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Applications of First Order Differential Equation Orthogonal Trajectories

Suppose that we have a family of curves given by

F (x, y, c) = 0, (1)

and another family of curves given by

G(x, y, k) = 0, (2)

such that at any intersection of a curve of the family F (x, y, c) with a
curve of the family G(x, y, k) = 0, the tangents of the curves are
perpendicular.

Therefore, are two families of curves that always intersect perpendicularly.
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Applications of First Order Differential Equation Orthogonal Trajectories

Orthogonal trajectories,

Example

The family of circles represented by x2 + y2 = c, with center at the origin,
and the family y = kx of straight lines through the origin, are orthogonal
trajectories of each other, as shown in the figure.
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Applications of First Order Differential Equation Orthogonal Trajectories

How to Find Orthogonal Trajectories

To find the orthogonal trajectories of the family

F (x, y, c) = 0, (3)

Step1: Differentiate (3) implicitly with respect to x to get a relation of the
form (3)

g

(
x, y,

dy

dx
, c

)
; (4)

Step2: Eliminate the parameter c from (3), and (4) to obtain the
differential equation

F

(
x, y,

dy

dx

)
(5)

corresponding to the first family (3);
Step3: Replace dy

dx by −1dy
dx

in (5) to obtain the differential equation
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Applications of First Order Differential Equation Orthogonal Trajectories

H

(
x, y,

dy

dx

)
(6)

of the orthogonal trajectories (as shown in the figure below);

Step4: General solution of (6) gives the required orthogonal trajectories.

Figure: Orthogonal trajectories
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Applications of First Order Differential Equation Orthogonal Trajectories

Example (1)

Find the orthogonal trajectories of family of straight lines through the
origin.

Solution: The family of straight lines through the origin is given by

y = kx, (7)

To find the orthogonal trajectories, we follow the previous four steps:

Step1: Differentiate (7) implicitly with respect to x, we obtain

dy

dx
= k, (8)

Step2: Eliminate the parameter k from (7), and (8), we obtain the
differential equation

dy

dx
=

y

x
, (9)
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Applications of First Order Differential Equation Orthogonal Trajectories

This gives the differential equation of the family (7).

Step3: Replacing dy
dx by −1dy

dx

in (9) we obtain

dy

dx
= −x

y
, (10)

Step4: Solving differential equation (10), we obtain

x2 + y2 = c. (11)

Thus, the orthogonal trajectories of family of straight lines through the
origin is given by (11). Note that (11) is the family of circles with centre
at the origin.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 8 / 39



Applications of First Order Differential Equation Orthogonal Trajectories

Example (2)

Find the orthogonal trajectories of the family

cx2 − y2 = 1, (12)

Solution: To find the orthogonal trajectories, we follow the previous four
steps:
Step1: Differentiate (12) implicitly with respect to x, we obtain

2cx− 2y
dy

dx
= 0. (13)

Step2: Eliminate the parameter c. From (12) we have

c =
1 + y2

x2

Thus, we obtain the differential equation

dy

dx
=

1 + y2

xy
, (14)
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Applications of First Order Differential Equation Orthogonal Trajectories

This gives the differential equation of the family (12).

Step3: Replacing dy
dx by −1dy

dx

in (14) we obtain

dy

dx
=
−xy
1 + y2

. (15)

Step4: Solving differential equation (15) by method of separation of
variables, we obtain ∫

1 + y2

y
dy = −

∫
x dx

∫ (
1

y
+ y

)
dy = −

∫
x dx

ln y + (y2/2) = (−x2/2) + c1

2 ln y + y2 + x2 = c1. (16)

Thus, the required equation of orthogonal trajectories is given by (16).
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Applications of First Order Differential Equation Orthogonal Trajectories

Example (3)

Find the orthogonal trajectories of the family

y2 = cx3, (17)

Solution: To find the orthogonal trajectories, we follow the previous four
steps:
Step1: Differentiate (17) implicitly with respect to x, we obtain

dy

dx
=

3cx2

2y
. (18)

Step2: Eliminate the parameter c. From (17) we have

c =
y2

x3

Thus, we obtain the differential equation

dy

dx
=

3y

2x
= f(x, y), (19)
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Applications of First Order Differential Equation Orthogonal Trajectories

This gives the differential equation of the family (17).

