Linear Differential Equations of Higher Order

Dr Mansoor Alshehri

King Saud University

Linear Differential Equations of Higher Order

- General Solution of homogeneous linear differential equations
- Initial-Value Problem (IVP)
- Boundary-Value Problem (BVP)
- Existence and Uniqueness of the Solution to an IVP
- Linear Dependence and Independence of Functions
- Criterion of Linearly Independent Solutions
- Fundamental Set of Solutions
- Reduction of order Method (when one solution is given)
- Homogeneous Linear Differential Equations with Constant Coefficients
- Cauchy-Euler Differential Equation
- General Solutions of Nonhomogeneous Linear Differential Equations
- Undetermined coefficients
- Variation of Parameters

General Solution of Homogeneous Linear Differential Equations

Definition

The general linear differential equations of order n is an equation that can be written

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x), \tag{1}
\end{equation*}
$$

where $a_{n}(x), a_{n-1}(x), a_{1}(x)$ and $a_{0}(x)$ are functions of $x \in \mathrm{I}=(a, b)$, and they are called coefficients.
Equation (1) is called homogeneous linear differential equation if the function $g(x)$ is zero for all $x \in(a, b)$.
If $g(x)$ is not equal to zero on I , the equation (1) is called non-homogeneous linear differential equation.

Initial-Value Problem (IVP)

An n-th order initial-value problem associate with (1) takes the form: Solve:

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

subject to:

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, y^{\prime \prime}\left(x_{0}\right)=y_{2}, \ldots, y^{n-1}\left(x_{0}\right)=y_{n-1} . \tag{2}
\end{equation*}
$$

Here (2) is a set of initial conditions.

Boundary-Value Problem (BVP)

Remark (Initial vs. Boundary Conditions)
 Initial Conditions: all conditions are at the same $x=x_{0}$.
 Boundary Conditions: conditions can be at different x.

Remark (Number of Initial/Boundary Conditions)
Usually a n-th order ODE requires n initial/boundary conditions to specify an unique solution.

Remark (Order of the derivatives in the conditions) Initial/boundary conditions can be the value or the function of 0 -th to ($n-1$)-th order derivatives, where n is the order of the ODE.

Example (Second-Order ODE)

Consider the following second-order ODE

$$
\begin{equation*}
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d^{\prime} y}{d x^{\prime}}+a_{0}(x) y=g(x) \tag{3}
\end{equation*}
$$

- IVP: Solve (3) s.t. $y\left(x_{0}\right)=y_{0} ; y^{\prime}\left(x_{0}\right)=y_{1}$.
- BVP: Solve (3) s.t. $y(a)=y_{0} ; y(b)=y_{1}$.
- BVP: Solve (3) s.t. $y(b)=y_{0} ; y(a)=y_{1}$.

Existence and Uniqueness of the Solution to an IVP

Theorem

For the given linear differential equations of order n

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x), \tag{4}
\end{equation*}
$$

which is normal on an interval I. Subject to

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, y^{\prime \prime}\left(x_{0}\right)=y_{2}, \ldots, y^{n-1}\left(x_{0}\right)=y_{n-1} . \tag{5}
\end{equation*}
$$

If $a_{n}(x), a_{n-1}(x), \ldots, a_{0}(x)$ and $R(x)$ are all continuous on an interval I, $a_{n}(x)$ is not a zero function on I, and the initial point $x_{0} \in I$, then the above IVP has a unique solution in I.

Example (1)

Discuss the Existence of unique solution of $I V P$

$$
\left\{\begin{aligned}
\left(x^{2}+1\right) y^{\prime \prime}+x^{2} y^{\prime}+5 y & =\cos (x) \\
y(3)=2, \quad y^{\prime}(3) & =1
\end{aligned}\right.
$$

Solution The functions

$$
a_{2}(x)=x^{2}+1, a_{1}(x)=x^{2}, a_{0}(x)=5
$$

and

$$
R(x)=\cos (x) .
$$

are continuous on $I=\mathbb{R}=(-\infty, \infty)$ and $a_{2}(x) \neq 0$ for all $x \in \mathbb{R}$, the point $x_{0}=3 \in I$. Then the previous Theorem assures that the $I V P$ has a unique solution on \mathbb{R}.

Example (2)

Find an interval I for which the initial values problem (IVP)

$$
\left\{\begin{array}{c}
x^{2} y^{\prime \prime}+\frac{x}{\sqrt{2-x}} y^{\prime}+\frac{2}{\sqrt{x}} y=0 \\
y(1)=0, \quad y^{\prime}(1)=1
\end{array}\right.
$$

has a unique solution around $x_{0}=1$.
Solution The function

$$
a_{2}(x)=x^{2},
$$

is continuous on \mathbb{R} and $a_{2}(x) \neq 0$ if $x>0$ or $x<0$. But $x_{0}=1 \in$ $I_{1}=(0, \infty)$. The function

$$
a_{1}(x)=\frac{x}{\sqrt{2-x}},
$$

is continuous on $I_{2}=(-\infty, 2)$ and the function

$$
a_{0}(x)=\frac{2}{\sqrt{x}},
$$

is continuous on $I_{1}=(0, \infty)$.
Then the (IVP)has a unique solution on $I_{1} \cap I_{2}=(0,2)=I$. We can take any interval $I_{3} \subset(0,2)$ such that $x_{0}=1 \in I_{3}$. So I is that the largest interval for which the ($I V P$) has a unique solution.

Example (3)

Find an interval I for which the $I V P$

$$
\left\{\begin{array}{c}
(x-1)(x-3) y^{\prime \prime}+x y^{\prime}+y=x^{2} \\
y(2)=1 \quad, \quad y^{\prime}(2)=0
\end{array}\right.
$$

has a unique solution about $x_{0}=2$.
Solution The functions

$$
a_{2}(x)=(x-1)(x-3), a_{1}(x)=x, a_{0}(x)=1, R(x)=x^{2}
$$

are continuous on \mathbb{R}. But $a_{2}(x) \neq 0$ if $x \in(-\infty, 1)$ or $x \in(1,3)$ or $x \in(3, \infty)$. As $x_{0}=2$ so we take $I=(1,3)$. Then the $I V P$ has a unique solution on $I=(1,3)$

Exercises

(1) Discuss the Existence of unique solution of $I V P$

$$
\left\{\begin{aligned}
(|x|+3) y^{\prime \prime}+x^{3} y^{\prime}+5 y & =\sin (x) \\
y(2)=1, \quad y^{\prime}(2) & =0 .
\end{aligned}\right.
$$

(2) Find an interval I for which the $I V P$

$$
\left\{\begin{array}{c}
(x-2) y^{\prime \prime}+3 y=x \\
y(0)=0 \quad, \quad y^{\prime}(0)=1
\end{array} .\right.
$$

has a unique solution about $x_{0}=0$.
(3) Find an interval I for which the $I V P$

$$
\left\{\begin{array}{c}
y^{\prime \prime}+(\tan x) y=e^{x} \\
y(0)=1 \quad, \quad y^{\prime}(0)=0
\end{array} .\right.
$$

has a unique solution about $x_{0}=0$.

Linear Dependence and Independence of Functions

Definition

A set of functions $\left\{f_{1}(x), f_{2}(x) \ldots, f_{n}(x)\right\}$ are linearly dependent on an interval I if $\exists c_{1}, c_{2}, \ldots, c_{n}$ not all zero i.e. $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \neq(0,0, \ldots, 0)$ such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0, \quad \forall x \in I
$$

that is, the linear combination is a zero function.
If the set of functions is not linearly dependent, it is linearly independent, i.e. when $c_{1}, c_{2}, \ldots, c_{n}$ all zero i.e. $\left(c_{1}, c_{2}, \ldots, c_{n}\right)=(0,0, \ldots, 0)$.

