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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

General Solution of Homogeneous Linear
Differential Equations

Definition

The general linear differential equations of order n is an equation that can
be written

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x), (1)

where an(x), an−1(x), a1(x) and a0(x) are functions of x ∈ I = (a, b),
and they are called coefficients.
Equation (1) is called homogeneous linear differential equation if the
function g(x) is zero for all x ∈ (a, b).
If g(x) is not equal to zero on I, the equation (1) is called
non-homogeneous linear differential equation.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Initial-Value Problem (IVP)

An n-th order initial-value problem associate with (1) takes the form:
Solve:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x),

subject to:

y(x0) = y0, y
′(x0) = y1, y

′′(x0) = y2, . . . , y
n−1(x0) = yn−1. (2)

Here (2) is a set of initial conditions.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Boundary-Value Problem (BVP)

Remark (Initial vs. Boundary Conditions)

Initial Conditions: all conditions are at the same x = x0.
Boundary Conditions: conditions can be at different x.

Remark (Number of Initial/Boundary Conditions)

Usually a n-th order ODE requires n initial/boundary conditions to specify
an unique solution.

Remark (Order of the derivatives in the conditions)

Initial/boundary conditions can be the value or the function of 0-th to
(n− 1)-th order derivatives, where n is the order of the ODE.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (Second-Order ODE)

Consider the following second-order ODE

a2(x)
d2y

dx2
+ a1(x)

d
′
y

dx′
+ a0(x)y = g(x), (3)

IVP: Solve (3) s.t. y(x0) = y0; y
′
(x0) = y1.

BVP: Solve (3) s.t. y(a) = y0; y(b) = y1.

BVP: Solve (3) s.t. y(b) = y0; y(a) = y1.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Existence and Uniqueness of the Solution to an IVP

Theorem

For the given linear differential equations of order n

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x), (4)

which is normal on an interval I. Subject to

y(x0) = y0, y
′(x0) = y1, y

′′(x0) = y2, . . . , y
n−1(x0) = yn−1. (5)

If an(x), an−1(x), . . . , a0(x) and R(x) are all continuous on an interval I,
an(x) is not a zero function on I, and the initial point x0 ∈ I, then the
above IVP has a unique solution in I.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (1)

Discuss the Existence of unique solution of IV P{
(x2 + 1)y′′ + x2y′ + 5y = cos(x)

y(3) = 2 , y′(3) = 1.

Solution The functions

a2(x) = x2 + 1, a1(x) = x2, a0(x) = 5.

and
R(x) = cos(x).

are continuous on I = R = (−∞,∞) and a2(x) 6= 0 for all x ∈ R, the
point x0 = 3 ∈ I . Then the previous Theorem assures that the IV P has
a unique solution on R.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (2)

Find an interval I for which the initial values problem (IV P ){
x2y′′ + x√

2−xy
′ + 2√

x
y = 0

y(1) = 0 , y′(1) = 1.
.

has a unique solution around x0 = 1.

Solution The function
a2(x) = x2,

is continuous on R and a2(x) 6= 0 if x > 0 or x < 0 . But x0 = 1 ∈
I1 = (0,∞). The function

a1(x) =
x√
2− x

,

is continuous on I2 = (−∞ , 2) and the function

a0(x) =
2√
x

,
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

is continuous on I1 = (0,∞).

Then the (IV P )has a unique solution on I1 ∩ I2 = (0, 2) = I . We can
take any interval I3 ⊂ (0, 2) such that x0 = 1 ∈ I3. So I is that the
largest interval for which the (IV P ) has a unique solution.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (3)

Find an interval I for which the IV P{
(x− 1)(x− 3)y′′ + xy′ + y = x2

y(2) = 1 , y′(2) = 0
.

has a unique solution about x0 = 2.

Solution The functions

a2(x) = (x− 1)(x− 3) , a1(x) = x , a0(x) = 1 , R(x) = x2,

are continuous on R. But a2(x) 6= 0 if x ∈ (−∞, 1) or x ∈ (1, 3) or
x ∈ (3,∞). As x0 = 2 so we take I = (1, 3). Then the IV P has a
unique solution on I = (1, 3)
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Exercises

1 Discuss the Existence of unique solution of IV P{
(|x|+ 3)y′′ + x3y′ + 5y = sin(x)

y(2) = 1 , y′(2) = 0.

2 Find an interval I for which the IV P{
(x− 2)y′′ + 3y = x

y(0) = 0 , y′(0) = 1
.

has a unique solution about x0 = 0.

3 Find an interval I for which the IV P{
y′′ + (tanx)y = ex

y(0) = 1 , y′(0) = 0
.

has a unique solution about x0 = 0.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Linear Dependence and Independence of Functions

Definition

A set of functions {f1(x), f2(x). . . . , fn(x)} are linearly dependent on an
interval I if ∃ c1, c2, . . . , cn not all zero i.e. (c1, c2, . . . , cn) 6= (0, 0, . . . , 0)
such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0, ∀ x ∈ I

that is, the linear combination is a zero function.

