
Chapter 2 – Software Processes

Lecture 1

1Chapter 2 Software Processes

Topics covered

 Software process models

 Process activities

 Coping with change

 The Rational Unified Process

 An example of a modern software process.

2Chapter 2 Software Processes

The software process

 A structured set of activities required to develop a

software system.

 Many different software processes but all involve:

 Specification – defining what the system should do;

 Design and implementation – defining the organization of the

system and implementing the system;

 Validation – checking that it does what the customer wants;

 Evolution – changing the system in response to changing

customer needs.

 A software process model is an abstract representation

of a process. It presents a description of a process from

some particular perspective.

3Chapter 2 Software Processes

Software process descriptions

 When we describe and discuss processes, we usually

talk about the activities in these processes such as

specifying a data model, designing a user interface, etc.

and the ordering of these activities.

 Process descriptions may also include:

 Products, which are the outcomes of a process activity;

 Roles, which reflect the responsibilities of the people involved

in the process;

 Pre- and post-conditions, which are statements that are true

before and after a process activity has been enacted or a

product produced.

4Chapter 2 Software Processes

Plan-driven and agile processes

 Plan-driven processes are processes where all of the

process activities are planned in advance and

progress is measured against this plan.

 In agile processes, planning is incremental and it is

easier to change the process to reflect changing

customer requirements.

 Agile methods break tasks into small increments with

minimal planning and do not directly involve long-term

planning.

 Iterations are short time frames (timeboxes) that

typically last from one to four weeks.

5Chapter 2 Software Processes

http://en.wikipedia.org/wiki/Timeboxing

 Each iteration involves a cross functional team working

in all functions: planning, requirements

analysis, design, coding, unit testing, and acceptance

testing.

 At the end of the iteration a working product is

demonstrated to stakeholders. This minimizes overall

risk and allows the project to adapt to changes quickly.

 An iteration might not add enough functionality to

warrant a market release, but the goal is to have an

available release (with minimal bugs) at the end of

each iteration.

 Multiple iterations might be required to release a

product or new features.

Chapter 2 Software Processes 6

http://en.wikipedia.org/wiki/Software_bug

 In practice, most practical processes include elements

of both plan-driven and agile approaches.

 There are no right or wrong software processes.

 Although there is no ‘ideal’ software process, there is

scope for improving the software process in many

organizations.

 E.g., by standardization where the diversity in

software processes across an organization is reduced

 This leads to improved communication and a

reduction in training time, and makes automated

process support more economical.

Chapter 2 Software Processes 7

Software process models

 The waterfall model

 Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

 Specification, development and validation are interleaved.

 May be plan-driven or agile.

 Reuse-oriented software engineering

 The system is assembled from existing components. May be

plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from all of these

models.
8Chapter 2 Software Processes

 Parts of the system that are well understood can be

specified and developed using a waterfall-based

process.

 Parts of the system which are difficult to specify in

advance, such as the user interface, should always be

developed using an incremental approach.

Chapter 2 Software Processes 9

The waterfall model

 The waterfall model is an example of a plan-driven

process—in principle, you must plan and schedule all

of the process activities before starting work on them.

Chapter 2 Software Processes 10

The waterfall model

11Chapter 2 Software Processes

The principal stages of the waterfall model

1. Requirements analysis and definition

The system’s services, constraints, and goals are

established by consultation with system users. They are

then defined in detail and serve as a system specification.

2. System and software design

The systems design process allocates the requirements to

either hardware or software systems by establishing an

overall system architecture.

3. Implementation and unit testing

During this stage, the software design is realized as a set of

programs or program units. Unit testing involves verifying

that each unit meets its specification

Chapter 2 Software Processes 12

4. Integration and system testing

The individual program units or programs are integrated and

tested as a complete system to ensure that the software

requirements have been met. After testing, the software

system is delivered to the customer.

5. Operation and maintenance

Normally (although not necessarily), this is the longest life

cycle phase. The system is installed and put into practical use.

