem 2.1:

Let X be a random variable with a probability distribution $f(x)$, and let $g(X)$ be a function of the random variable X. The mean (or expected value) of the random variable $g(X)$ is denoted by $\mu_{g(X)}$ (or $\left.\mathrm{E}[g(X)]\right)$ and is defined by:

$$
\mathrm{E}[g(\mathrm{X})]=\mu_{\mathrm{g}(\mathrm{X})}=\left\{\begin{array}{l}
\sum_{a l l} \operatorname{ll}_{x} g(x) f(x) ; \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} g(x) f(x) d x ; \text { if } \mathrm{X} \text { is continuous }
\end{array}\right.
$$

Example 3:

Let X be a discrete random variable with the following probability distribution

x	0	1	2
$f(x)$	$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$

Find $E[g(X)]$, where $g(X)=(X-1)^{2}$.

Solution: $g(X)=(X-1)^{2}$
$\mathrm{E}[\mathrm{g}(\mathrm{X})]=\mu_{\mathrm{g}(\mathrm{X})}=\sum_{x=0}^{2} g(x) f(x)=\sum_{x=0}^{2}(x-1)^{2} f(x)$

$$
=(0-1)^{2} f(0)+(1-1)^{2} f(1)+(2-1)^{2} f(2)
$$

$$
=(-1)^{2} \frac{10}{28}+(0)^{2} \frac{15}{28}+(1)^{2} \frac{3}{28}
$$

$$
=\frac{10}{28}+0+\frac{3}{28}=\frac{10}{28}
$$

Example 4:

 In Example 2, find $E\left(\frac{1}{X}\right)$.Solution:

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
\frac{20,000}{x^{3}} ; x>100 \\
0 ; \text { elsewhere }
\end{array}\right. \\
& \mathrm{g}(\mathrm{X})=\frac{1}{\mathrm{X}} \\
& \mathrm{E}\left(\frac{1}{\mathrm{X}}\right)=\mathrm{E}[\mathrm{~g}(\mathrm{X})]=\mu_{\mathrm{g}(\mathrm{X})}=\int_{-\infty}^{\infty} g(x) f(x) d x=\int_{-\infty}^{\infty} \frac{1}{x} f(x) d x \\
& =\int_{100}^{\infty} \frac{1}{\mathrm{x}} \frac{20000}{\mathrm{x}^{3}} \mathrm{dx}=20000 \int_{100}^{\infty} \frac{1}{\mathrm{x}^{4}} \mathrm{dx}=\frac{20000}{-3}\left[\frac{1}{\mathrm{x}^{3}} \left\lvert\, \begin{array}{l}
\mathrm{x}=\infty \\
\mathrm{x}=100
\end{array}\right.\right] \\
& =\frac{-20000}{3}\left[0-\frac{1}{1000000}\right]=0.0067
\end{aligned}
$$

2.2 Variance (of a Random Variable):

The most important measure of variability of a random variable X is called the variance of X and is denoted by $\operatorname{Var}(X)$ or σ_{X}^{2}. Definition 2:
Let X be a random variable with a probability distribution $f(x)$ and mean μ. The variance of X is defined by:

$$
\begin{gathered}
V(x)=\sigma^{2}=E(x-\mu)^{2}=\sum_{\forall x}(x-\mu)^{2} f(x)=E\left(X^{2}\right)-(E(X))^{2} \text { if } x \text { is discrete }(2) \\
V(x)=\sigma^{2}=E(x-\mu)^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=E\left(X^{2}\right)-(E(X))^{2} \text { if } x \text { is continuous }(3) \\
E\left(x^{2}\right)=\left\{\begin{array}{l}
\sum_{1} x^{2} f(x) \text { if } x \text { is discrete } \\
\int_{-\infty}^{\infty} x^{2} f(x) d x \text { if } x \text { is continuous }
\end{array}\right\}
\end{gathered}
$$

Definition 3:

The positive square root of the variance of $X, \sigma_{X}=\sqrt{\sigma_{X}^{2}}$, is called the standard deviation of X.