Example (1)

Show that $f_{1}(x)=\cos (2 x), f_{2}(x)=1, f_{3}(x)=\cos ^{2}(x)$ are linearly dependent on \mathbb{R}.

Solution We know that

$$
f_{3}(x)=\cos ^{2}(x)=\frac{1+\cos (2 x)}{2}=\frac{1}{2} f_{2}(x)+\frac{1}{2} f_{1}(x)
$$

for all $x \in \mathbb{R}$. Then there exist $c_{1}=c_{2}=\frac{1}{2}$ and $c_{3}=-1$ such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0 \quad \text { for all } x \in \mathbb{R} .
$$

So f_{1}, f_{2} and f_{3} are linearly dependent on \mathbb{R}.

Example (2)

Show that

$$
f_{1}(x)=1, f_{2}(x)=\sec ^{2}(x) \text { and } f_{3}(x)=\tan ^{2}(x)
$$

are linearly dependent on $\left(0, \frac{\pi}{2}\right)$.
Solution We know that

$$
f_{2}(x)=\sec ^{2}(x)=1+\tan ^{2}(x)=f_{1}(x)+f_{3}(x)
$$

hence

$$
f_{1}(x)-f_{2}(x)+f_{3}(x)=0 \text { for all } x \in\left(0, \frac{\pi}{2}\right) .
$$

So there exist $c_{1}=c_{3}=1$ and $c_{2}=-1$ such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0 \quad \text { for all } x \in\left(0, \frac{\pi}{2}\right) .
$$

So f_{1}, f_{2} and f_{3} are linearly dependent on $\left(0, \frac{\pi}{2}\right)$.

Example (3)

Show that $f_{1}(x)=x$ and $f_{2}(x)=x^{2}$ are linearly independent on $I=[-1,1]$.

Solution Let $c_{1}, c_{2} \in \mathbb{R}$ such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)=0, \quad \text { for all } x \in I .
$$

We have to prove that $c_{1}=c_{2}=0$. As

$$
c_{1} x+c_{2} x^{2}=0 \text { for all }-1 \leq x \leq 1,
$$

then for $x=1$ and $x=-\frac{1}{2}$ we have

$$
c_{1}+c_{2}=0,
$$

and

$$
-\frac{1}{2} c_{1}+\frac{1}{4} c_{2}=0,
$$

Example (4)

Show that

$$
f_{1}(x)=\sin (x), f_{2}(x)=\sin (2 x)
$$

are linearly independent on $I=[0, \pi)$.
Solution Let $c_{1}, c_{2} \in I$ such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)=0 \quad \text { for all } x \in I .
$$

We have to show that $c_{1}=c_{2}=0$. In fact for $x=\frac{\pi}{4}$ and $x=\frac{\pi}{3}$ we have

$$
\left\{\begin{array}{c}
c_{1} \sin \left(\frac{\pi}{4}\right)+c_{2} \sin \left(\frac{\pi}{2}\right)=0 \\
c_{1} \sin \left(\frac{\pi}{3}\right)+c_{2} \sin \left(2 \frac{\pi}{3}\right)=0
\end{array}\right.
$$

hence

$$
\frac{1}{\sqrt{2}} c_{1}+c_{2}=0 \quad, \quad \frac{\sqrt{3}}{2} c_{1}+\frac{\sqrt{3}}{2} c_{2}=0
$$

Example (5)

Show that

$$
f_{1}(x)=x^{2} \text { and } f_{2}(x)=x|x|
$$

(i) linearly dependent on $[0,1]$
(ii) linearly independent on $[-1,1]$

Solution

(i) on $[0,1]$ we have

$$
f_{1}(x)=f_{2}(x)=x^{2},
$$

hence

$$
f_{1}(x)-f_{2}(x)=0 \text { for all } 0 \leq x \leq 1
$$

So there exist $c_{1}=1, c_{2}=-1$ such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)=0 \quad \text { for all } \quad 0 \leq x \leq 1
$$

Then f_{1} and f_{2} are linearly dependent on $[0,1]$.
(ii) Let $c_{1}, c_{2} \in \mathbb{R}$ such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)=0 \text { for all }-1 \leq x \leq 1,
$$

hence

$$
c_{1} x^{2}+c_{2} x|x|=0 \text { for all }-1 \leq x \leq 1 .
$$

Now for $x=1$ and $x=-1$ we have $c_{1}+c_{2}=0$ and $c_{1}-c_{2}=0$ which implies that $c_{1}=c_{2}=0$. Then f_{1} and f_{2} are linearly independent on $[-1,1]$.

Exercises

(1) Determine whether the functions

$$
f_{1}(x)=x, f_{2}(x)=x^{2}, \quad f_{3}(x)=4 x-x^{2}
$$

are linearly dependent or independent on $(-\infty, \infty)$.
(2) Determine whether the functions

$$
f_{1}(x)=e^{x}, f_{2}(x)=e^{-x}, \quad f_{3}(x)=\cosh x .
$$

are linearly dependent or independent on $(-\infty, \infty)$.
(3) Determine whether the functions

$$
f_{1}(x)=x, f_{2}(x)=x^{2}-1, \quad f_{3}(x)=x^{2}+2 x+1
$$

are linearly dependent or independent on $[0,1]$.

Criterion of Linearly Independent Solutions

Consider the homogeneous linear n-th order DE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Given n solutions $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$, we would like to test if they are independent or not.

Note: In Linear Algebra, to test if n vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are linearly independent, we can compute the determinant of the matrix.

$$
\mathrm{V}:=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]
$$

If the determinant of $\mathrm{V}=0$, they are linearly dependent; if the determinant of $\mathrm{V} \neq 0$, they are linearly independent.

Definition

For n functions $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ which are $n-1$ times differentiable on an interval I, the Wronskian $W\left(x, f_{1}, f_{2}, \ldots, f_{n}\right)$ as a function on I is defined by

$$
W\left(x, f_{1}, f_{2}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & \ldots & f_{n}^{\prime \prime} \\
\ldots & \ldots & \ldots & \ldots \\
f_{1}^{n-1} & f_{2}^{n-1} & \ldots . & f_{n}^{n-1}
\end{array}\right|
$$

To test the linear independence of n solutions $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ to

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{6}
\end{equation*}
$$

we can use the following theorem.

Theorem

Let $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ be n solutions to the homogeneous linear $D E$ (6) on an interval I. They are linearly independent on I

$$
\Longleftrightarrow W\left(x, f_{1}, f_{2}, \ldots, f_{n}\right):=\left|\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \ldots & f_{n}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & \ldots & f_{n}^{\prime \prime} \\
\ldots & \ldots & \ldots & \ldots \\
f_{1}^{n-1} & f_{2}^{n-1} & \ldots & f_{n}^{n-1}
\end{array}\right| \neq 0 .
$$

Example (1)

Prove that $f_{1}(x)=x^{2}, f_{2}(x)=x^{2} \ln (x)$ are linearly independent on $(0, \infty)$.

Solution We have that

$$
\begin{aligned}
W\left(f_{1}, f_{2}\right) & =\left|\begin{array}{cc}
x^{2} & x^{2} \ln (x) \\
2 x & 2 x \ln (x)+x
\end{array}\right| \\
& =2 x^{3} \ln (x)+x^{3}-2 x^{3} \ln (x)=x^{3} \neq 0
\end{aligned}
$$

for all $x \in(0, \infty)$,
then f_{1} and f_{2} are linearly independent on $(0, \infty)$.

Example (2)

It is easy to see that the functions

$$
y_{1}=x, y_{2}=x^{2},
$$

and

$$
y_{3}=x^{3} .
$$

are solutions of the differential equation

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0 .
$$

Show that y_{1}, y_{2} and y_{3} are linearly independent on $(0, \infty)$.
Solution Here we have $a_{3}(x)=x^{3} \neq 0$ for all $x>0$ or $x<0$. By using the Wronskian we have

$$
W\left(y_{1}, y_{2}, y_{3}\right)=\left|\begin{array}{ccc}
x & x^{2} & x^{3} \\
1 & 2 x & 3 x^{2} \\
0 & 2 & 6 x
\end{array}\right|=2 x^{3} \neq 0
$$ independent on $(0, \infty)$.