Step3: Replacing dy
dx by −1dy

dx

in (14) we obtain

dy

dx
=
−2x
3y

. (20)

Step4: Solving differential equation (20) by method of separation of
variables, we obtain ∫

3y dy = −
∫

2x dx

3

2
y2 + x2 = c1. (21)

Thus, the required equation of orthogonal trajectories is given by (21).
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Applications of First Order Differential Equation Orthogonal Trajectories

Example (4)

Find the orthogonal trajectories of the family

x3 + 3xy2 = c (22)

Solution: To find the orthogonal trajectories, we follow the previous four
steps:
Step1: Differentiate (22) implicitly with respect to x, we obtain

3x2 + 3y2 + 6xy
dy

dx
= 0. (23)

Step2: Equation (23) has no parameter, so, we will go to the next step.

dy

dx
= −x2 + y2

2xy
= f(x, y), (24)
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Applications of First Order Differential Equation Orthogonal Trajectories

This gives the differential equation of the family (22).

Step3: Replacing dy
dx by −1dy

dx

in (24) we obtain

dy

dx
=

2xy

x2 + y2
. (25)

This gives the differential equation of the orthogonal trajectories. Now we
have to solve (25) to get the required equation of orthogonal trajectories.

Step4: Solving differential equation (25). We see that the equation (25) is
a homogeneous differential equation

(x2 + y2)dy − 2xydx = 0,

by substituting x = vy ⇒ 1 = v dy
dx + y dv

dx ⇒ dx = vdy + ydv.
After completing the solution of this homogeneous differential equation,
we obtained the equation of family of orthogonal trajectories

(y2 − x2) = cy.
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Applications of First Order Differential Equation Orthogonal Trajectories

Exercises

1 Find the orthogonal trajectories of the circles

x2 + (y − c)2 = c2, c 6= 0

2 Find the orthogonal trajectories of the family of curves

y = x+ ce−x

3 Find the orthogonal trajectories of the family of curves

2x2 + y2 = 6cx

4 Find the orthogonal trajectories of the family of curves

2y + x+ ce2y = 0
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Applications of First Order Differential Equation Growth and Decay

Growth and Decay

In many natural phenomena, quantities grow or decay at a rate
proportional to their size. For example, if y = y(t) is the number of
individuals in a population of animals or bacteria at time t, then it seems
reasonable to expect that the rate of growth y′(t) is proportional to the
population y(t); that is, y′(t) = ky(t) for some constant k.

The mathematical model given by the equation y′(t) = ky(t) can be
predicted what actually happens fairly accurately under ideal conditions
(unlimited environment, adequate nutrition, immunity to disease).
Also, we can see many examples in nuclear physics, chemistry and finance.
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Applications of First Order Differential Equation Growth and Decay

In general, if y(t) is the value of a quantity y at time t and if the rate of
change of y with respect to t is proportional to its size y(t) at any time,
then

dy

dt
= ky, (26)

where k is a constant, and Equation (26) is sometimes called the law of
natural growth (if k > 0) or the law of natural decay (if k < 0).
Thus, the law of Exponential Growth and Decay can be written as

y = cekt,

c is the initial value and can be found from the initial condition y(t0) = y0
k is the constant of proportionality, which is can be found from an
additional condition which might be given in the problem.

Note

If k > 0 the exponential growth occurs, and if k < 0 the exponential decay
occurs.
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Applications of First Order Differential Equation Growth and Decay

To proof that let us take some initial time quantity is known and is
y(t0) = y0. The differential equation

dy

dt
= ky

is separable differential equation and we can solve it.

dy

dt
= ky

dy

y
= kdt∫

dy

y
=

∫
kdt

ln y = kt+ c

eln y = ekt+c

y = ecekt

y = c1e
kt; c1 = ±ec
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Applications of First Order Differential Equation Growth and Decay

Using the initial condition y(0) = y0, i.e t0 = 0, y = y0

y0 = c1e
0 ⇒ y0 = c1

y = y0e
kt.

To find the additional constant k we need additional condition which
might be given in the problem.
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Applications of First Order Differential Equation Growth and Decay

Example (1)

A certain culture of bacteria grows at rate proportional to its size. If the
size doubles in 4 days, find the time required for the culture to increase to
10 times to its original size.

Solution Let p(t) be the size of the culture after t days.

dp

dt
= kp

we will use the initial condition

p(0) = p0

to find the arbitrary constant c, and we will find the additional constant k
by using the additional condition

p(4) = 2p0.
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Applications of First Order Differential Equation Growth and Decay

We have
p = cekt

from the initial condition p(0) = p0 i.e. t = 0, p = p0 we will have
arbitrary constant c, thus

p0 = ce0 ⇒ c = p0,

hence, we have
p = p0e

kt.