Note:

$\operatorname{Var}(X)=E[g(X)]$, where $g(X)=(X-\mu)^{2}$

Theorem 2.2:

The variance of the random variable X is given by:

$$
\operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{X}}^{2}=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mu^{2}
$$

where $\mathrm{E}\left(\mathrm{X}^{2}\right)=\left\{\begin{array}{l}\sum_{\text {all }} x^{2} f(x) ; \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} x^{2} f(x) d x \text {; if } X \text { is continuous }\end{array}\right.$

Example 5:

Let X be a discrete random variable with the following probability distribution

x	0	1	2	3
$f(x)$	0.15	0.38	0.10	0.01

Find $\operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{X}}^{2}$.

Solution:

$$
\begin{aligned}
& \mu=\sum_{x=0}^{3} x f(x)=(0) \mathrm{f}(0)+(1) \mathrm{f}(1)+(2) \mathrm{f}(2)+(3) \mathrm{f}(3) \\
& \quad=(0)(0.51)+(1)(0.38)+(2)(0.10)+(3)(0.01)=0.61
\end{aligned}
$$

1. First method:

$$
\begin{aligned}
\operatorname{Var}(\mathrm{X}) & =\sigma_{X}^{2}=\sum_{x=0}^{3}(x-\mu)^{2} f(x) \\
& =\sum_{x=0}^{3}(\mathrm{x}-0.61)^{2} \mathrm{f}(\mathrm{x}) \\
& =(0-0.61)^{2} \mathrm{f}(0)+(1-0.61)^{2} \mathrm{f}(1)+(2-0.61)^{2} \mathrm{f}(2)+(3-0.61)^{2} \mathrm{f}(3) \\
& =(-0.61)^{2}(0.51)+(0.39)^{2}(0.38)+(1.39)^{2}(0.10)+(2.39)^{2}(0.01) \\
& =0.4979
\end{aligned}
$$

2. Second method:

$$
\begin{aligned}
& \operatorname{Var}(X)=\sigma_{X}^{2}=E\left(X^{2}\right)-\mu^{2} \\
& E\left(X^{2}\right)=\sum_{X=0}^{3} x^{2} f(x)=\left(0^{2}\right) f(0)+\left(1^{2}\right) f(1)+\left(2^{2}\right) f(2)+\left(3^{2}\right) f(3) \\
& \quad=(0)(0.51)+(1)(0.38)+(4)(0.10)+(9)(0.01)=0.87 \\
& \operatorname{Var}(X)=\sigma_{X}^{2}=E\left(X^{2}\right)-\mu^{2}=0.87-(0.61)^{2}=0.4979
\end{aligned}
$$

Example 6:

Let X be a continuous random variable with the following pdf:

$$
f(x)=\left\{\begin{array}{l}
2(x-1) ; 1<x<2 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

Find the mean and the variance of X.

Solution:

$$
\begin{aligned}
& \mu=\mathrm{E}(\mathrm{X})=\int_{-\infty}^{\infty} x f(x) d x=\int_{1}^{2} \mathrm{x}[2(\mathrm{x}-1)] \mathrm{d} \mathrm{x}=2 \int_{1}^{2} \mathrm{x}(\mathrm{x}-1) \mathrm{dx}=5 / 3 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{1}^{2} \mathrm{x}^{2}[2(\mathrm{x}-1)] \mathrm{d} \mathrm{x}=2 \int_{1}^{2} \mathrm{x}^{2}(\mathrm{x}-1) \mathrm{dx}=17 / 6 \\
& \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{X}}^{2}=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mu^{2}=17 / 6-(5 / 3)^{2}=1 / 8
\end{aligned}
$$

2.3 Means and Variances of Linear Combinations of Random Variables:

If $X_{1}, X_{2}, \ldots, X_{n}$ are n random variables and $a_{1}, a_{2}, \ldots, a_{n}$ are constants, then the random variable :

$$
Y=\sum_{i=1}^{n} a_{i} X_{i}=a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}
$$

is called a linear combination of the random variables $X_{1}, X_{2}, \ldots, X_{n}$.
Theorem 2.3:
If X is a random variable with mean $\mu=E(X)$, and if a and b are constants, then:

$$
\begin{aligned}
E(a X \pm b) & =a E(X) \pm b \\
& \Leftrightarrow \\
\mu_{a X \pm b} & =a \mu_{x} \pm b
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Corollary 1: } E(b)=b & (a=0 \text { in Theorem 4.5) } \\
\text { Corollary 2: } E(a X)=a E(X) & (b=0 \text { in Theorem 4.5 }
\end{array}
$$

Example 7:

Let X be a random variable with the following probability density function:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{3} x^{2} ;-1<x<2 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

Find $E(4 X+3)$.