If the set of functions is not linearly dependent, it is linearly independent,
i.e. when c1, c2, . . . , cn all zero i.e. (c1, c2, . . . , cn) = (0, 0, . . . , 0).
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (1)

Show that f1(x) = cos(2x) , f2(x) = 1, f3(x) = cos2(x) are linearly
dependent on R.

Solution We know that

f3(x) = cos2(x) =
1 + cos(2x)

2
=

1

2
f2(x) +

1

2
f1(x)

for all x ∈ R. Then there exist c1 = c2 =
1
2 and c3 = −1 such that

c1f1(x) + c2f2(x) + c3f3(x) = 0 for all x ∈ R.

So f1 , f2 and f3 are linearly dependent on R.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (2)

Show that

f1(x) = 1, f2(x) = sec2(x) and f3(x) = tan2(x)

are linearly dependent on
(
0, π2

)
.

Solution We know that

f2(x) = sec2(x) = 1 + tan2(x) = f1(x) + f3(x)

hence
f1(x)− f2(x) + f3(x) = 0 for all x ∈

(
0,
π

2

)
.

So there exist c1 = c3 = 1 and c2 = −1 such that

c1f1(x) + c2f2(x) + c3f3(x) = 0 for all x ∈
(
0,
π

2

)
.

So f1 , f2 and f3 are linearly dependent on
(
0, π2

)
.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (3)

Show that f1(x) = x and f2(x) = x2 are linearly independent on
I = [−1, 1].

Solution Let c1 , c2 ∈ R such that

c1f1(x) + c2f2(x) = 0, for all x ∈ I .

We have to prove that c1 = c2 = 0. As

c1x+ c2x
2 = 0 for all − 1 ≤ x ≤ 1,

then for x = 1 and x = −1
2 we have

c1 + c2 = 0,

and

−1

2
c1 +

1

4
c2 = 0,
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

which implies that c1 = c2 = 0. Then f1 and f2 are linearly independent
on I.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (4)

Show that
f1(x) = sin(x) , f2(x) = sin(2x).

are linearly independent on I = [0, π) .

Solution Let c1 , c2 ∈ I such that

c1f1(x) + c2f2(x) = 0 for allx ∈ I.

We have to show that c1 = c2 = 0. In fact for x = π
4 and x = π

3 we have{
c1 sin

(
π
4

)
+ c2 sin

(
π
2

)
= 0

c1 sin
(
π
3

)
+ c2 sin

(
2π3
)
= 0

hence
1√
2
c1 + c2 = 0 ,

√
3

2
c1 +

√
3

2
c2 = 0,
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

which implies that c1 = c2 = 0. Then f1 and f2 are linearly independent
on I.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (5)

Show that
f1(x) = x2 and f2(x) = x |x|

(i) linearly dependent on [0, 1]
(ii) linearly independent on [−1, 1]

Solution
(i) on [0, 1] we have

f1(x) = f2(x) = x2,

hence
f1(x)− f2(x) = 0 for all 0 ≤ x ≤ 1.

So there exist c1 = 1 , c2 = −1 such that

c1f1(x) + c2f2(x) = 0 for all 0 ≤ x ≤ 1.

Then f1 and f2 are linearly dependent on [0, 1].
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

(ii) Let c1 , c2 ∈ R such that

c1f1(x) + c2f2(x) = 0 for all − 1 ≤ x ≤ 1,

hence
c1x

2 + c2x |x| = 0 for all− 1 ≤ x ≤ 1.

Now for x = 1 and x = −1 we have c1 + c2 = 0 and c1 − c2 = 0 which
implies that c1 = c2 = 0. Then f1 and f2 are linearly independent on
[−1, 1].
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Exercises

1 Determine whether the functions

f1(x) = x , f2(x) = x2, f3(x) = 4x− x2.

are linearly dependent or independent on (−∞,∞) .

2 Determine whether the functions

f1(x) = ex , f2(x) = e−x, f3(x) = coshx.

are linearly dependent or independent on (−∞,∞) .

3 Determine whether the functions

f1(x) = x , f2(x) = x2 − 1, f3(x) = x2 + 2x+ 1.

are linearly dependent or independent on [0, 1] .
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Criterion of Linearly Independent Solutions

Consider the homogeneous linear n-th order DE

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0,

Given n solutions {f1(x), f2(x), . . . , fn(x)}, we would like to test if they
are independent or not.

Note: In Linear Algebra, to test if n vectors {v1, v2, . . . , vn} are linearly
independent, we can compute the determinant of the matrix.

V := [v1 v2 . . . vn].

If the determinant of V = 0, they are linearly dependent; if the
determinant of V 6= 0, they are linearly independent.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Definition

For n functions W (f1, f2, . . . , fn) which are n− 1 times differentiable on
an interval I, the Wronskian W (x, f1, f2, . . . , fn) as a function on I is
defined by

W (x, f1, f2 , ..., fn) =

∣∣∣∣∣∣∣∣∣∣
f1 f2 ... fn
f ′1 f ′2 ... f ′n
f ′′1 f ′′2 ... f ′′n
... ... ... ...

fn−11 fn−12 .... fn−1n

∣∣∣∣∣∣∣∣∣∣
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

To test the linear independence of n solutions {f1(x), f2(x), . . . , fn(x)} to

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0, (6)

we can use the following theorem.