Example

Show that the functions: $f_{1}(x)=x, f_{2}(x)=x-1$ and $f_{3}(x)=x+3$ are linearly dependent or linearly independent on \mathbb{R}.

$$
W\left(f_{1}, f_{2}, f_{3}\right)=\left|\begin{array}{ccc}
x & x-1 & x+3 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right|=0, \text { for all } x \in \mathbb{R}
$$

so these functions might be linearly dependent or linearly independent on \mathbb{R}.

Now we need to do the following steps to determine if they are linearly dependent or linearly independent on \mathbb{R}.
Let c_{1}, c_{2} and $c_{3} \in \mathbb{R}$ thus $c_{1} x+c_{2}(x+1)+c_{3}(x+3)=0$ for all $x \in \mathbb{R}$.
For $x=0, x=1$ and $x=-1$ we have
$-c_{2}+3 c_{3}=0$
$c_{1}+4 c_{3}=0$
$-c_{1}-2 c_{2}+2 c_{3}=0$

$$
\left|\begin{array}{ccc}
0 & -1 & 3 \\
1 & 0 & 4 \\
-1 & -2 & 2
\end{array}\right|=+1(2+4)+3(-2)=6-6=0
$$

so these equations have infinity solutions.
$c_{1}=1, c_{2}=-3 / 4$ and $c_{3}=-1 / 4$, thus we have
$(1) x-3 / 4(x-1)-1 / 4(x+3)=0$ for all $x \in \mathbb{R}$ So, f_{1}, f_{2}, f_{3} are
linearly dependent on \mathbb{R}.

Exercises

(1) Show by computing the Wronskian that the functions

$$
f_{1}(x)=x, f_{2}(x)=x e^{x}, \quad f_{3}(x)=x^{2} e^{x}
$$

are linearly dependent or independent on $(0, \infty)$.
(2) Show that the functions

$$
y_{1}=\cosh (2 x)
$$

and

$$
y_{2}=\sinh (2 x)
$$

are solutions of the differential equation

$$
y^{\prime \prime}-4 y^{\prime}=0 .
$$

Show that y_{1} and y_{2} are linearly independent on $(-\infty, \infty)$.

Fundamental Set of Solutions

Definition

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0 \tag{7}
\end{equation*}
$$

Any set $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ of n linearly independent solutions to the homogeneous linear n-th order DE (7) on an interval I is called a fundamental set of solutions.

Theorem

Let $\left\{f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right\}$ be a fundamental set of solutions to the homogeneous linear n-th order $D E(7)$ on an interval I. Then the general solution to (7) is

$$
y(x)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x),
$$

where $\left\{c_{i} \mid(i=1,2, \ldots, n)\right\}$ are arbitrary constants.

Example (1)

Verify that $y_{1}=e^{2 x}$ and $y_{2}=e^{-3 x}$ form a fundamental set of solutions of the differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=0 .
$$

and find the general solution.
Solution Substituting

$$
y_{1}=e^{2 x}, y_{1}^{\prime}=2 e^{2 x}, y_{1}^{\prime \prime}=4 e^{2 x}
$$

in the differential equation we have

$$
4 e^{2 x}+2 e^{2 x}-6 e^{2 x}=0
$$

Hence $y_{1}=e^{2 x}$ is a solution of the differential equation. By the same method we can prove that $y_{2}=e^{-3 x}$ is also a solution of the differential equation.

Now we have

$$
W\left(e^{2 x}, e^{-3 x}\right)=\left|\begin{array}{cc}
e^{2 x} & e^{-3 x} \\
2 e^{2 x} & -3 e^{-3 x}
\end{array}\right|=-5 e^{-x} \neq 0 \text { for all } x \in \mathbb{R}
$$

Then y_{1} and y_{2} are linearly independent on \mathbb{R}. From the previous Theorem we deduce the general solution of the differential equation given by

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

where $c_{1}, c_{2} \in \mathbb{R}$.

Example (2)

It is easy to see that the functions

$$
y_{1}=e^{x}, y_{2}=e^{2 x}, \quad \text { and } y_{3}=e^{3 x}
$$

are solutions of the differential equation

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0
$$

Find the general solution of the differential equation.

Solution Since

$$
W\left(e^{x}, e^{2 x}, e^{3 x}\right)=\left|\begin{array}{ccc}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right|=2 e^{6 x} \neq 0
$$

for all $x \in \mathbb{R}$.

We deduce that

$$
y(x)=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x} .
$$

is the general solution of the differential equation.

Example (3)

Prove that

$$
y_{1}=x^{3} e^{x}, \text { and } y_{2}=e^{x} .
$$

are solutions of the differential equation

$$
x y^{\prime \prime}-2(x+1) y^{\prime}+(x+2) y=0
$$

where $x>0$. Find also the general solution of the differential equation.
Solution Substituting

$$
y_{1}=x^{3} e^{x}, y_{1}^{\prime}=3 x^{2} e^{x}+x^{3} e^{x}, y_{1}^{\prime \prime}=6 x e^{x}+6 x^{2} e^{x}+x^{3} e^{x}
$$

in the differential equation we have
$6 x^{2} e^{x}+6 x^{3} e^{x}+x^{4} e^{x}-6 x^{3} e^{x}-2 x^{4} e^{x e^{x}}-6 x^{2} e^{x}+-2 x^{3} e^{x}+x^{4} e^{x}+2 x^{3} e^{x}=0$.
Substituting

$$
y_{2}=y_{2}^{\prime}=y_{2}^{\prime \prime}=e^{x},
$$

in the differential equation

$$
x e^{x}-2 x e^{x}-2 e^{x}+x e^{x}+2 e^{x}=0 .
$$

Now we have to show that

$$
y_{1}=x^{3} e^{x}
$$

and

$$
y_{2}=e^{x} .
$$

are linearly independent on $(0, \infty)$.
In fact

$$
W\left(x^{3} e^{x}, e^{x}\right)=\left|\begin{array}{cc}
x^{3} e^{x} & e^{x} \\
3 x^{2} e^{x}+x^{3} e^{x} & e^{x}
\end{array}\right|=-3 x^{2} e^{x} \neq 0 \text { for all } x>0
$$

Then

$$
y_{1}=x^{3} e^{x}
$$

and

$$
y_{2}=e^{x} .
$$

are linearly independent on $(0, \infty)$ and we conclude that

$$
y_{c}=c_{1} x^{3} e^{x}+c_{2} e^{x} .
$$

is the general solution of the differential equation.

Exercises

Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval, then find the general solution of the differential equation.

- $y^{\prime \prime}-y^{\prime}-12 y=0 ; \quad e^{-3 x}, \quad e^{4 x}$ on $(-\infty, \infty)$
- $x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+4 x y^{\prime}-4 y=0 ; \quad x, \quad x^{-2}, x^{-2} \ln x$ on $(0, \infty)$
- $y^{(4)}+y^{\prime \prime}=0 ; \quad 1, x, \sin x, \cos x$ on $(0, \infty)$

Reduction of order Method (when one solution is given)

It is employed when one solution $y_{1}(x)$ is known and a second linearly independent solution $y_{2}(x)$ is desired. The method also applies to n-th order equations.

Suppose that $y_{1}(x)$ is a non-zero solution of the equation

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0, \tag{8}
\end{equation*}
$$

where $a_{0}(x), a_{1}(x)$ and $a_{2}(x)$ are continuous functions defined on interval I sauch that $a_{2}(x) \neq 0$ for all $x \in I$.