Solution:

$$
\begin{aligned}
& \text { Solution: } \\
& \mu=\mathrm{E}(\mathrm{X})=\int_{-\infty}^{\infty} x f(x) d x=\int_{-1}^{2} \mathrm{x}\left[\frac{1}{3} \mathrm{x}^{2}\right] \mathrm{dx}=\frac{1}{3} \int_{-1}^{2} \mathrm{x}^{3} \mathrm{dx}=\frac{1}{3}\left[\frac{1}{4} \mathrm{x}^{4}\left[\begin{array}{l}
\mathrm{x}=2 \\
\mathrm{x}=-1
\end{array}\right]=5 / 4.4 .\right.
\end{aligned}
$$

$E(4 X+3)=4 E(X)+3=4(5 / 4)+3=8$
Another solution:
$\mathrm{E}[g(\mathrm{X})]=\int_{-\infty}^{\infty} g(x) f(x) d x \quad ; \mathrm{g}(\mathrm{X})=4 \mathrm{X}+3$
$\mathrm{E}(4 \mathrm{X}+3)=\int_{-\infty}^{\infty}(4 x+3) f(x) d x=\int_{-1}^{2}(4 \mathrm{x}+3)\left[\frac{1}{3} \mathrm{x}^{2}\right] \mathrm{dx}=\cdots=8$

Theorem 2.4:

If $X_{1}, X_{2}, \ldots, X_{n}$ are n random variables and $a_{1}, a_{2}, \ldots, a_{n}$ are constants, then:

$$
\begin{gathered}
\mathrm{E}\left(\mathrm{a}_{1} \mathrm{X}_{1}+\mathrm{a}_{2} \mathrm{X}_{2}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}}\right)=\mathrm{a}_{1} \mathrm{E}\left(\mathrm{X}_{1}\right)+\mathrm{a}_{2} \mathrm{E}\left(\mathrm{X}_{2}\right)+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{E}\left(\mathrm{X}_{\mathrm{n}}\right) \\
\Leftrightarrow \\
E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i} E\left(X_{i}\right)
\end{gathered}
$$

If X an Y are independent then for any functions h and g

$$
\mathrm{E}[\mathbf{h}(\mathbf{X}) \cdot \mathbf{g}(\mathbf{Y})]=\mathrm{E}(\mathrm{~h}(\mathbf{X})) \cdot \mathrm{E}(\mathbf{g}(\mathbf{Y}))
$$

Corollary: If \mathbf{X}, and \mathbf{Y} are random variables, then:

$$
\mathbf{E}(\mathbf{X} \pm \mathbf{Y})=\mathbf{E}(\mathbf{X}) \pm \mathbf{E}(\mathbf{Y})
$$

Theorem 2.5:

If X is a random variable with variance $\operatorname{Var}(X)=\sigma_{X}^{2}$ and if a and b are constants, then:

$$
\begin{gathered}
\operatorname{Var}(\mathrm{aX} \pm \mathrm{b})=\mathrm{a}^{2} \operatorname{Var}(\mathrm{X}) \\
\Leftrightarrow \\
\sigma_{a X+b}^{2}=a^{2} \sigma_{X}^{2}
\end{gathered}
$$

Theorem 2.6:

If $X_{1}, X_{2}, \ldots, X_{n}$ are n independent random variables and $\mathrm{a}_{1}, \mathrm{a}_{2}$, \ldots, a_{n} are constants, then:
$\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}\right)$

$$
\begin{aligned}
&=\mathrm{a}_{1}^{2} \operatorname{Var}\left(\mathrm{X}_{1}\right)+\mathrm{a}_{2}^{2} \operatorname{Var}\left(\mathrm{X}_{2}\right)+\ldots+\mathrm{a}_{\mathrm{n}}^{2} \operatorname{Var}\left(\mathrm{X}_{\mathrm{n}}\right) \\
& \Leftrightarrow \\
& \operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right) \\
& \Leftrightarrow \\
& \sigma_{\mathrm{a}_{1} \mathrm{X}_{1}+\mathrm{a}_{2} \mathrm{X}_{2}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}}}=\mathrm{a}_{1}^{2} \sigma_{\mathrm{X}_{1}}^{2}+\mathrm{a}_{2}^{2} \sigma_{\mathrm{X}_{2}}^{2}+\ldots+\mathrm{a}_{\mathrm{n}}^{2} \sigma_{\mathrm{X}_{\mathrm{n}}}^{2}
\end{aligned}
$$

Corollary:

If X, and Y are independent random variables, then:
$\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$
$\operatorname{Var}(a X-b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$
$\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Example 8:

Let X, and Y be two independent random variables such that $E(X)=2, \operatorname{Var}(X)=4, E(Y)=7$, and $\operatorname{Var}(Y)=1$. Find:

1. $E(3 X+7)$ and $\operatorname{Var}(3 X+7)$
2. $E(5 X+2 Y-2)$ and $\operatorname{Var}(5 X+2 Y-2)$.