Theorem

Let {f1(x), f2(x), . . . , fn(x)} be n solutions to the homogeneous linear
DE (6) on an interval I. They are linearly independent on I

⇐⇒W (x, f1, f2 , ..., fn) :=

∣∣∣∣∣∣∣∣∣∣
f1 f2 ... fn
f ′1 f ′2 ... f ′n
f ′′1 f ′′2 ... f ′′n
... ... ... ...

fn−11 fn−12 .... fn−1n

∣∣∣∣∣∣∣∣∣∣
6= 0.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (1)

Prove that f1(x) = x2, f2(x) = x2 ln(x) are linearly independent on
(0,∞).

Solution We have that

W (f1, f2) =

∣∣∣∣ x2 x2 ln(x)
2x 2x ln(x) + x

∣∣∣∣
= 2x3 ln(x) + x3 − 2x3 ln(x) = x3 6= 0

for all x ∈ (0,∞) ,

then f1 and f2 are linearly independent on (0,∞).
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (2)

It is easy to see that the functions

y1 = x , y2 = x2,

and
y3 = x3.

are solutions of the differential equation

x3y′′′ − 3x2y′′ + 6xy′ − 6y = 0.

Show that y1 , y2 and y3 are linearly independent on (0,∞).

Solution Here we have a3(x) = x3 6= 0 for all x > 0 or x < 0. By
using the Wronskian we have

W (y1, y2 , y3) =

∣∣∣∣∣∣
x x2 x3

1 2x 3x2

0 2 6x

∣∣∣∣∣∣ = 2x3 6= 0.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

for all x ∈ (0,∞) or for all x ∈ (−∞, 0) . So y1 , y2 and y3 are linearly
independent on (0,∞).
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Exercises

1 Show by computing the Wronskian that the functions

f1(x) = x , f2(x) = xex, f3(x) = x2ex.

are linearly dependent or independent on (0,∞) .

2 Show that the functions

y1 = cosh(2x)

and
y2 = sinh(2x)

are solutions of the differential equation

y′′ − 4y′ = 0.

Show that y1 and y2 are linearly independent on (−∞,∞).
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Fundamental Set of Solutions

Definition

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0, (7)

Any set {f1(x), f2(x), . . . , fn(x)} of n linearly independent solutions to
the homogeneous linear n-th order DE (7) on an interval I is called a
fundamental set of solutions.

Theorem

Let {f1(x), f2(x), . . . , fn(x)} be a fundamental set of solutions to the
homogeneous linear n-th order DE (7) on an interval I. Then the general
solution to (7) is

y(x) = c1f1(x) + c2f2(x) + · · ·+ cnfn(x),

where {ci | (i = 1, 2, . . . , n)} are arbitrary constants.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Example (1)

Verify that y1 = e2x and y2 = e−3x form a fundamental set of solutions of
the differential equation

y′′ + y′ − 6y = 0.

and find the general solution.

Solution Substituting

y1 = e2x, y′1 = 2e2x, y′′1 = 4e2x,

in the differential equation we have

4e2x + 2e2x − 6e2x = 0.

Hence y1 = e2x is a solution of the differential equation. By the same
method we can prove that y2 = e−3x is also a solution of the differential
equation.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Now we have

W (e2x, e−3x) =

∣∣∣∣ e2x e−3x

2e2x −3e−3x
∣∣∣∣ = −5e−x 6= 0 for all x ∈ R.

Then y1 and y2 are linearly independent on R. From the previous Theorem
we deduce the general solution of the differential equation given by

y(x) = c1y1(x) + c2y2(x).

where c1 ,c2 ∈ R.
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Example (2)

It is easy to see that the functions

y1 = ex, y2 = e2x, and y3 = e3x

are solutions of the differential equation

y′′′ − 6y′′ + 11y′ − 6y = 0.

Find the general solution of the differential equation.

Solution Since

W (ex, e2x, e3x) =

∣∣∣∣∣∣
ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x

∣∣∣∣∣∣ = 2e6x 6= 0.

for all x ∈ R.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

We deduce that
y(x) = c1e

x + c2e
2x + c3e

3x.

is the general solution of the differential equation.
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Example (3)

Prove that
y1 = x3ex, and y2 = ex.

are solutions of the differential equation

xy′′ − 2(x+ 1)y′ + (x+ 2)y = 0

where x > 0. Find also the general solution of the differential equation.

Solution Substituting

y1 = x3ex, y′1 = 3x2ex + x3ex, y′′1 = 6xex + 6x2ex + x3ex,

in the differential equation we have

6x2ex+6x3ex+x4ex−6x3ex−2x4exex−6x2ex+−2x3ex+x4ex+2x3ex = 0.