The method of reduction of order is used to obtain a second linearly independent $y_{2}(x)$ solution to this differential equation (8) using our one known solution.

We suppose that the solution of (8) is in the form

$$
y=u(x) y_{1},
$$

where u is a fountain of x and which will be determined and satisfies a linear second-order differential equation (8) by using the following method

$$
y=u(x) y_{1} \Rightarrow y^{\prime}=u^{\prime} y_{1}+y_{1}^{\prime} u \Rightarrow y^{\prime \prime}=u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+y_{1}^{\prime \prime} u .
$$

It is best to describe the procedure with a concrete example.

Example (1)

If

$$
y_{1}=\frac{\sin x}{\sqrt{x}}
$$

is a solution of the differential equation

$$
4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0 \quad \text { on } 0<x<\pi
$$

then find the general solution of the differential equation..
Solution The solution of the differential equation is of the form $y=u(x) y_{1}$ or

$$
y=\frac{\sin x}{\sqrt{x}} u=(\sin x)(x)^{\frac{-1}{2}} u
$$

hence

$$
y^{\prime}=(\cos x)(x)^{\frac{-1}{2}} u-\frac{1}{2} \sin x(x)^{\frac{-3}{2}} u+\sin x(x)^{\frac{-1}{2}} u^{\prime}
$$

$$
\begin{aligned}
y^{\prime \prime}= & -\sin x(x)^{\frac{-1}{2}} u-\cos x(x)^{\frac{-3}{2}} u+2 \cos x(x)^{\frac{-1}{2}} u^{\prime} \\
& +\frac{3}{4} \sin x(x)^{\frac{-5}{2}} u-\sin x(x)^{\frac{-3}{2}} u^{\prime}+\sin x(x)^{\frac{-1}{2}} u^{\prime \prime}
\end{aligned}
$$

we substitute y, y^{\prime}, and $y^{\prime \prime}$ in the arbitrary constant we obtain

$$
4 x^{\frac{3}{2}} \sin x u^{\prime \prime}+\left(8 x^{\frac{3}{2}} \cos x\right) u^{\prime}=0
$$

hence

$$
\sin x u^{\prime \prime}+2 \cos x u^{\prime}=0 .
$$

To solve this differential equation we put $w=u^{\prime}$, then we have $w^{\prime}=u^{\prime \prime}$.
Then

$$
\int \frac{d w}{w} d x+\int \frac{2 \cos x}{\sin x} d x=0
$$

hence

$$
u^{\prime}=w=\frac{c_{1}}{\sin ^{2} x}
$$

where $c_{1} \neq 0$ is an arbitrary constant. So we have $u=-c_{1} \cot x+c_{2}$, hence

$$
y=y_{1} u=\frac{\sin x}{\sqrt{x}}\left(-c_{1} \cot x+c_{2}\right)
$$

or

$$
y=c_{3} \frac{\cos x}{\sqrt{x}}+c_{2} \frac{\sin x}{\sqrt{x}},
$$

finally we have

$$
y=c_{2} y_{1}+c_{3} y_{2}
$$

where $c_{3}=-c_{1}$ and c_{2} are arbitrary constants, is the general solution of the differential equation and we can prove that

$$
y_{1}=\frac{\sin x}{\sqrt{x}} \text { and } y_{2}=\frac{\cos x}{\sqrt{x}}
$$

are linearly independent on solutions $(0, \pi)$.

General case of Equation (8)

Equation

$$
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

can be written as the form

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \tag{9}
\end{equation*}
$$

where

$$
p(x)=\frac{a_{1}(x)}{a_{2}(x)}
$$

and

$$
q(x)=\frac{a_{0}(x)}{a_{2}(x)}
$$

Also, let us suppose that y_{1} is a known solution of (9) on I and $y_{1}(x) \neq 0$ for all $x \in I$.

Thus the second solution of (9) y_{2} can be given from

$$
\begin{equation*}
y_{2}=y_{1} \int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x . \tag{10}
\end{equation*}
$$

Example (1)

If

$$
y_{1}=\frac{\sin x}{\sqrt{x}}
$$

is a solution of the differential equation

$$
4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0 \quad \text { on } \quad(0, \pi)
$$

then find the second solution .
Solution As

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{4 x^{2}-1}{4 x^{2}} y=0 .
$$

then

$$
p(x)=\frac{1}{x}
$$

and

$$
e^{-\int p(x) d x}=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=\frac{1}{x}
$$

We have

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x=\frac{\sin x}{\sqrt{x}} \int \frac{\frac{1}{x}}{\frac{\sin ^{2}(x)}{x}} d x, \\
& =\frac{\sin x}{\sqrt{x}} \int \frac{d x}{\sin ^{2}(x)}=\frac{-\cos x}{\sqrt{x}} .
\end{aligned}
$$

Hence

$$
y_{2}=\frac{-\cos x}{\sqrt{x}} \text { or } y_{2}=\frac{\cos x}{\sqrt{x}}
$$

is the second solution of the differential equation on $(0, \pi)$.

Example (2)

If $y_{1}=e^{3 x}$ is a solution of the differential equation

$$
x y^{\prime \prime}+(x-1) y^{\prime}+(3-12 x) y=0 \quad ; \quad x>0 .
$$

Find the general solution.
Solution We have

$$
y^{\prime \prime}+\left(1-\frac{1}{x}\right) y^{\prime}+\left(\frac{3}{x}-12\right) y=0 .
$$

From the formula (10) we can find directly y_{2}, where

$$
\int-p(x) d x=\int\left(-1+\frac{1}{x}\right) d x=-x+\ln x
$$

hence

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x=e^{3 x} \int \frac{e^{-x+\ln x}}{e^{6 x}} d x=e^{3 x} \int x e^{-7 x} d x \\
& =e^{3 x}\left[-\frac{1}{7} x e^{-7 x}-\frac{1}{49} e^{-7 x}\right] \\
& =e^{-4 x}\left(\frac{-x}{7}-\frac{1}{49}\right)=-\frac{1}{7} e^{-4 x}\left(x+\frac{1}{7}\right) .
\end{aligned}
$$

Then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{3 x}+c_{2} e^{-4 x}\left(x+\frac{1}{7}\right)
$$

on the interval $(0, \infty)$.

Exercises

Apply the reduction of order method to obtain another linearly independent solution for the following differential equations

- $y^{\prime \prime}-4 y^{\prime}+4 y=0 ; \quad y_{1}=e^{2 x}$.
- $x^{2} y^{\prime \prime}+x^{2} y^{\prime}-(x+2) y=0 ; \quad y_{1}=x^{-1} e^{-x}, x>0$.
- $x^{2}(1-\ln x) y^{\prime \prime}+x y^{\prime}-y=0 ; \quad y_{1}=x, \quad x>e$.

Homogeneous Linear Differential Equations with Constant Coefficients

The linear differential equations with Constant Coefficients has the general form

$$
\begin{equation*}
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} \frac{d y}{d x}+a_{0} y=0 \tag{11}
\end{equation*}
$$

which is a homogeneous linear DE with constant real coefficients, where each coefficient $a_{i}, 1 \leq i \leq n$ is real constant and $a_{n} \neq 0$.

Definition

The polynomial

$$
\begin{equation*}
f(m)=a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0}, \tag{12}
\end{equation*}
$$

is called the characteristic polynomial for equation (11), and $f(m)=0$ is called the characteristic equation of the linear differential equations with constant coefficients (11).