Maintenance involves correcting errors which were not

discovered in earlier stages of the life cycle, improving the

implementation of system units and enhancing the system’s

services as new requirements are discovered.

Chapter 2 Software Processes 13

the result of each phase is one or more

documents

 In principle, the result of each phase is one or more

documents that are approved (‘signed off’). The

following phase should not start until the previous

phase has finished.

 In practice, these stages overlap and feed information to

each other.

 During design, problems with requirements are

identified.

 During coding, design problems are found and so on.

The software process is not a simple linear model but

involves feedback from one phase to another.

 Documents produced in each phase may then have to

be modified to reflect the changes made
Chapter 2 Software Processes 14

Because of the costs of producing and

approving documents

 iterations can be costly and involve significant rework.

 Therefore, after a small number of iterations, it is

normal to freeze parts of the development, such as

the specification, and to continue with the later

development stages.

 Problems are left for later resolution, ignored, or

programmed around.

 This premature freezing of requirements may mean that

the system won’t do what the user wants.

 It may also lead to badly structured systems as

design problems are circumvented by implementation

tricks.
Chapter 2 Software Processes 15

Deliverables (Documents) in Waterfall Model

 Project plan and feasibility report

 Requirements documents (SRS: Software Requirement

Specifications)

 System Design documents

 Test plans and test reports

 Source code

 Software manuals

 Each step ends with a review process and report

Chapter 2 Software Processes 16

Advantages of producing documents

 Different teams can work on different steps of the

projects

 Important for quality assurance and testing

 Important for evolution

Chapter 2 Software Processes 17

Waterfall model drawback

 The main drawback of the waterfall model is the

difficulty of accommodating change after the process

is underway.

 In principle, a phase has to be complete before moving

onto the next phase.

18Chapter 2 Software Processes

Waterfall model problems

 Inflexible partitioning of the project into distinct stages

makes it difficult to respond to changing customer

requirements.

 Therefore, this model is only appropriate when the

requirements are well-understood (e.g. there is a manual

counterpart) and changes will be fairly limited during the

design process.

 Few business systems have stable requirements.

 Documentation heavy

 The waterfall model is mostly used for large systems

engineering projects where a system is developed at

several sites.

 In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work. 19Chapter 2 Software Processes

Incremental development

 Incremental development is based on the idea of

developing an initial implementation, exposing this to

user comment and evolving it through several

versions until an adequate system has been developed

 Specification, development, and validation activities are

interleaved rather than separate, with rapid feedback

across activities.

 A fundamental part of agile approaches, is better than

a waterfall approach for most business, e-commerce,

and personal systems

 By developing the software incrementally, it is cheaper

and easier to make changes in the software as it is

being developed. Chapter 2 Software Processes 20

Incremental development

21Chapter 2 Software Processes

Incremental development benefits

 The cost of accommodating changing customer

requirements is reduced.

 The amount of analysis and documentation that has to be

redone is much less than is required with the waterfall model.

 It is easier to get customer feedback on the

development work that has been done.

 Customers can comment on demonstrations of the software and

see how much has been implemented.

 More rapid delivery and deployment of useful software

to the customer is possible.

 Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.

22Chapter 2 Software Processes

Incremental development problems

 The process is not visible.

 Managers need regular deliverables to measure progress. If

systems are developed quickly, it is not cost-effective to

produce documents that reflect every version of the system.

 System structure tends to degrade as new

increments are added.

 Unless time and money is spent on refactoring to improve

the software, regular change tends to corrupt its structure.

Incorporating further software changes becomes increasingly

difficult and costly.

23Chapter 2 Software Processes

Reuse-oriented software engineering

 in the 21st century, software development processes that

focus on the reuse of existing software have become

widely used.

 Reuse-oriented approaches rely on a large base of

reusable software components and an integrating

framework for the composition of these components.

 Based on systematic reuse where systems are

integrated from existing components or COTS

(Commercial-off-the-shelf) systems.