Substituting
y2 = y′2 = y′′2 = ex,
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

in the differential equation

xex − 2xex − 2ex + xex + 2ex = 0.

Now we have to show that
y1 = x3ex,

and
y2 = ex.

are linearly independent on (0 , ∞).

In fact

W (x3ex, ex) =

∣∣∣∣ x3ex ex

3x2ex + x3ex ex

∣∣∣∣ = −3x2ex 6= 0 for all x > 0.

Then
y1 = x3ex,
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

and
y2 = ex.

are linearly independent on (0 , ∞) and we conclude that

yc = c1x
3ex + c2e

x.

is the general solution of the differential equation.
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Linear Differential Equations of Higher Order General Solution of homogeneous linear differential equations

Exercises

Verify that the given functions form a fundamental set of solutions of the
differential equation on the indicated interval, then find the general
solution of the differential equation.

y′′ − y′ − 12y = 0; e−3x, e4x on (−∞,∞)

x3y′′′ + 6x2y′′ + 4xy′ − 4y = 0; x, x−2, x−2 lnx on (0,∞)

y(4) + y′′ = 0; 1, x, sinx, cosx on (0,∞)
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

Reduction of order Method (when one solution is
given)

It is employed when one solution y1(x) is known and a second linearly
independent solution y2(x) is desired. The method also applies to n-th
order equations.

Suppose that y1(x) is a non-zero solution of the equation

a2(x)y
′′ + a1(x)y

′ + a0(x)y = 0, (8)

where a0(x), a1(x) and a2(x) are continuous functions defined on interval
I sauch that a2(x) 6= 0 for all x ∈ I.

The method of reduction of order is used to obtain a second linearly
independent y2(x) solution to this differential equation (8) using our one
known solution.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 39 / 100



Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

We suppose that the solution of (8) is in the form

y = u(x)y1,

where u is a fountain of x and which will be determined and satisfies a
linear second-order differential equation (8) by using the following method

y = u(x)y1 ⇒ y′ = u′y1 + y′1u⇒ y′′ = u′′y1 + 2u′y′1 + y′′1u.

It is best to describe the procedure with a concrete example.
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

Example (1)

If

y1 =
sinx√
x
.

is a solution of the differential equation

4x2y′′ + 4xy′ + (4x2 − 1)y = 0 on 0 < x < π.

then find the general solution of the differential equation..

Solution The solution of the differential equation is of the form
y = u(x)y1 or

y =
sinx√
x
u = (sinx) (x)

−1
2 u,

hence

y′ = (cosx)(x)
−1
2 u− 1

2
sinx(x)

−3
2 u+ sinx(x)

−1
2 u′,
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

y′′ = − sinx(x)
−1
2 u− cosx(x)

−3
2 u+ 2 cosx(x)

−1
2 u′

+
3

4
sinx(x)

−5
2 u− sinx(x)

−3
2 u′ + sinx(x)

−1
2 u′′

we substitute y , y′, and y′′ in the arbitrary constant we obtain

4x
3
2 sinxu′′ +

(
8x

3
2 cosx

)
u′ = 0,

hence
sinxu′′ + 2 cosxu′ = 0.

To solve this differential equation we put w = u′, then we have w′ = u′′.

Then ∫
dw

w
dx+

∫
2 cosx

sinx
dx = 0,
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

hence
u′ = w =

c1

sin2 x
,

where c1 6= 0 is an arbitrary constant. So we have u = −c1 cotx+ c2,
hence

y = y1u =
sinx√
x
(−c1 cotx+ c2),

or

y = c3
cosx√
x

+ c2
sinx√
x
,

finally we have
y = c2y1 + c3y2,

where c3 = −c1 and c2 are arbitrary constants, is the general solution of
the differential equation and we can prove that

y1 =
sinx√
x

and y2 =
cosx√
x

are linearly independent on solutions (0, π).
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

General case of Equation (8)

Equation
a2(x)y

′′ + a1(x)y
′ + a0(x)y = 0,

can be written as the form

y′′ + p(x)y′ + q(x)y = 0, (9)

where

p(x) =
a1(x)

a2(x)
,

and

q(x) =
a0(x)

a2(x)
.

Also, let us suppose that y1 is a known solution of (9) on I and y1(x) 6= 0
for all x ∈ I.
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

Thus the second solution of (9) y2 can be given from

y2 = y1

∫
e−

∫
p(x)dx

y21
dx. (10)
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

Example (1)

If

y1 =
sinx√
x

is a solution of the differential equation

4x2y′′ + 4xy′ + (4x2 − 1)y = 0 on (0, π),

then find the second solution .

Solution As

y′′ +
1

x
y′ +

4x2 − 1

4x2
y = 0.

then

p(x) =
1

x
,

and

e−
∫
p(x)dx = e

∫
− 1

x
dx = e− lnx =

1

x
.
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

We have

y2 = y1

∫
e−

∫
p(x)dx

y21
dx =

sinx√
x

∫ 1
x

sin2(x)
x

dx,

=
sinx√
x

∫
dx

sin2(x)
=
− cosx√

x
.