Solution:

1. $E(3 X+7)=3 E(X)+7=3(2)+7=13$ $\operatorname{Var}(3 X+7)=(3)^{2} \operatorname{Var}(X)=(3)^{2}(4)=36$
2. $E(5 X+2 Y-2)=5 E(X)+2 E(Y)-2=(5)(2)+(2)(7)-2=22$ $\operatorname{Var}(5 \mathrm{X}+2 \mathrm{Y}-2)=\operatorname{Var}(5 \mathrm{X}+2 \mathrm{Y})=5^{2} \operatorname{Var}(\mathrm{X})+2^{2} \operatorname{Var}(\mathrm{Y})$

$$
=(25)(4)+(4)(1)=104
$$

Example 9:

The probability distribution for company \mathbf{A} is given by:

X	1	2	3
$\mathrm{f}(\mathrm{x})$	0.3	0.4	0.3

and for company \mathbf{B} is given by:

Y	0	1	2	3	4
$\mathrm{f}(\mathrm{y})$	0.2	0.1	0.3	0.3	0.1

Show that the variance of the probability distribution for company \mathbf{B} is greater than that of company \mathbf{A}.

Solution:

X	1	2	3	\sum
$\mathrm{f}(\mathrm{x})$	0.3	0.4	0.3	1
$\mathrm{xf}(\mathrm{x})$	0.3	0.8	0.9	2
$\mathrm{f}(\mathrm{x}) x^{2}$	0.3	1.6	2.7	4.6
$\sigma^{2}=E\left(x^{2}\right)-(E(x))^{2}=4.6-4=0.6, \sigma=.77$				

Y	0	1	2	3	4	\sum
$\mathrm{f}(\mathrm{y})$	0.2	0.1	0.3	0.3	0.1	1
$\mathrm{Y} f(\mathrm{y})$	0	0.1.	0.6	0.9	0.4	2
$y^{2} \mathrm{f}(\mathrm{y})$	0	0.1	1.2	2.7	1.6	5.6
$\sigma^{2}=E\left(y^{2}\right)-(E(y))^{2}=5.6-4=1.6, \sigma=1.26$						

Note that σ_{y}^{2} is greater than σ_{x}^{2}.

Problem 4 Let X have a mixed distribution $F(X)$ writen uniquely as

$$
F(X)=c F_{1}(X)+(1-c) F_{2}(X)
$$

where F_{1} is the distribution function of a discrete random variable X_{1} and F_{2} is the distribution function of a continuous random variable X_{2}. Then $E\left(X^{2}\right)$ is
(a) $c E\left(X_{1}\right)+(1-c) E\left(X_{2}\right)$
(b) $E\left(X_{1}\right)+E\left(X_{2}\right)$
(c) $c E\left(X_{1}^{2}\right)+(1-c) E\left(X_{2}^{2}\right)$
(d) $E\left(X_{1}^{2}\right)+E\left(X_{2}^{2}\right)$

Solved Problems

4.15 The density function of the continuous random variable X, the total number of hours, in units of $\mathbf{1 0 0}$ hours, that a family runs a vacuum cleaner over a period of one year, is given in Exercise 3.7 on page 88 as
Find the average number of hours per year that families run their vacuum cleaners.
Solution
4.15 $E(X)=\int_{0}^{1} x^{2} d x+\int_{1}^{2} x(2-x) d x=1$. Therefore, the average number of hours per year is $(1)(100)=100$ hours.
4.34 Let X be a random variable with the following probability distribution:

Find the standard deviation of X.