 Popular in web software develeopment

 Reuse is now the standard approach for building

many types of business system

 Reuse covered in more depth in Chapter 16.
24Chapter 2 Software Processes

1. Component analysis Given the requirements

specification, a search is made for components to

implement that specification. Usually , there is no

exact match and the components that may be used

only provide some of the functionality required.

2. Requirements modification During this stage, the

requirements are analyzed using information about

the components that have been discovered. They are

then modified to reflect the available components.

Where modifications are impossible, the component

analysis activity may be re-entered to search for

alternative solutions.

Chapter 2 Software Processes 25

3. System design with reuse During this phase, the

framework of the system is designed or an existing

framework is reused. The designers take into account

the components that are reused and organize the

framework to cater for this. Some new software may

have to be designed if reusable components are not

available.

4. Development and integration Software that cannot

be externally procured is developed, and the

components and COTS systems are integrated to

create the new system.

Chapter 2 Software Processes 26

Reuse-oriented software engineering

27Chapter 2 Software Processes

Types of software component

 Web services that are developed according to service

standards and which are available for remote

invocation.

 Collections of objects that are developed as a

package to be integrated with a component framework

such as .NET or J2EE.

 Stand-alone software systems (COTS) that are

configured for use in a particular environment.

28Chapter 2 Software Processes

Advantages and Disadvantages

 Reuse-oriented software engineering has the obvious

advantage of reducing the amount of software to be

developed and so reducing cost and risks. It usually

also leads to faster delivery of the software.

 However, requirements compromises are inevitable

and this may lead to a system that does not meet the

real needs of users.

 Furthermore, some control over the system evolution

is lost as new versions of the reusable components

are not under the control of the organization using

them.

Chapter 2 Software Processes 29

Process activities

 Real software processes are inter-leaved sequences of

technical, collaborative and managerial activities with the

overall goal of specifying, designing, implementing and

testing a software system.

 The four basic process activities of specification,

development, validation and evolution are organized

differently in different development processes. In the

waterfall model, they are organized in sequence,

whereas in incremental development they are inter-

leaved.

30Chapter 2 Software Processes

Software specification

 The process of establishing what services are required

and the constraints on the system’s operation and

development.

 Requirements engineering process

 Feasibility study

• Is it technically and financially feasible to build the system?

 Requirements elicitation and analysis

• What do the system stakeholders require or expect from the

system?

 Requirements specification

• Defining the requirements in detail

 Requirements validation

• Checking the validity of the requirements
31Chapter 2 Software Processes

The requirements engineering process

32Chapter 2 Software Processes

Software design and implementation

 The process of converting the system specification

into an executable system.

 Software design

 Design a software structure that realises the specification;

 Implementation

 Translate this structure into an executable program;

 The activities of design and implementation are

closely related and may be inter-leaved.

33Chapter 2 Software Processes

A general model of the design process

34Chapter 2 Software Processes

Design activities

 Architectural design, where you identify the overall

structure of the system, the principal components

(sometimes called sub-systems or modules), their

relationships and how they are distributed.

 Interface design, where you define the interfaces

between system components.

 Component design, where you take each system

component and design how it will operate.

 Database design, where you design the system data

structures and how these are to be represented in a

database.

35Chapter 2 Software Processes

Software validation

 Verification and validation (V & V) is intended to show

that a system conforms to its specification and meets

the requirements of the system customer.

 Involves checking and review processes and system

testing.

 System testing involves executing the system with test

cases that are derived from the specification of the

real data to be processed by the system.

 Testing is the most commonly used V & V activity.

36Chapter 2 Software Processes

Stages of testing

37Chapter 2 Software Processes

Testing stages

Development or component testing

 Individual components are tested independently by

the people developing the system;

 Components may be functions or objects or coherent

groupings of these entities.

 Test automation tools, such as JUnit (Massol and

Husted, 2003), that can re-run component tests when

new versions of the component are created, are

commonly used

38Chapter 2 Software Processes

System testing (Testing of the system as a

whole)

 concerned with finding errors that result from

unanticipated interactions between components and

component interface problems

 Testing the functional as well as non-functional

requirements.