Now by using the the additional condition p(4) = 2p0 i.e. t = 4, we we
can find the additional constant k

2p0 = p0e
4k

e4k = 2

ln
(
e4k
)
= ln 2

4k = ln 2 ⇒ k =
ln 2

4
' 0.173
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Applications of First Order Differential Equation Growth and Decay

Thus, the time is required for the culture to increase 10 times to its
original size can be found from

10p0 = p0e
0.173t

e0.173t = 10

ln
(
e0.173t

)
= ln 10

t =
ln 10

0.173

t ' 13.31 days.
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Applications of First Order Differential Equation Growth and Decay

Example (2)

Use the fact that the world population was 2560 million in 1950 and 3040
million in 1960 to model the population of the world in the second half of
the 20th century. (Assume that the growth rate is proportional to the
population size.) What is the relative growth rate k? Use the model to
estimate the world population in 1993 and to predict the population in the
year 2020.

Solution We measure the population p(t) in millions of people. We have

dp

dt
= kp ⇒ p = cekt

and we have the initial condition

p(t0) = p0 ⇒ p(0) = 2560,

thus, we can find the arbitrary constant c

p = cekt ⇒ p(0) = ce0 ⇒ 2560 = c.
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Applications of First Order Differential Equation Growth and Decay

Now we will find the additional constant k (the relative growth rate) by
using the additional condition

p(10) = 3040.

p = cekt

3040 = 2560e10k

e10k =
3040

2560

ln
(
e10k

)
= ln 1.1875

10k = ln 1.1875 ⇒ k =
ln 1.1875

10
' 0.01785.

The relative growth rate is about 1.7% per year and the model is

p(t) = 2560e0.017185t.
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Applications of First Order Differential Equation Growth and Decay

We estimate that the world population in 1993 was by using the model

p(t) = 2560e0.017185t.

p(43) = 2560e0.017185(43) ' 5360 million.

The model predicts that the population in 2020 will be

p(70) = 2560e0.017185(70) ' 8524 million.

Figure: A model for world population growth in the 2nd half of the 20th century
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Applications of First Order Differential Equation Growth and Decay

Exercise

The population of a town at a rate proportional to the population size at
any time. Its initial population of 1000 increases by 10% in 5 years. What
will be the population after 50 years?

(Hint: p(0) = 1000, p(5) = 1000 + (1000/10) = 1100)

MATH204-Differential Equations Center of Excellence in Learning and Teaching 26 / 39



Applications of First Order Differential Equation Growth and Decay

Example (3)

A radio active material has an initial mass 100mg. After two years it is left
to 75mg. Find the amount of the material at any time. What is the period
of its half-life?

Solution We measure the amount of the material present at any time t.
We have

dy

dt
= ky ⇒ y = cekt

and we have the initial condition

y(t0) = y0 ⇒ y(0) = 100,

thus, we can find the arbitrary constant c

y = cekt ⇒ y(0) = ce0 ⇒ 100 = c.
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Applications of First Order Differential Equation Growth and Decay

y = 100ekt

Now we will find the additional constant k by using the additional
condition

y(2) = 75.

75 = 100e2k

e2k =
75

100

ln
(
e10k

)
= ln 0.75

2k = ln 0.75 ⇒ k =
ln 0.75

2
' −0.1438.

Thus, we have
y(t) = 100e−0.1438t.
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Applications of First Order Differential Equation Growth and Decay

y(t) = 100e−0.1438t,

from the latest equation we will find the Half-life of the material which is
the time when y = 50mg.

50 = 100e−0.1438t

e−0.1438t = 0.5

ln e−0.1438t = ln 0.5

−0.1438t = ln 0.5

t =
ln 0.5

−0.1438
' 4.82 years.
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Applications of First Order Differential Equation Growth and Decay

Exercise

Initially there were 100 milligrams (mg.) of a radioactive substance present
after 6 hours the mass decreased by 3%. If the rate of decay is
proportional to the amount remaining after 24 hours. Determine the
half-life of radioactive substance.
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Applications of First Order Differential Equation Newton’s Law of cooling

Newton’s Law of cooling

Newtons Law of Cooling states that the rate of cooling of an object is
proportional to the temperature difference between the object and its
surroundings, provided that this difference is not too large.

If we let T (t) be the temperature of the object at time t and Ts be the
temperature of the surroundings, then we can formulate Newtons Law of
Cooling as a differential equation:

dT

dt
= k(T − Ts), (27)

where k is a constant of proportionality.