Hence

y2 =
− cosx√

x
or y2 =

cosx√
x

is the second solution of the differential equation on (0, π).
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

Example (2)

If y1 = e3x is a solution of the differential equation

xy′′ + (x− 1)y′ + (3− 12x)y = 0 ; x > 0.

Find the general solution.

Solution We have

y′′ + (1− 1

x
)y′ + (

3

x
− 12)y = 0.

From the formula (10) we can find directly y2, where∫
−p(x)dx =

∫
(−1 + 1

x
)dx = −x+ lnx,
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

hence

y2 = y1

∫
e−

∫
p(x)dx

y21
dx = e3x

∫
e−x+lnx

e6x
dx = e3x

∫
xe−7xdx

= e3x
[
−1

7
xe−7x − 1

49
e−7x

]
= e−4x(

−x
7
− 1

49
) = −1

7
e−4x(x+

1

7
).

Then the general solution is

y = c1y1 + c2y2 = c1e
3x + c2e

−4x(x+
1

7
)

on the interval (0,∞).
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Linear Differential Equations of Higher Order Reduction of order Method (when one solution is given)

Exercises

Apply the reduction of order method to obtain another linearly
independent solution for the following differential equations

y′′ − 4y′ + 4y = 0; y1 = e2x.

x2y′′ + x2y′ − (x+ 2)y = 0; y1 = x−1e−x, x > 0.

x2(1− lnx)y′′ + xy′ − y = 0; y1 = x, x > e.
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Homogeneous Linear Differential Equations with
Constant Coefficients

The linear differential equations with Constant Coefficients has the general
form

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y = 0, (11)

which is a homogeneous linear DE with constant real coefficients, where
each coefficient ai, 1 ≤ i ≤ n is real constant and an 6= 0.

Definition

The polynomial

f(m) = anm
n + an−1m

n−1 + · · ·+ a1m+ a0, (12)

is called the characteristic polynomial for equation (11), and f(m) = 0 is
called the characteristic equation of the linear differential equations with
constant coefficients (11).
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

We conclude that if m is a root of equation (52), then

y = emx

is a solution of the differential equation (11). Also, Equation (52) has n
roots.
Let us summarize the method to solve the differential equation (11)
(1) If all the roots of the characteristic equation are real roots then:
(i) If the roots are distinct (i.e. m1 6= m2 6= m3 6= · · · 6= mn), then the
solution of the differential equation (11) is given by

y = c1e
m1x + c2e

m2x + · · ·+ cne
mnx

(ii) If the roots are equal (i.e. m1 = m2 = m3 = · · · = mn) (i.e. m = mi

is a root of multiplicity n), then the solution of the differential equation
(11) is given by

y = c1e
mx + c2xe

mx + c3x
2emx + · · ·+ cnx

n−1emx

y = (c1 + c2x+ c3x
2 + · · ·+ cnx

n−1)emx
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Example (1)

Solve the differential equation

y′′ − y = 0.

Solution For this, the characteristic equation is m2 − 1 = 0 hence
m = ∓1.Then y1 = ex and y2 = e−x form the fundamental set of
solutions, hence the general solution is

y = c1e
x + c2e

−x.
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Example (2)

Find the general solution of the differential equation

y′′′ − 6y′′ + 11y′ − 6y = 0 .

Solution For this differential equation the characteristic equation is

m3 − 6m2 + 11m− 6 = (m− 1)(m− 2)(m− 3) = 0.

Then m = 1, 2, 3 and y1 = ex , y2 = e2x and y3 = e3x form the
fundamental set of solutions, hence the general solution is

y = c1e
x + c2e

2x + c3e
3x.
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Example (3)

Solve the differential equation

y′′ − 2y′ + y = 0.

Solution The characteristic equation for the differential equation is

m2 − 2m+ 1 = 0 ,

so m = 1 is a root of multiplicity 2, hence the general solution is

y = c1e
x + c2xe

x.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 55 / 100



Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Example (4)

Solve the differential equation

y′′′ − 3y′′ + 3y′ − y = 0

Solution The characteristic equation for the differential equation is
m3 − 3m2 + 3m− 1 = (m− 1)3 = 0, so m = 1 is a root of multiplicity 3
then the general solution is

y = c1e
x + c2xe

x + c3x
2ex.
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Now we see the second case

(2) If the characteristic equation has complex conjugate roots such as

m = α∓ iβ

then he solution of the differential equation of second order is given by

y = c1e
αx cos(βx) + c2e

αx sin(βx)

Remember:

1)
√
−1 = i

2) x =
−b∓

√
b2 − 4ac

2a

to find the roots of Quadratic equation

ax2 + bx+ c = 0
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Example (5)

Solve the differential equation

y′′ + 4y′ + 5y = 0.