We conclude that if m is a root of equation (54), then

$$
y=e^{m x}
$$

is a solution of the differential equation (11). Also, Equation (54) has n roots.
Let us summarize the method to solve the differential equation (11)
(1) If all the roots of the characteristic equation are real roots then:
(i) If the roots are distinct (i.e. $m_{1} \neq m_{2} \neq m_{3} \neq \cdots \neq m_{n}$), then the solution of the differential equation (11) is given by

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+\cdots+c_{n} e^{m_{n} x}
$$

(ii) If the roots are equal (i.e. $m_{1}=m_{2}=m_{3}=\cdots=m_{n}$) (i.e. $m=m_{i}$ is a root of multiplicity n), then the solution of the differential equation (11) is given by

$$
\begin{gathered}
y=c_{1} e^{m x}+c_{2} x e^{m x}+c_{3} x^{2} e^{m x}+\cdots+c_{n} x^{n-1} e^{m x} \\
y=\left(c_{1}+c_{2} x+c_{3} x^{2}+\cdots+c_{n} x^{n-1}\right) e^{m x}
\end{gathered}
$$

Example (1)

Solve the differential equation

$$
y^{\prime \prime}-y=0
$$

Solution For this, the characteristic equation is $m^{2}-1=0$ hence $m=\mp 1$. Then $y_{1}=e^{x}$ and $y_{2}=e^{-x}$ form the fundamental set of solutions, hence the general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-x} .
$$

Example (2)

Find the general solution of the differential equation

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0 .
$$

Solution For this differential equation the characteristic equation is

$$
m^{3}-6 m^{2}+11 m-6=(m-1)(m-2)(m-3)=0
$$

Then $m=1,2,3$ and $y_{1}=e^{x} \quad, y_{2}=e^{2 x}$ and $y_{3}=e^{3 x}$ form the fundamental set of solutions, hence the general solution is

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}
$$

Example (3)

Solve the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=0 .
$$

Solution The characteristic equation for the differential equation is

$$
m^{2}-2 m+1=0
$$

so $m=1$ is a root of multiplicity 2 , hence the general solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x} .
$$

Example (4)

Solve the differential equation

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Solution The characteristic equation for the differential equation is $m^{3}-3 m^{2}+3 m-1=(m-1)^{3}=0$, so $m=1$ is a root of multiplicity 3 then the general solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x} .
$$

Now we see the second case
(2) If the characteristic equation has complex conjugate roots such as

$$
m=\alpha \mp i \beta
$$

then he solution of the differential equation of second order is given by

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Remember:

$$
\begin{aligned}
& \text { 1) } \sqrt{-1}=i \\
& \text { 2) } x=\frac{-b \mp \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

to find the roots of Quadratic equation

$$
a x^{2}+b x+c=0
$$

Example (5)

Solve the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0 .
$$

Solution The characteristic (auxiliary) equation for the differential equation is $m^{2}+4 m+5=0$, now we need to find the roots of this characteristic equation

$$
m=\frac{-4 \mp \sqrt{16-20}}{2}
$$

then $m=-2 \mp i$ hence the general solution is

$$
y(x)=c_{1} e^{-2 x} \cos (x)+c_{2} e^{-2 x} \sin (x) .
$$

Example (6)

Solve the differential equation

$$
y^{(5)}-3 y^{(4)}+4 y^{\prime \prime \prime}-4 y^{\prime \prime}+3 y^{\prime}-y=0 .
$$

Solution The characteristic for the differential equation is

$$
m^{5}-3 m^{4}+4 m^{3}-4 m^{2}+3 m-1=0
$$

then

$$
m^{5}-3 m^{4}+4 m^{3}-4 m^{2}+3 m-1=(m-1)^{3}\left(m^{2}+1\right)=0 .
$$

Thus $m=1,1,1, \mp i$ where $\sqrt{-1}=i$ and the general solution of the equation has the form

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}+c_{4} \cos x+c_{5} \sin x .
$$

Example (7)

Solve the initial value problem (IVP)

$$
\left\{\begin{array}{c}
y^{\prime \prime}+y^{\prime}+y=0 \\
y(0)=1 \quad, \quad y^{\prime}(0)=\sqrt{3} .
\end{array}\right.
$$

Solution The characteristic equation for the differential equation is

$$
m^{2}+m+1=0
$$

Hence

$$
m=-\frac{1}{2} \mp \frac{\sqrt{3}}{2} i
$$

So the general solution of a differential equation is

$$
y=c_{1} e^{\frac{-x}{2}} \cos \left(\frac{\sqrt{3}}{2} x\right)+c_{2} e^{\frac{-x}{2}} \sin \left(\frac{\sqrt{3}}{2} x\right)
$$

from the conditions $y(0)=1$ and $y^{\prime}(0)=\sqrt{3}$ we have $c_{1}=1$. and

$$
\frac{-c_{1}}{2}+c_{2} \frac{\sqrt{3}}{2}=\sqrt{3}
$$

hence $c_{1}=1$ and $c_{2}=2+\frac{1}{\sqrt{3}}$. So the solution of the $I V P$ is

$$
y=e^{\frac{-x}{2}} \cos \left(\frac{\sqrt{3}}{2} x\right)+\left(2+\frac{1}{\sqrt{3}}\right) e^{\frac{-x}{2}} \sin \left(\frac{\sqrt{3}}{2} x\right) .
$$

Exercises

Find the general solution of the following differential equations

- $2 y^{\prime \prime}+3 y^{\prime}+y=0$
- $y^{\prime \prime}-y^{\prime}-6 y=0$
- $y^{\prime \prime \prime}-4 y^{\prime \prime}-5 y^{\prime}=0$
- $y^{(4)}-2 y^{\prime \prime}+y=0$
- $2 y^{(5)}-7 y^{(4)}+12 y^{\prime \prime \prime}+8 y^{\prime \prime}=0$

Find the solution of the initial value problems

- $y^{\prime \prime}+y^{\prime}+2 y=0 ; \quad y(0)=y^{\prime}(0)=0$
- $y^{\prime \prime \prime}+12 y^{\prime \prime}+36 y^{\prime}=0 ; \quad y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=-7$

Cauchy-Euler Differential Equation

A Cauchy-Euler differential equation is in the form

$$
\begin{equation*}
a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1} x \frac{d y}{d x}+a_{0} y=0 \tag{13}
\end{equation*}
$$

where each coefficient $a_{i}, 1 \leq i \leq n$ are constants and $a_{n} \neq 0$ i.e. the coefficient $a_{n} x^{n}$ should never be zero. Equation (13) is on the interval either $(0, \infty)$ or $(-\infty, 0)$.

Euler differential equation is probably the simplest type of linear differential equation with variable coefficients.

The most common Cauchy-Euler equation is the second-order equation, appearing in a number of physics and engineering applications, such as when solving Laplace's equation in polar coordinates.

It is given by the equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+a x \frac{d y}{d x}+b y=0 \tag{14}
\end{equation*}
$$

To solve the Cauchy-Euler differential equation, we assume that $y=x^{m}$, where $x>0$ and m is a root of a polynomial equation.

Example (1)

Solve the Cauchy-Euler differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+a x \frac{d y}{d x}+b y=0 .
$$

Solution We substitute

$$
y=x^{m} \Longrightarrow y^{\prime}=m x^{m-1} \Longrightarrow y^{\prime \prime}=m(m-1) x^{m-2}
$$

in the differential equation, we obtain

$$
\begin{gathered}
x^{2}\left[m(m-1) x^{m-2}\right]+a x\left[m x^{m-1}\right]+b x^{m}=0 \\
x^{m}\left(m^{2}-m\right)+a m x^{m}+b x^{m}=0 \\
x^{m}\left[\left(m^{2}-m\right)+a m+b\right]=0 \\
x^{m}\left[m^{2}+(1-a) m+b\right]=0
\end{gathered}
$$

Since $x^{m} \neq 0$, then we have

$$
m^{2}+(1-a) m+b=0
$$

We then can solve for m. There are three particular cases of interest:
Case 1: Two distinct roots, m_{1} and m_{2}. Thus, the solution is given by

$$
y=c_{1} x^{m_{1}}+c_{2} x^{m_{2}} .
$$

Case 2: One real repeated root, m. Thus, the solution is given by

$$
y=c_{1} x^{m} \ln (x)+c_{2} x^{m} .
$$

Case 3: Complex roots, $\alpha \pm i \beta$. Thus, the solution is given by

$$
y=c_{1} x^{\alpha} \cos (\beta \ln (x))+c_{2} x^{\alpha} \sin (\beta \ln (x))
$$