 Testing of emergent properties (e.g. Reliability,

Security, Repair ability) is particularly important.

Chapter 2 Software Processes 39

Acceptance testing (sometimes called ‘alpha

testing’.)

 Testing with customer data to check that the system

meets the customer’s needs.

 May reveal errors and omissions in the system

requirements definition

 may also reveal requirements problems where the

system’s facilities do not really meet the user’s

needs or the system performance is unacceptable.

Chapter 2 Software Processes 40

Testing phases in a plan-driven software

process (the V-model of development)

41Chapter 2 Software Processes

Beta Testing

 When a system is to be marketed as a software product,

a testing process called ‘beta testing’ is often used.

 Beta testing involves delivering a system to a number

of potential customers who agree to use that system.

 They report problems to the system developers.

 This exposes the product to real use and detects

errors that may not have been anticipated by the system

builders.

 After this feedback, the system is modified and

released either for further beta testing or for general

sale.

Chapter 2 Software Processes 42

Software evolution

 Software is inherently flexible and can change.

 As requirements change through changing business

circumstances, the software that supports the

business must also evolve and change.

 Although there has been a demarcation between

development and evolution (maintenance) this is

increasingly irrelevant as fewer and fewer systems are

completely new.

 the costs of maintenance are often several times the

initial development costs,

43Chapter 2 Software Processes

System evolution

44Chapter 2 Software Processes

Key points

 Software processes are the activities involved in

producing a software system. Software process models

are abstract representations of these processes.

 General process models describe the organization of

software processes.

 Examples of these general models include the

‘waterfall’ model, incremental development, and

reuse-oriented development.

45Chapter 2 Software Processes

Key points

 Requirements engineering is the process of

developing a software specification.

 Design and implementation processes are concerned

with transforming a requirements specification into

an executable software system.

 Software validation is the process of checking that the

system conforms to its specification and that it meets the

real needs of the users of the system.

 Software evolution takes place when you change

existing software systems to meet new requirements.

The software must evolve to remain useful.

46Chapter 2 Software Processes

Chapter 2 – Software Processes

Lecture 2

47Chapter 2 Software Processes

Coping with change

 Change is inevitable in all large software projects.

 Business changes lead to new and changed system

requirements

 New technologies open up new possibilities for improving

implementations

 Changing platforms require application changes

 Change leads to rework so the costs of change include

both rework (e.g. re-analysing requirements) as well

as the costs of implementing new functionality

48Chapter 2 Software Processes

Reducing the costs of rework

1. Change avoidance, where the software process

includes activities that can anticipate possible

changes before significant rework is required.

 For example, a prototype system may be developed to show

some key features of the system to customers.

 They can experiment with the prototype and refine their

requirements before committing to high software production

costs.

2. Change Tolerance

49Chapter 2 Software Processes

Reducing the costs of rework

 Change tolerance, where the process is designed so

that changes can be accommodated at relatively low

cost.

 This normally involves some form of incremental

development.

 Proposed changes may be implemented in increments that

have not yet been developed.

 If this is impossible, then only a single increment (a small

part of the system) may have be altered to incorporate the

change.

 The notion of refactoring, namely improving the

structure and organization of a program, is also an

important mechanism that supports change

tolerance (see chap3 on Agile development)Chapter 2 Software Processes 50

Two ways of coping with change and changing

system requirements

 System prototyping

 supports change avoidance as it allows users to experiment

with the system before delivery and so refine their requirements.

 The number of requirements change proposals made after

delivery is therefore likely to be reduced.

 Incremental delivery

 system increments are delivered to the customer for comment

and experimentation

 supports both change avoidance and change tolerance

 It avoids the premature commitment to requirements for the

whole system and allows changes to be incorporated into

later increments at relatively low cost.

Chapter 2 Software Processes 51

Software prototyping

 A prototype is an initial version of a system used to

demonstrate concepts and try out design options,

and find out more about the problem and its possible

solutions.