Solution The characteristic (auxiliary) equation for the differential
equation is m2 + 4m+ 5 = 0, now we need to find the roots of this
characteristic equation

m =
−4∓

√
16− 20

2

then m = −2∓ i hence the general solution is

y(x) = c1e
−2x cos(x) + c2e

−2x sin(x).
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Example (6)

Solve the differential equation

y(5) − 3y(4) + 4y′′′ − 4y′′ + 3y′ − y = 0.

Solution The characteristic for the differential equation is

m5 − 3m4 + 4m3 − 4m2 + 3m− 1 = 0,

then

m5 − 3m4 + 4m3 − 4m2 + 3m− 1 = (m− 1)3(m2 + 1) = 0.

Thus m = 1 , 1 ,1 , ∓i where
√
−1 = i and the general solution of the

equation has the form

y = c1e
x + c2xe

x + c3x
2ex + c4 cosx+ c5 sinx.
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Example (7)

Solve the initial value problem (IV P ){
y′′ + y′ + y = 0

y(0) = 1 , y′(0) =
√
3.

Solution The characteristic equation for the differential equation is

m2 +m+ 1 = 0.

Hence

m = −1

2
∓
√
3

2
i.

So the general solution of a differential equation is

y = c1e
−x
2 cos

(√
3

2
x

)
+ c2e

−x
2 sin

(√
3

2
x

)
.
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

from the conditions y(0) = 1 and y′(0) =
√
3 we have c1 = 1. and

−c1
2

+ c2

√
3

2
=
√
3

hence c1 = 1 and c2 = 2 + 1√
3
. So the solution of the IV P is

y = e
−x
2 cos

(√
3

2
x

)
+ (2 +

1√
3
)e
−x
2 sin

(√
3

2
x

)
.
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Linear Differential Equations of Higher Order Homogeneous Linear Differential Equations with Constant Coefficients

Exercises

Find the general solution of the following differential equations

2y′′ + 3y′ + y = 0

y′′ − y′ − 6y = 0

y′′′ − 4y′′ − 5y′ = 0

y(4) − 2y′′ + y = 0

2y(5) − 7y(4) + 12y′′′ + 8y′′ = 0

Find the solution of the initial value problems

y′′ + y′ + 2y = 0; y(0) = y′(0) = 0

y′′′ + 12y′′ + 36y′ = 0; y(0) = 0, y′(0) = 1, y′′(0) = −7
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Linear Differential Equations of Higher Order Cauchy-Euler Differential Equation

Cauchy-Euler Differential Equation

A Cauchy-Euler differential equation is in the form

anx
n d

ny

dxn
+ an−1x

n−1 d
n−1y

dxn−1
+ · · ·+ a1x

dy

dx
+ a0y = 0, (13)

where each coefficient ai, 1 ≤ i ≤ n are constants and an 6= 0 i.e. the
coefficient anx

n should never be zero. Equation (13) is on the interval
either (0,∞) or (−∞, 0).

Euler differential equation is probably the simplest type of linear
differential equation with variable coefficients.

The most common Cauchy-Euler equation is the second-order equation,
appearing in a number of physics and engineering applications, such as
when solving Laplace’s equation in polar coordinates.
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Linear Differential Equations of Higher Order Cauchy-Euler Differential Equation

It is given by the equation

x2
d2y

dx2
+ ax

dy

dx
+ by = 0 (14)

To solve the Cauchy-Euler differential equation, we assume that y = xm,
where x > 0 and m is a root of a polynomial equation.
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Linear Differential Equations of Higher Order Cauchy-Euler Differential Equation

Example (1)

Solve the Cauchy-Euler differential equation

x2
d2y

dx2
+ ax

dy

dx
+ by = 0.

Solution We substitute

y = xm =⇒ y′ = mxm−1 =⇒ y′′ = m(m− 1)xm−2

in the differential equation, we obtain

x2[m(m− 1)xm−2] + ax[mxm−1] + bxm = 0

xm(m2 −m) + amxm + bxm = 0

xm[(m2 −m) + am+ b] = 0

xm[m2 + (1− a)m+ b] = 0.
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Linear Differential Equations of Higher Order Cauchy-Euler Differential Equation

Since xm 6= 0, then we have

m2 + (1− a)m+ b = 0

We then can solve for m. There are three particular cases of interest:

Case 1: Two distinct roots, m1 and m2. Thus, the solution is given by

y = c1x
m1 + c2x

m2 .

Case 2: One real repeated root, m. Thus, the solution is given by

y = c1x
m ln(x) + c2x

m.

Case 3: Complex roots, α± iβ. Thus, the solution is given by

y = c1x
α cos (β ln(x)) + c2x

α sin (β ln(x)) .
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Linear Differential Equations of Higher Order Cauchy-Euler Differential Equation

Example (2)

Solve the Euler differential equation

2x2y′′ − 3xy′ − 3y = 0. (15)

For x > 0.