Solution

x	-2	3	5
$f(x)$	0.3	0.2	0.5

$$
\begin{aligned}
& 4.34 \mu=(-2)(0.3)+(3)(0.2)+(5)(0.5)=2.5 \text { and } \\
& E\left(X^{2}\right)=(-2)^{2}(0.3)+(3)^{2}(0.2)+(5)^{2}(0.5)=15.5 \\
& \text { So, } \sigma^{2}=E\left(X^{2}\right)-\mu^{2}=9.25 \text { and } \sigma=3.041
\end{aligned}
$$

4.36 Suppose that the probabilities are $0.4 .0 .3,0.2$, and 0.1 , respectively, that 0 , 1,2 . or 3 power failures will strike a certain subdivision in any given year. Find the mean and variance of the random variable X representing the number of power failures striking this subdivision.
Solution

$$
\begin{aligned}
& 4.36 \mu=(0)(0.4)+(1)(0.3)+(2)(0.2)+(3)(0.1)=1.0 \\
& \text { and } E\left(X^{2}\right)=(0)^{2}(0.4)+(1)^{2}(0.3)+(2)^{2}(0.2)+(3)^{2}(0.1)=2.0 \\
& \text { So, } \sigma^{2}=2.0-1.0^{2}=1.0
\end{aligned}
$$

4.43 The length of time, in minutes, for an airplane to obtain clearance for take off at a certain airport is a random variable $Y=3 \mathrm{X}-2$, where X has the density function

$$
f(x)= \begin{cases}\frac{1}{4} e^{-x / 4}, & x>0 \\ 0, & \text { eleswhere }\end{cases}
$$

Find the mean and variance of the random variable Y.

Solution

$$
\begin{aligned}
4.43 \mu_{Y} & =E(3 X-2)=\frac{1}{4} \int_{0}^{\infty}(3 x-2) e^{-x / 4} d x=10 . \text { So } \\
\sigma_{Y}^{2} & =E\left\{[(3 X-2)-10]^{2}\right\}=\frac{9}{4} \int_{0}^{\infty}(x-4)^{2} e^{-x / 4} d x=144 .
\end{aligned}
$$

4.50 On a laboratory assignment, if the equipment is working, the density function of the observed outcome, X. is

$$
\left\{\begin{array}{c}
2(1-x), \quad 0<x<1 \\
0, \text { otherwise }
\end{array}\right.
$$

Find the variance and standard deviation of X.
Solution

$$
\begin{aligned}
& 4.50 \\
& E(X)=2 \int_{0}^{1} x(1-x) d x=\left.2\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0}=\frac{1}{3} \text { and } \\
& \\
& E\left(X^{2}\right)=2 \int_{0}^{1} x^{2}(1-x) d x=\left.2\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=\frac{1}{6} . \text { Hence, } \\
& \\
& \operatorname{Var}(X)=\frac{1}{6}-\left(\frac{1}{3}\right)^{2}=\frac{1}{18}, \text { and } \sigma=\sqrt{1 / 18}=0.2357 .
\end{aligned}
$$

2.4 Chebyshev's Theorem:

* Suppose that X is any random variable with mean $E(X)=\mu$ and

$$
\text { area }=\mathrm{P}(\mu-\mathrm{k} \sigma<\mathrm{X}<\mu+\mathrm{k} \sigma) \geq 1-\frac{1}{\mathrm{k}^{2}}
$$ variance $\operatorname{Var}(\mathrm{X})=\sigma^{2}$ and standard deviation σ.

* Chebyshev's Theorem gives a conservative estimate of the probability that the random variable X assumes a value within k standard deviations ($k \sigma$) of its mean μ, which is $P(\mu-k \sigma<X<\mu+k \sigma)$.
${ }^{*} \mathrm{P}(\mu-\mathrm{k} \sigma<\mathrm{X}<\mu+\mathrm{k} \sigma) \approx 1-\frac{1}{\mathrm{k}^{2}}$

Theorem 2.7:(Chebyshev's Theorem)

Let X be a random variable with mean $E(X)=\mu$ and variance $\operatorname{Var}(X)=\sigma^{2}$, then for $k>1$, we have:

$$
\mathrm{P}(\mu-\mathrm{k} \sigma<\mathrm{X}<\mu+\mathrm{k} \sigma) \geq 1-\frac{1}{\mathrm{k}^{2}} \Leftrightarrow \mathrm{P}(|\mathrm{X}-\mu|<\mathrm{k} \sigma) \geq 1-\frac{1}{\mathrm{k}^{2}}
$$