Example (2)

Solve the Euler differential equation

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}-3 x y^{\prime}-3 y=0 \tag{15}
\end{equation*}
$$

For $x>0$.
Solution We substitute

$$
y=x^{m} \Longrightarrow y^{\prime}=m x^{m-1} \Longrightarrow y^{\prime \prime}=m(m-1) x^{m-2}
$$

in the differential equation, we obtain

$$
\begin{gathered}
2 x^{2}\left[m(m-1) x^{m-2}\right]-3 x\left[m x^{m-1}\right]-x^{m}=0 \\
x^{m}\left(2 m^{2}-2 m\right)-3 m x^{m}-3 x^{m}=0 \\
x^{m}\left[2 m^{2}-2 m-3 m-3\right]=0 \\
x^{m}\left[2 m^{2}-5 m-3\right]=0 .
\end{gathered}
$$

Since $x^{m} \neq 0$, then we have

$$
2 m^{2}-5 m-3=0
$$

So the roots of this equation are $m_{1}=-\frac{1}{2}, m_{2}=3$.Thus, from case 1 we have the solution is given by

$$
y(x)=c_{1} x^{-\frac{1}{2}}+c_{2} x^{3} .
$$

which is the general solution.

Example (3)

Find the general of the differential equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0 \quad ; \quad x>0 .
$$

Solution Substituting $y=x^{m}$ in the equation, we obtain

$$
m(m-1)-3 m+13=m^{2}-4 m+13=0 .
$$

Then we have two complex roots $m=3 \mp 3 i$ (case 3), hence the the general of the differential equationis

$$
y=c_{1} x^{3} \cos (3 \ln x)+c_{2} x^{3} \sin (3 \ln x) \quad ; \quad x>0 .
$$

If we suppose $x<0$, then the general of the differential equation is

$$
y=c_{1}(-x)^{3} \cos (3 \ln (-x))+c_{2}(-x)^{3} \sin (3 \ln (-x)) \quad ; \quad x<0 .
$$

Example (4)

Find the general solution of the differential equation

$$
x^{4} y^{(4)}-5 x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}-6 x y^{\prime}+6 y=0 \quad ; \quad x>0 .
$$

Solution Substituting $y=x^{m}$ in the equation, we obtain $m(m-1)(m-2)(m-3)-5 m(m-1)(m-2)+3 m(m-1)-6 m+6=0$.

This implies that

$$
(m-1)(m-2)\left(m^{2}-8 m+3\right)=0 .
$$

The roots of this equation are $m=1, m=2$, and $m=4 \mp \sqrt{13}$, then the general solution of the differential equation is

$$
y=c_{1} x+c_{2} x^{2}+c_{3} x^{4+\sqrt{13}}+c_{4} x^{4-\sqrt{13}} \quad ; \quad x>0
$$

Example (5)

Find the general solution of the differential equation

$$
x^{5} y^{(5)}-2 x^{3} y^{\prime \prime \prime}+4 x^{2} y^{\prime \prime}=0 \quad ; \quad x<0 .
$$

Solution Substituting $y=x^{m}$ in the equation, we obtain

$$
\begin{aligned}
& m(m-1)(m-2)(m-3)(m-4)-2 m(m-1)(m-2)+4 m(m-1)=0 \\
& m(m-1)\left(m^{3}-9 m^{2}+24 m-20\right)=m(m-1)(m-2)^{2}(m-5)=0
\end{aligned}
$$

So the roots of this equation are $m=0, m=1, m=2$ repeated two times and $m=5$, then the general of the differential equation is

$$
y=c_{1}+c_{2}(-x)+c_{3}(-x)^{2}+c_{4}(-x)^{2} \ln (-x)+c_{5}(-x)^{5} .
$$

Exercises

Find the general solution of the following differential equations, where we suppose that $x>0$.

- $x^{2} y^{\prime \prime}-y=0$
- $x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0$
- $4 x^{2} y^{\prime \prime}+4 x y^{\prime}-y=0$
- $x^{3} y^{\prime \prime \prime}+x y^{\prime}-y=0$
- $x^{3} y^{\prime \prime \prime}+4 x^{2} y^{\prime \prime}-8 x y^{\prime}+8 y=0$
- $(3 x+4)^{2} y^{\prime \prime}+10(3 x+4) y^{\prime}+9 y=0 ; x>-\frac{4}{3}$

General Solutions of Nonhomogeneous Linear Differential Equations

Nonhomogeneous linear n-th order ODE takes the form

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x), \tag{16}
\end{equation*}
$$

where $a_{n}(x), a_{n-1}(x), a_{1}(x)$ and $a_{0}(x)$ are functions of $x \in \mathrm{I}=(a, b)$, such that $a_{n}(x) \neq 0$ for all $x \in I$, and $g(x) \neq 0$.

Idea

- Find the general solution y_{c} to the homogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

- Find a solution y_{p} to the nonhomogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

- The general solution $y=y_{c}+y_{p}$.

Undetermined coefficients

Let us take an example

Example (1)

Find the general solution of the differential equation :

$$
\begin{equation*}
y^{\prime \prime}-y=-2 x^{2}+5+2 e^{x} . \tag{*}
\end{equation*}
$$

Solution

1) First we have to find the general solution of the differential equation:

$$
y^{\prime \prime}-y=0 .
$$

For, we have $m^{2}-1=0$, hence $m=\mp 1$ then

$$
y_{c}=c_{1} e^{x}+c_{2} e^{-x}
$$

2) The form of the particular solution of

$$
y^{\prime \prime}-y=-2 x^{2}+5,
$$

is

$$
y_{1, p}=A x^{2}+B x+C,
$$

and the form of the particular solution of

$$
y^{\prime \prime}-y=2 e^{x},
$$

is

$$
y_{2, p}=D x e^{x},
$$

because $r=1$ is a simple root of the characteristic equation. Thus the particular solution of $\left({ }^{*}\right)$ is

$$
y_{p}=y_{1, p}+y_{2, p}=A x^{2}+B x+C+D x e^{x} .
$$

Now we have to find the constants A, B, C, and D by substituting y_{p} and $y_{p}^{\prime \prime}$ in differential equation $\left(^{*}\right)$ and we find

$$
y_{p}^{\prime \prime}-y_{p}=-A x^{2}-B x+2 A-C+2 D e^{x}=-2 x^{2}+5+2 e^{x} .
$$

Equating coefficients of similar terms (because the functions $x^{2}, 1$ and are e^{x} linearly independent on \mathbb{R}), we obtain the following system of equation $A=2, B=0,2 A-C=5$, and $2 D=2$. Thus we have $A=2$, $B=0, C=-1$, and $D=1$. Then the particular solution of $\left({ }^{*}\right)$ is

$$
y_{p}=2 x^{2}-1+x e^{x},
$$

and the general solution of the differential equation of $\left({ }^{*}\right)$ is

$$
y=y_{c}+y_{p}=c_{1} e^{x}+c_{2} e^{-x}+2 x^{2}-1+x e^{x} .
$$

Some of the Typical forms of the particular integral

Function of x	Form for y_{p}
$k e^{a x}$	$C e^{a x}$
$k x^{n}, n=0,1,2, \ldots$	$\sum_{i=1}^{n} C_{i} x^{i}$
$k \cos (a x)$ or $k \sin (a x)$	$C_{1} \cos (a x)+C_{2} \sin (a x)$
$k e^{a x} \cos (b x)$ or $k e^{a x} \sin (b x)$	$e^{a x}\left(C_{1} \cos (b x)+C_{2} \sin (b x)\right)$
$\left(\sum_{i=1}^{n} k_{i} x^{i}\right) \cos (a x)$	$\left(\sum_{i=1}^{n} C_{i} x^{i}\right) \cos (a x)+\left(\sum_{i=1}^{n} R_{i} x^{i}\right) \sin (a x)$
or	

Exercises

Find the general solution of the following differential equations.