Solution We substitute

y = xm =⇒ y′ = mxm−1 =⇒ y′′ = m(m− 1)xm−2

in the differential equation, we obtain

2x2[m(m− 1)xm−2]− 3x[mxm−1]− xm = 0

xm(2m2 − 2m)− 3mxm − 3xm = 0

xm[2m2 − 2m− 3m− 3] = 0

xm[2m2 − 5m− 3] = 0.
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Linear Differential Equations of Higher Order Cauchy-Euler Differential Equation

Since xm 6= 0, then we have

2m2 − 5m− 3 = 0

So the roots of this equation are m1 = −1
2 , m2 = 3 .Thus, from case 1

we have the solution is given by

y(x) = c1x
− 1

2 + c2x
3.

which is the general solution.
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Linear Differential Equations of Higher Order Cauchy-Euler Differential Equation

Example (3)

Find the general of the differential equation

x2y′′ − 3xy′ + 13y = 0 ; x > 0.

Solution Substituting y = xm in the equation, we obtain

m(m− 1)− 3m+ 13 = m2 − 4m+ 13 = 0.

Then we have two complex roots m = 3∓ 3i (case 3), hence the the
general of the differential equationis

y = c1x
3 cos(3 lnx) + c2x

3 sin(3 lnx) ; x > 0.

If we suppose x < 0, then the general of the differential equation is

y = c1(−x)3 cos(3 ln(−x)) + c2(−x)3 sin(3 ln(−x)) ; x < 0.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 69 / 100



Linear Differential Equations of Higher Order Cauchy-Euler Differential Equation

Example (4)

Find the general solution of the differential equation

x4y(4) − 5x3y′′′ + 3x2y′′ − 6xy′ + 6y = 0 ; x > 0.

Solution Substituting y = xm in the equation, we obtain

m(m−1)(m−2)(m−3)−5m(m−1)(m−2)+3m(m−1)−6m+6 = 0.

This implies that

(m− 1)(m− 2)(m2 − 8m+ 3) = 0.

The roots of this equation are m = 1 , m = 2 , and m = 4∓
√
13 , then

the general solution of the differential equation is

y = c1x+ c2x
2 + c3x

4+
√
13 + c4x

4−
√
13 ; x > 0.
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Example (5)

Find the general solution of the differential equation

x5y(5) − 2x3y′′′ + 4x2y′′ = 0 ; x < 0.

Solution Substituting y = xm in the equation, we obtain

m(m− 1)(m− 2)(m− 3)(m− 4)− 2m(m− 1)(m− 2) + 4m(m− 1) = 0,

m(m− 1)(m3 − 9m2 + 24m− 20) = m(m− 1)(m− 2)2(m− 5) = 0.

So the roots of this equation are m = 0 , m = 1 , m = 2 repeated two
times and m = 5 , then the general of the differential equation is

y = c1 + c2(−x) + c3(−x)2 + c4(−x)2 ln(−x) + c5(−x)5.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 71 / 100



Linear Differential Equations of Higher Order Cauchy-Euler Differential Equation

Exercises

Find the general solution of the following differential equations, where we
suppose that x > 0.

x2y′′ − y = 0

x2y′′ + 5xy′ + 3y = 0

4x2y′′ + 4xy′ − y = 0

x3y′′′ + xy′ − y = 0

x3y′′′ + 4x2y′′ − 8xy′ + 8y = 0

(3x+ 4)2y′′ + 10(3x+ 4)y′ + 9y = 0; x > −4

3
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General Solutions of Nonhomogeneous Linear
Differential Equations

Nonhomogeneous linear n-th order ODE takes the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x), (16)

where an(x), an−1(x), a1(x) and a0(x) are functions of x ∈ I = (a, b),
such that an(x) 6= 0 for all x ∈ I, and g(x) 6= 0.

Idea

Find the general solution yc to the homogeneous equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0
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Linear Differential Equations of Higher Order General Solutions of Nonhomogeneous Linear Differential Equations

Find a solution yp to the nonhomogeneous equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x)

The general solution y = yc + yp.
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Undetermined coefficients

Let us take an example

Example (1)

Find the general solution of the differential equation :

y′′ − y = −2x2 + 5 + 2ex. (*)

Solution
1) First we have to find the general solution of the differential equation :

y′′ − y = 0.

For , we have m2 − 1 = 0, hence m = ∓1 then

yc = c1e
x + c2e

−x.
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Linear Differential Equations of Higher Order General Solutions of Nonhomogeneous Linear Differential Equations

2) The form of the particular solution of

y′′ − y = −2x2 + 5,

is
y1,p = Ax2 +Bx+ C,

and the form of the particular solution of

y′′ − y = 2ex,

is
y2,p = Dxex,

because r = 1 is a simple root of the characteristic equation. Thus the
particular solution of (*) is

yp = y1,p + y2,p = Ax2 +Bx+ C +Dxex.