Example 10

Let X be a random variable having an unknown distribution with mean $\mu=8$ and variance $\sigma^{2}=9$ (standard deviation $\sigma=3$). Find the following probability:
(a) $\mathrm{P}(-4<X<20)$
(b) $\mathrm{P}(|\mathrm{X}-8| \geq 6)$

Solution:

(a) $\mathrm{P}(-4<\mathrm{X}<20)=$??
$\mathrm{P}(\mu-\mathrm{k} \sigma<\mathrm{X}<\mu+\mathrm{k} \sigma) \geq 1-\frac{1}{\mathrm{k}^{2}}$
$(-4<X<20)=(\mu-k \sigma<X<\mu+k \sigma)$

$-4=\mu-k \sigma \Leftrightarrow-4=8-k(3)$ or $20=\mu+k \sigma \Leftrightarrow 20=8+k(3)$
$\Leftrightarrow-4=8-3 k$
$\Leftrightarrow 3 \mathrm{k}=12$
$\Leftrightarrow 20=8+3 k$
$\Leftrightarrow 3 \mathrm{k}=12$
$\Leftrightarrow \mathrm{k}=4$
$\Leftrightarrow k=4$

$$
1-\frac{1}{\mathrm{k}^{2}}=1-\frac{1}{16}=\frac{15}{16}
$$

Therefore, $\mathrm{P}(-4<\mathrm{X}<20) \geq \frac{15}{16}$, and hence, $\mathrm{P}(-4<\mathrm{X}<20) \approx \frac{15}{16}$
(approximately)

$$
\begin{aligned}
& (\mathrm{b}) \mathrm{P}(|\mathrm{X}-8| \geq 6)=? ? \\
& \mathrm{P}(|\mathrm{X}-8| \geq 6)=1-\mathrm{P}(|\mathrm{X}-8|<6) \\
& \mathrm{P}(|\mathrm{X}-8|<6)=? ? \\
& \mathrm{P}(|\mathrm{X}-\mu|<\mathrm{k} \sigma) \geq 1-\frac{1}{\mathrm{k}^{2}} \\
& (|\mathrm{X}-8|<6)=(|\mathrm{X}-\mu|<\mathrm{k} \sigma) \\
& 6=\mathrm{k} \mathrm{\sigma} \Leftrightarrow 6=3 \mathrm{k} \Leftrightarrow \mathrm{k}=2 \\
& 1-\frac{1}{\mathrm{k}^{2}}=1-\frac{1}{4}=\frac{3}{4} \\
& \mathrm{P}(|\mathrm{X}-8|<6) \geq \frac{3}{4} \Leftrightarrow 1-\mathrm{P}(|\mathrm{X}-8|<6) \leq 1-\frac{3}{4} \\
& \\
& \Leftrightarrow 1-\mathrm{P}(|X-8|<6) \leq \frac{1}{4} \\
& \\
& \Leftrightarrow P(|X-8| \geq 6) \leq \frac{1}{4}
\end{aligned}
$$

Therefore, $\mathrm{P}(|\mathrm{X}-8| \geq 6) \approx \frac{1}{4}$ (approximately)

Another solution for part (b):

$\mathrm{P}(|\mathrm{X}-8|<6)=\mathrm{P}(-6<\mathrm{X}-8<6)$

$$
\begin{aligned}
& =P(-6+8<X<6+8) \\
& =P(2<X<14)
\end{aligned}
$$

$(2<X<14)=(\mu-k \sigma<X<\mu+k \sigma)$
$2=\mu-k \sigma \Leftrightarrow 2=8-k(3) \Leftrightarrow 2=8-3 k \Leftrightarrow 3 k=6 \Leftrightarrow k=2$
$1-\frac{1}{\mathrm{k}^{2}}=1-\frac{1}{4}=\frac{3}{4}$
$P(2<X<14) \geq \frac{3}{4} \Leftrightarrow P(|X-8|<6) \geq \frac{3}{4}$
$\Leftrightarrow 1-P(|X-8|<6) \leq 1-\frac{3}{4}$
$\Leftrightarrow 1-\mathrm{P}(|\mathrm{X}-8|<6) \leq \frac{1}{4}$
$\Leftrightarrow P(|X-8| \geq 6) \leq \frac{1}{4}$
Therefore, $\mathrm{P}(|\mathrm{X}-8| \geq 6) \approx \frac{1}{4}$ (approximately)