- $x^{2} y^{\prime \prime}-y=0$
- $y^{\prime \prime}+4 y=\sin (2 x)+e^{x}$
- $y^{\prime \prime}-5 y^{\prime}+4 y=e^{2 x}(\cos x+\sin x)$

Find only the form of the particular solution of the given differential equation by using the method of undetermined coefficients.

- $y^{\prime \prime}-y=e^{x}+s \sin x$
- $y^{\prime \prime}-y=x^{2} e^{x}$
- $y^{(6)}-3 y^{(3)}=3 x+1$
- $y^{\prime \prime \prime}-y^{\prime}=x^{5}+\cos x$

Variation of Parameters

This method is used to determine the particular solution y_{p} of nonhomogeneous differential equation

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{17}
\end{equation*}
$$

If we have the nonhomogeneous differential equation

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x) \tag{18}
\end{equation*}
$$

which has the particular solution

$$
y_{p}=y_{1} u_{1}+y_{2} u_{2}
$$

where y_{1} and y_{2} are the first and the second solution of the homogeneous differential equation, respectively.

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0 \tag{19}
\end{equation*}
$$

Here we will explain the method to find u_{1} and u_{2}. So, if we have $y_{1} \& y_{2}$, then we will determine as below

$$
\begin{gathered}
W\left(x, y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}, \\
W_{1}=\left|\begin{array}{cc}
0 & y_{2} \\
g(x) & y_{2}^{\prime}
\end{array}\right|=-y_{2} g(x), \\
W_{2}=\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & g(x)
\end{array}\right|=y_{1} g(x) .
\end{gathered}
$$

Thus,

$$
u_{1}^{\prime}=\frac{W_{1}}{W}
$$

and

$$
u_{2}^{\prime}=\frac{W_{2}}{W}
$$

Example (1)

Solve the differential equation

$$
y^{\prime \prime}+y=\csc x \quad ; \quad 0<x<\pi .
$$

Solution

1) The general solution of

$$
y^{\prime \prime}+y=0,
$$

is

$$
y_{c}=c_{1} \sin x+c_{2} \cos x .
$$

2) The particular solution of

$$
y^{\prime \prime}+y=\csc x
$$

is the form

$$
y_{p}=y_{1} u_{1}+y_{2} u_{2},
$$

where

$$
y_{1}=\sin x \text { and } y_{2}=\cos x .
$$

The functions u_{1} and u_{2} are determined from the system below

$$
\begin{gathered}
W\left(x, y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|=-1, \\
W_{1}=\left|\begin{array}{cc}
0 & \cos x \\
\csc x & -\sin x
\end{array}\right|=-\cot x \\
W_{2}=\left|\begin{array}{cc}
\sin x & 0 \\
\cos x & \csc x
\end{array}\right|=1,
\end{gathered}
$$

Hence

$$
u_{1}^{\prime}=\frac{W_{1}}{W}=\cot x
$$

then

$$
u_{1}=\ln (\sin x) .
$$

But

$$
u_{2}^{\prime}=-1
$$

hence $u_{2}=-x$. Therefore we have

$$
y_{p}=y_{1} u_{1}+y_{2} u_{2}=\sin x \cdot \ln (\sin x)-x \cos x,
$$

and the general solution of the differential equation is

$$
y=y_{c}+y_{p}=c_{1} \sin x+c_{2} \cos x+\sin x \cdot \ln (\sin x)-x \cos x .
$$

Example (2)

Solve the differential equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x} .
$$

Solution

1) The general solution of

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0,
$$

is

$$
y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

2) Let

$$
y_{1}=e^{2 x} \text { and } y_{2}=x e^{2 x} .
$$

So we have

$$
W\left(x, y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{2 x} & x e^{2 x} \\
2 e^{2 x} & e^{2 x}+2 x e^{2 x}
\end{array}\right|=e^{4 x}
$$

$$
W_{1}\left(x, y_{1}, y_{2}\right)=\left|\begin{array}{cc}
0 & x e^{2 x} \\
(x+1) e^{2 x} & e^{2 x}+2 x e^{2 x}
\end{array}\right|=-x(x+1) e^{4 x}
$$

and

$$
W_{2}\left(x, y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{2 x} & 0 \\
2 e^{2 x} & (x+1) e^{2 x}
\end{array}\right|=(x+1) e^{4 x}
$$

hence

$$
u_{1}^{\prime}=\frac{W_{1}}{W}=-x(x+1)=-x^{2}-x
$$

SO

$$
u_{1}=-\frac{x^{3}}{3}-\frac{x^{2}}{2}
$$

But

$$
u_{2}^{\prime}=\frac{W_{2}}{W}=x+1
$$

then

$$
u_{2}=\frac{x^{2}}{2}+x
$$

Therefore,

$$
y_{p}=y_{1} u_{1}+y_{2} u_{2}=\left(-\frac{x^{3}}{3}-\frac{x^{2}}{2}\right) e^{2 x}+x\left(\frac{x^{2}}{2}+x\right) e^{2 x}=\left(\frac{x^{3}}{6}+\frac{x^{2}}{2}\right) e^{2 x}
$$

and The general solution of the differential equation is

$$
y=y_{c}+y_{p}=c_{1} e^{2 x}+c_{2} x e^{2 x}+\left(\frac{x^{3}}{6}+\frac{x^{2}}{2}\right) e^{2 x} .
$$

In this example we can use the undetermined coefficients, where

$$
y_{p}=x^{2}(A+B x) e^{2 x}
$$

Example (3)

Solve the Differential equation

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\frac{1}{1+e^{-x}}
$$

Solution

1) The general solution of

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0 .
$$

is

$$
y_{c}=c_{1} e^{x}+c_{2} e^{2 x}
$$

2) Let

$$
y_{1}=e^{x} \quad \text { and } y_{2}=e^{2 x},
$$

then

$$
W\left(x, y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{x} & e^{2 x} \\
e^{x} & 2 e^{2 x}
\end{array}\right|=e^{3 x}
$$

$$
\begin{aligned}
W_{1}\left(x, y_{1}, y_{2}\right) & =\left|\begin{array}{cc}
0 & e^{2 x} \\
\frac{1}{1+e^{-x}} & 2 e^{2 x}
\end{array}\right|=\frac{-e^{2 x}}{1+e^{-x}}, \\
W_{2}\left(x, y_{1}, y_{2}\right) & =\left|\begin{array}{cc}
e^{x} & 0 \\
e^{x} & \frac{1}{1+e^{-x}}
\end{array}\right|=\frac{e^{x}}{1+e^{-x}}
\end{aligned}
$$

hence

$$
u_{1}^{\prime}=\frac{W_{1}}{W}=-\frac{e^{-x}}{1+e^{-x}}
$$

and

$$
u_{1}(x)=-\int \frac{e^{-x}}{1+e^{-x}} d x=\ln \left(1+e^{-x}\right)
$$

But

$$
u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{e^{-2 x}}{1+e^{-x}}
$$

and

$$
u_{2}=\int \frac{e^{-2 x}}{1+e^{-x}} d x=-\left(1+e^{-x}\right)+\ln \left(1+e^{-x}\right),
$$

so we have

$$
\begin{aligned}
y & =y_{c}+y_{p}=\left(c_{1}-1\right) e^{x}+\left(c_{2}-1\right) e^{2 x}+\left(e^{x}+e^{2 x}\right) \ln \left(1+e^{-x}\right) \\
& =c_{3} e^{x}+c_{4} e^{2 x}+\left(e^{x}+e^{2 x}\right) \ln \left(1+e^{-x}\right)
\end{aligned}
$$