 A prototype can be used in:

 The requirements engineering process to help with

requirements elicitation and validation of system requirements;

 In design processes to explore options and develop

a UI design (to check the feasibility of a proposed design or

to check that it supports efficient data access);

 In the testing process to run back-to-back tests.

52Chapter 2 Software Processes

Benefits of prototyping

 Improved system usability.

 Prototyping is also an essential part of the user interface design

process.

 A closer match to users’ real needs.

 A prototype may reveal errors and omissions in the

requirements that have been proposed.

 Improved design quality.

 For example, a database design may be prototyped and tested

to check that it supports efficient data access for the most

common user queries.

 Improved maintainability.

 Reduced development effort.
53Chapter 2 Software Processes

The process of prototype development

54Chapter 2 Software Processes

Prototype development

 May be based on rapid prototyping languages or tools

 May involve leaving out functionality

 Prototype should focus on areas of the product that are not

well-understood;

 Error checking and recovery may not be included in the

prototype;

 Focus on functional rather than non-functional

requirements such as reliability and security

Chapter 2 Software Processes 55

Throw-away prototypes

 Prototypes should be discarded after development as

they are not a good basis for a production system:

 Developers are sometimes pressured by managers to

deliver throwaway prototypes, particularly when there

are delays in delivering the final version of the soft-ware.

 However, this is usually unwise:

 It may be impossible to tune the system to meet non-

functional requirements;

 Prototypes are normally undocumented;

 The prototype structure is usually degraded through

rapid change;

 The prototype probably will not meet normal organizational

quality standards. 56Chapter 2 Software Processes

Paper-based mock-ups Prototypes

 Prototypes do not have to be executable to be useful.

Paper-based mock-ups of the system user interface

(Rettig, 1994) can be effective in helping users refine an

interface design and work through usage scenarios.

 These are very cheap to develop and can be

constructed in a few days.

 An extension of this technique is a Wizard of Oz

prototype where only the user interface is developed.

 Users interact with this interface but their requests are

passed to a person who interprets them and outputs

the appropriate response.

Chapter 2 Software Processes 57

Incremental delivery

 Rather than deliver the system as a single delivery, the

development and delivery is broken down into

increments with each increment delivering part of the

required functionality.

 User requirements are prioritised and the highest

priority requirements are included in early increments.

 Once the development of an increment is started, the

requirements are frozen though requirements for

later increments can continue to evolve.

 Once an increment is completed and delivered,

customers can put it into service

 Unlike prototypes, increments are part of the real

system
58Chapter 2 Software Processes

Incremental development and delivery

 Incremental development

 Develop the system in increments and evaluate each

increment before proceeding to the development of the next

increment;

 Normal approach used in agile methods;

 Evaluation done by user/customer proxy.

 Incremental delivery

 Deploy an increment for use by end-users;

 More realistic evaluation about practical use of software;

 Difficult to implement for replacement systems (i.e. to

replace an existing system) as increments have less

functionality than the system being replaced.

Chapter 2 Software Processes 59

Incremental delivery

60Chapter 2 Software Processes

Incremental delivery advantages

 Customer value can be delivered with each increment so

system functionality is available earlier.

 Early increments act as a prototype to help elicit

requirements for later increments but unlike prototypes,

these are part of the real system.

 Lower risk of overall project failure.

 The highest priority system services tend to receive

the most testing.

61Chapter 2 Software Processes

Incremental delivery problems

 Most systems require a set of basic facilities that are used by

different parts of the system.

 As requirements are not defined in detail until an increment is to be

implemented, it can be hard to identify common facilities that are

needed by all increments.

 Users want all of the functionality of the old system and are often

unwilling to experiment with an incomplete new system.

Therefore, getting useful customer feedback is difficult.

 The essence of iterative processes is that the specification is

developed in conjunction with the software.

 However, this conflicts with the procurement model of many

organizations, where the complete system specification is part of

the system development contract. In the incremental approach,

there is no complete system specification until the final

increment is specified.
62Chapter 2 Software Processes

The spiral model

 Here, the software process is represented as a spiral,

rather than a sequence of activities with some

backtracking from one activity to another.