We could solve equation (27) as a separable differential equation
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Applications of First Order Differential Equation Newton’s Law of cooling

dT

dt
= k(T − Ts)

dT

T − Ts
= kdt∫

dT

T − Ts
=

∫
kdt

ln(T − Ts) = kt+ c1

eln(T−Ts) = ekt+c1

T − Ts = ektec1 = cekt,

thus,
T = Ts + cekt. (28)

The constant of integration c can be calculated by using the initial
condition and the constant of proportionality k can be calculated by using
an additional condition.
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Applications of First Order Differential Equation Newton’s Law of cooling

Example (1)

A glass of a hot water has an initial temperature 80◦C, placed in a room
where the temperature is 30◦C. After one minute the water temperature
drops to 70◦C. What will be the temperature after 3 minutes? At what
time the water cools down to 40◦C?

Solution We have the Newtons Law of Cooling is given from

dT

dt
= k(T − Ts) ⇒ T = Ts + cekt.

Also we have the initial condition T (0) = 80◦, the temperature of the
surrounding Ts = 30◦, and the additional condition T (1) = 70◦

T = Ts + cekt ⇒ T (0) = 30 + ce0 ⇒ 80 = 30 + c ⇒ c = 50.

Thus,
T = 30 + 50ekt.
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Applications of First Order Differential Equation Newton’s Law of cooling

Now we will find the additional constant k by using the additional
condition T (1) = 70◦

T = 30 + 50ekt,

T (1) = 30 + 50ek ⇒ 70 = 30 + 50ek ⇒ ek =
40

50

ln
(
ek
)
= ln 0.8

k = ln(0.8).

Thus, the temperature of the water at any time is given by

T (t) = 30 + 50eln(0.8)t,

so, when t = 3 we have the temperature of the water

T (3) = 30 + 50e3 ln(0.8)

T (3) = 30 + 25.6 = 55.6◦C.
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Applications of First Order Differential Equation Newton’s Law of cooling

Now we will find the time t when the water cools down to 40◦

T = 30 + 50ekt,

40 = 30 + 50ekt

40 = 30 + 50eln(0.8)t

eln(0.8)t =
10

50

ln
(
eln(0.8)t

)
= ln 0.2

ln(0.8)t = ln 0.2

t =
ln 0.2

ln 0.8

t ' 7.2mins.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 35 / 39



Applications of First Order Differential Equation Newton’s Law of cooling

Example (2)

A bottle of soda at room temperature 72◦F is placed in a refrigerator
where the temperature is 44◦F. After half an hour the soda has cooled to
61◦F.
(a) What is the temperature of the soda after another half hour?
(b) How long does it take for the soda to cool to 50◦F?

Solution We have the Newtons Law of Cooling is given from

dT

dt
= k(T − Ts) ⇒ T = Ts + cekt.

Also we have the initial condition T (0) = 72◦, the temperature of the
surrounding Ts = 44◦, and the additional condition T (30) = 61◦

T = Ts + cekt ⇒ T (0) = 44 + ce0 ⇒ 72 = 44 + c ⇒ c = 28.

Thus,
T = 44 + 28ekt.
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Applications of First Order Differential Equation Newton’s Law of cooling

Now we will find the additional constant k by using the additional
condition T (1) = 70◦

T = 44 + 50ekt,

T (30) = 44 + 28e30k ⇒ 61 = 44 + 28e30k ⇒ e30k =
17

28

ln
(
e30k

)
= ln 0.607

30k = ln(0.607) ⇒ k = −0.0166

Thus, the temperature of the water at any time is given by

T (t) = 44 + 28e−0.0166t.

(a) When t = 60 we have the temperature of the water

T (60) = 44 + 28e60×(−0.0166)

T (60) ' 54.3
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Applications of First Order Differential Equation Newton’s Law of cooling

(b) We have T (t) = 50 when

50 = 44 + 28e−0.0166t,

e−0.0166t =
6

28

ln
(
e−0.0166t

)
= ln

−0.0166t = ln 0.214

t =
ln 0.214

−0.0166
t ' 92.9 mins.

Thus, the soda cools to 50◦F after about 1 hour 33 minutes.
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Applications of First Order Differential Equation Newton’s Law of cooling

Exercise

A small metal bar, whose initial temperature was 20◦C, is dropped in to
large container of boiling water. How long will it take the bar to reach
90◦C if it is known that its temperature increase 2◦C per second? How
will it take the bar to reach 98◦C.
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