Example (4)

Find the general solution of the differential equation

$$
y^{\prime \prime \prime}+y^{\prime}=\tan x \quad ; \quad 0<x<\frac{\pi}{2}
$$

Solution

1) The the general solution of

$$
y^{\prime \prime \prime}+y^{\prime}=0,
$$

is

$$
y_{c}=c_{1}+c_{2} \cos x+c_{3} \sin x
$$

2) Let $y_{1}=1, y_{2}=\cos x$ and $y_{3}=\sin x$. The particular solution of the differential equation has the form

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}
$$

We have

$$
\begin{gathered}
W\left(x, y_{1}, y_{2}, y_{3}\right)=\left|\begin{array}{ccc}
1 & \cos x & \sin x \\
0 & -\sin x & \cos x \\
0 & -\cos x & -\sin x
\end{array}\right|=1, \\
W_{1}\left(x, y_{1}, y_{2}, y_{3}\right)=\left|\begin{array}{ccc}
0 & \cos x & \sin x \\
0 & -\sin x & \cos x \\
\tan x & -\cos x & -\sin x
\end{array}\right|=\tan x, \\
W_{2}\left(x, y_{1}, y_{2}, y_{3}\right)=\left|\begin{array}{ccc}
1 & 0 & \sin x \\
0 & 0 & \cos x \\
0 & \tan x & -\sin x
\end{array}\right|=-\sin x, \\
W_{3}\left(x, y_{1}, y_{2}, y_{3}\right)=\left|\begin{array}{ccc}
1 & \cos x & 0 \\
0 & -\sin x & 0 \\
0 & -\cos x & \tan x
\end{array}\right|=\frac{-\sin ^{2}(x)}{\cos x} .
\end{gathered}
$$

Then we have,

$$
u_{1}^{\prime}=\frac{W_{1}}{W}=\tan x
$$

and

$$
u_{1}=\int \tan x d x=-\ln (\cos x)
$$

But

$$
u_{2}^{\prime}=\frac{W_{2}}{W}=-\sin x
$$

then

$$
u_{2}=-\int \sin x d x=\cos x
$$

Also

$$
u_{3}^{\prime}=\frac{W_{3}}{W}=\frac{-\sin ^{2}(x)}{\cos x},
$$

hence,
$u_{3}=-\int \frac{\sin ^{2}(x)}{\cos x} d x=-\int \frac{1-\cos ^{2}(x)}{\cos x} d x=-\ln (\sec x+\tan x)+\sin x$.
Thus,

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}, \\
& =-\ln (\cos x)+\cos ^{2}(x)-\sin x \ln (\sec x+\tan x)+\sin ^{2}(x), \\
& =1-\ln (\cos x)-\sin x \ln (\sec x+\tan x)
\end{aligned}
$$

So the general solution of the differential equation is

$$
\begin{aligned}
y & =y_{c}+y_{p}=\left(c_{1}+1\right)+c_{2} \cos x+c_{3} \sin x-\ln (\cos x) \\
& -\sin x \ln (\sec x+\tan x) \\
y=c_{4} & +c_{2} \cos x+c_{3} \sin x-\ln (\cos x)-\sin x \ln (\sec x+\tan x)
\end{aligned}
$$

Example (5)

Find the solution of the initial value problem (IVP)

$$
\left\{\begin{array}{c}
2 x^{2} y^{\prime \prime}+x y^{\prime}-3 y=x^{-3} \quad ; \quad x>0 \\
y(1)=1, \quad y^{\prime}(1)=-1 .
\end{array}\right.
$$

Solution

1) We have to find the general solution of

$$
2 x^{2} y^{\prime \prime}+x y^{\prime}-3 y=0 .
$$

By substituting $y=x^{m}$, we have

$$
m(m-1)+m-3=(2 m-3)(m+1)=0
$$

hence the general solution of the homogeneous differential equation is

$$
y_{c}=c_{1} x^{-1}+c_{2} x^{\frac{3}{2}} .
$$

2) Let $y_{1}=x^{-1}, y_{2}=x^{\frac{3}{2}}$, then

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

We have

$$
\begin{aligned}
W\left(x, y_{1}, y_{2}\right) & =\left|\begin{array}{cc}
x^{-1} & x^{\frac{3}{2}} \\
-x^{-2} & \frac{3}{2} x^{\frac{1}{2}}
\end{array}\right|=\frac{5}{2} x^{-\frac{1}{2}}, \\
W_{1}\left(x, y_{1}, y_{2}\right) & =\left|\begin{array}{cc}
0 & x^{\frac{3}{2}} \\
\frac{1}{2} x^{-5} & \frac{3}{2} x^{\frac{1}{2}}
\end{array}\right|=-\frac{1}{2} x^{-\frac{7}{2}}, \\
W_{2}\left(x, y_{1}, y_{2}\right) & =\left|\begin{array}{cc}
x^{-1} & 0 \\
-x^{-2} & \frac{1}{2} x^{-5}
\end{array}\right|=\frac{1}{2} x^{-6} .
\end{aligned}
$$

Then we have

$$
u_{1}^{\prime}=\frac{W_{1}}{W}=-\frac{1}{5} x^{-3},
$$

and

$$
u_{1}=\frac{1}{10} x^{-2} .
$$

Also we have

$$
u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{1}{5} x^{-\frac{11}{2}},
$$

hence

$$
u_{2}=-\frac{2}{45} x^{-\frac{9}{2}} .
$$

So

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\frac{1}{10} x^{-3}-\frac{2}{45} x^{-3}=\frac{1}{18} x^{-3}
$$

Then the general solution of the differential equation is

$$
y=y_{c}+y_{p}=c_{1} x^{-1}+c_{2} x^{\frac{3}{2}}+\frac{1}{18} x^{-3} .
$$

We can obtain y_{p} by substituting $y_{p}=A x^{-3}$, which implies $A=\frac{1}{18}$.
3)

$$
y^{\prime}(x)=-c_{1} x^{-2}+\frac{3}{2} c_{2} x^{\frac{1}{2}}-\frac{1}{6} x^{-4} .
$$

From the conditions $y(1)=1$ and $y^{\prime}(1)=-1$, we deduce

$$
c_{1}+c_{2}=\frac{17}{18}
$$

and

$$
-c_{1}+\frac{3}{2} c_{2}=-\frac{5}{6}
$$

which implies $c_{1}=\frac{9}{10}$ and $c_{2}=\frac{2}{45}$. Thus the solution of the IVP is

$$
y=\frac{9}{10} x^{-1}+\frac{2}{45} x^{\frac{3}{2}}+\frac{1}{18} x^{-3} .
$$

Exercises

Use the variation of parameters method to find the general solution or initial value problems of the following differential equations.

- $y^{\prime \prime}+y=\sec x ; \quad 0<x<\frac{\pi}{2}$
- $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x} ; x>0$
- $y^{\prime \prime}-12 y^{\prime}+36 y=e^{6 x} \ln x ; \quad x>0$
- $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{\left(e^{x}+1\right)^{2}}$
- $y^{\prime \prime}-y=\frac{2}{\sqrt{1-e^{-2 x}}}$
- $y^{\prime \prime \prime}+4 y^{\prime}=\sec 2 x ; \quad 0<x<\frac{\pi}{4}$
- $2 y^{\prime \prime \prime}-6 y^{\prime \prime}=x^{2}$
- $y^{\prime \prime}+y=\tan x ; \quad y\left(\frac{\pi}{3}\right)=1, \quad y^{\prime}\left(\frac{\pi}{3}\right)=0$
- $y^{\prime \prime}+y=\sec ^{3}(x) ; \quad y(0)=1, \quad y^{\prime}(0)=1$
- $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x} ; \quad y(1)=e, y^{\prime}(1)=0$