 Each loop in the spiral represents a phase of the

software process.

 Thus, the innermost loop might be concerned with

system feasibility, the next loop with requirements

definition, the next loop with system design, and so

on.

 No fixed phases such as specification or design -

loops in the spiral are chosen depending on what is

required.
Chapter 2 Software Processes 63

The spiral model

 The spiral model combines change avoidance with

change tolerance.

 The main difference between the spiral model and other

software process models is its explicit recognition of

risk.

 This model of development combines the features of

the prototyping and the waterfall model.

 The spiral model is intended for large, expensive and

complicated projects.

 It allows for incremental releases of the product, or

incremental refinement through each time around the

spiral.

 The spiral model also explicitly includes risk

management within software development.

64

Boehm’s spiral model of the software process

65Chapter 2 Software Processes

Starting at the center, each turn around the

spiral goes through several task regions :

 Determine the objectives, alternatives, and

constraints on the new iteration.

 Evaluate alternatives and identify and resolve risk

issues.

 Develop and verify the product for this iteration.

 Plan the next iteration.

Chapter 2 Software Processes 66

Spiral model sectors

 Objective setting

 Specific objectives for the phase are identified.

 Risk assessment and reduction

 Risks are assessed and activities put in place to reduce the key

risks.

 Development and validation

 A development model for the system is chosen which can be

any of the generic models.

 Planning

 The project is reviewed and the next phase of the spiral is

planned.

67Chapter 2 Software Processes

Spiral model usage

 Spiral model has been very influential in helping people

think about iteration in software processes and

introducing the risk-driven approach to development.

 In practice, however, the model is rarely used as

published for practical software development.

Chapter 2 Software Processes 68

The Rational Unified Process

 A modern generic process derived from the work on

the UML and associated process.

 A good example of a hybrid process model.

 It brings together elements from all of the generic

process models, illustrates good practice in

specification and design and supports prototyping

and incremental delivery.

 Normally described from 3 perspectives

 A dynamic perspective that shows phases over time;

 A static perspective that shows process activities;

 A practice perspective that suggests good practice

69Chapter 2 Software Processes

 the RUP is a phased model that identifies four discrete

phases in the software process.

 However, unlike the waterfall model where phases are

equated with process activities, the phases in the RUP

are more closely related to business rather than

technical concerns.

Chapter 2 Software Processes 70

Phases in the Rational Unified Process

(Dynamic Perspective)

71Chapter 2 Software Processes

RUP phases

Inception

 Establish the business case for the system.

 You should identify all external entities (people and

systems) that will interact with the system and define

these interactions.

 You then use this information to assess the

contribution that the system makes to the business.

 If this contribution is minor, then the project may

be cancelled after this phase.

72Chapter 2 Software Processes

Elaboration

 Develop an understanding of the problem domain

and the system architecture.

 develop the project plan,

 and identify key project risks.

 On completion of this phase you should have

• a requirements model for the system, which may be a set of

UML use-cases,

• an architectural description,

• And a development plan for the software.

Chapter 2 Software Processes 73

 Construction

 System design, programming and testing.

 On completion of this phase, you should have a working

software system and associated documentation
that is ready for delivery to users.

 Transition

 Deploy the system (move it to the user community)

 This is something that is ignored in most software process

models but is, in fact, an expensive and sometimes

problematic activity.

 On completion of this phase, you should have a documented

software system that is working correctly in its operational

environment.

Chapter 2 Software Processes 74

Inception

 In this phase the business case which includes business

context, success factors (expected revenue, market

recognition, etc.), and financial forecast is established.

 To complement the business case, a basic use case

model, project plan, initial risk assessment and project

description (the core project requirements, constraints

and key features) are generated.

Chapter 2 Software Processes 75

Elaboration Phase

 The elaboration phase is where the project starts to take

shape.

 In this phase the problem domain analysis is made and

the architecture of the project gets its basic form.

 Outcomes

 A use-case model in which the use-cases and the actors have been identified and most of the

use-case descriptions are developed. The use-case model should be 80% complete.

 A description of the software architecture in a software system development process.

 Business case and risk list which are revised.

 A development plan for the overall project.

 Prototypes that demonstrably mitigate each identified technical risk.

 A preliminary user manual (optional)

Chapter 2 Software Processes 76

Construction Phase

 In this phase, the main focus is on the development of

components and other features of the system.

 This is the phase when the bulk of the coding takes

place.

 In larger projects, several construction iterations may

be developed in an effort to divide the use cases into

manageable segments that produce demonstrable

prototypes.

 This phase produces the first external release of the

software.

Chapter 2 Software Processes 77

Transition Phase

 The primary objective is to 'transit' the system from

development into production, making it available to

and understood by the end user

 The activities of this phase include training the end

users and maintainers and beta testing the system to

validate it against the end users' expectations.

 The product is also checked against the quality level

set in the Inception phase.

Chapter 2 Software Processes 78

RUP iteration

Iteration within the RUP is supported in

two ways.

 In-phase iteration

• Each phase is iterative with results developed

incrementally.

 Cross-phase iteration

• As shown by the loop in the RUP model, the whole

set of phases may be enacted incrementally.

Chapter 2 Software Processes 79

The static view of the RUP

 focuses on the activities that take place during the

development process.

 These are called workflows in the RUP description.

 There are six core process workflows identified in the

process and three core supporting work-flows.

 The RUP has been designed in conjunction with the

UML, so the workflow description is oriented around

associated UML models such as sequence models,

object models

Chapter 2 Software Processes 80

Static workflows in the Rational Unified Process

Workflow Description

Business modelling The business processes are modelled using business

use cases.

Requirements Actors who interact with the system are identified

and use cases are developed to model the system

requirements.

Analysis and design A design model is created and documented using

architectural models, component models, object

models and sequence models.

Implementation The components in the system are implemented and

structured into implementation sub-systems.

Automatic code generation from design models

helps accelerate this process.

81Chapter 2 Software Processes

Static workflows in the Rational Unified Process

Workflow Description

Testing Testing is an iterative process that is carried out in

conjunction with implementation. System testing follows the

completion of the implementation.

Deployment A product release is created, distributed to users and

installed in their workplace.

Configuration and

change management

This supporting workflow managed changes to the system

(see Chapter 25).

Project management This supporting workflow manages the system development

(see Chapters 22 and 23).

Environment This workflow is concerned with making appropriate software

tools available to the software development team.

82Chapter 2 Software Processes

The advantage in presenting dynamic and static

views

 is that phases of the development process are not

associated with specific workflows.

 In principle at least, all of the RUP workflows may be

active at all stages of the process.

 In the early phases of the process, most effort will

probably be spent on workflows such as business

modeling and requirements and,

 in the later phases, in testing and deployment

Chapter 2 Software Processes 83

RUP good practice

 Develop software iteratively

 Plan increments based on customer priorities and deliver highest

priority increments first.

 Manage requirements

 Explicitly document customer requirements and keep track of

changes to these requirements.

 Analyze the impact of changes on the system before accepting

them.

 Use component-based architectures

 Organize the system architecture as a set of reusable

components.

84Chapter 2 Software Processes

RUP good practice

 Visually model software

 Use graphical UML models to present static and dynamic views

of the software.

 Verify software quality

 Ensure that the software meet’s organizational quality standards.

 Control changes to software

 Manage software changes using a change management

system and configuration management tools.

Chapter 2 Software Processes 85

Key points

 Processes should include activities to cope with change.

This may involve a prototyping phase that helps avoid

poor decisions on requirements and design.

 Processes may be structured for iterative development

and delivery so that changes may be made without

disrupting the system as a whole.

 The Rational Unified Process is a modern generic

process model that is organized into phases (inception,

elaboration, construction and transition) but separates

activities (requirements, analysis and design, etc.) from

these phases.

86Chapter 2 Software Processes