Now we have to find the constants A, B, C , and D by substituting yp
and y′′p in differential equation (*) and we find

y′′p − yp = −Ax2 −Bx+ 2A− C + 2Dex = −2x2 + 5 + 2ex.
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Linear Differential Equations of Higher Order General Solutions of Nonhomogeneous Linear Differential Equations

Equating coefficients of similar terms (because the functions x2, 1 and
are ex linearly independent on R ), we obtain the following system of
equation A = 2, B = 0 , 2A−C = 5 , and 2D = 2. Thus we have A = 2,
B = 0, C = −1, and D = 1.Then the particular solution of (*) is

yp = 2x2 − 1 + xex,

and the general solution of the differential equation of (*) is

y = yc + yp = c1e
x + c2e

−x + 2x2 − 1 + xex.
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Linear Differential Equations of Higher Order General Solutions of Nonhomogeneous Linear Differential Equations

Some of the Typical forms of the particular integral

Function of x Form for yp

keax Ceax

kxn, n = 0, 1, 2, . . .
n∑
i=1

Cix
i

k cos(ax) or k sin(ax) C1 cos(ax) + C2 sin(ax)

keax cos(bx) or keax sin(bx) eax (C1 cos(bx) + C2 sin(bx))(
n∑
i=1

kix
i

)
cos(ax)

or(
n∑
i=1

kix
i

)
sin(ax)

(
n∑
i=1

Cix
i

)
cos(ax) +

(
n∑
i=1

Rix
i

)
sin(ax)
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Exercises

Find the general solution of the following differential equations.

x2y′′ − y = 0

y′′ + 4y = sin(2x) + ex

y′′ − 5y′ + 4y = e2x(cosx+ sinx)

Find only the form of the particular solution of the given differential
equation by using the method of undetermined coefficients.

y′′ − y = ex + s sinx

y′′ − y = x2ex

y(6) − 3y(3) = 3x+ 1

y′′′ − y′ = x5 + cosx
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Linear Differential Equations of Higher Order General Solutions of Nonhomogeneous Linear Differential Equations

Variation of Parameters

This method is used to determine the particular solution yp of
nonhomogeneous differential equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x), (17)

If we have the nonhomogeneous differential equation

a2(x)y
′′ + a1(x)y

′ + a0(x)y = g(x), (18)

which has the particular solution

yp = y1u1 + y2u2,

where y1 and y2 are the first and the second solution of the homogeneous
differential equation, respectively.

a2(x)y
′′ + a1(x)y

′ + a0(x)y = 0 (19)
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Linear Differential Equations of Higher Order General Solutions of Nonhomogeneous Linear Differential Equations

Here we will explain the method to find u1 and u2. So, if we have y1 & y2
, then we will determine as below

W (x, y1, y2) =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y′1,

W1 =

∣∣∣∣ 0 y2
g(x) y′2

∣∣∣∣ = −y2g(x),
W2 =

∣∣∣∣ y1 0
y′1 g(x)

∣∣∣∣ = y1g(x).

Thus,

u′1 =
W1

W

and

u′2 =
W2

W
.
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Example (1)

Solve the differential equation

y′′ + y = cscx ; 0 < x < π.

Solution
1) The general solution of

y′′ + y = 0,

is
yc = c1 sinx+ c2 cosx.

2) The particular solution of

y′′ + y = cscx,

is the form
yp = y1u1 + y2u2,

where
y1 = sinx and y2 = cosx.
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Linear Differential Equations of Higher Order General Solutions of Nonhomogeneous Linear Differential Equations

The functions u1 and u2 are determined from the system below

W (x, y1, y2) =

∣∣∣∣ sinx cosx
cosx − sinx

∣∣∣∣ = −1,
W1 =

∣∣∣∣ 0 cosx
cscx − sinx

∣∣∣∣ = − cotx,

W2 =

∣∣∣∣ sinx 0
cosx cscx

∣∣∣∣ = 1,

Hence

u′1 =
W1

W
= cotx,

then
u1 = ln(sinx).

But
u′2 = −1,
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hence u2 = −x. Therefore we have

yp = y1u1 + y2u2 = sinx. ln(sinx)− x cosx,

and the general solution of the differential equation is

y = yc + yp = c1 sinx+ c2 cosx+ sinx. ln(sinx)− x cosx.
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Example (2)

Solve the differential equation

y′′ − 4y′ + 4y = (x+ 1)e2x.

Solution
1) The general solution of

y′′ − 4y′ + 4y = 0,

is
yc = c1e

2x + c2xe
2x.

2) Let
y1 = e2x and y2 = xe2x.

So we have

W (x, y1, y2) =

∣∣∣∣ e2x xe2x

2e2x e2x + 2xe2x

∣∣∣∣ = e4x,
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W1(x, y1, y2) =

∣∣∣∣ 0 xe2x

(x+ 1)e2x e2x + 2xe2x

∣∣∣∣ = −x(x+ 1)e4x,

and

W2(x, y1, y2) =

∣∣∣∣ e2x 0
2e2x (x+ 1)e2x

∣∣∣∣ = (x+ 1)e4x,

hence

u′1 =
W1

W
= −x(x+ 1) = −x2 − x,

so

u1 = −
x3

3
− x2

2

But

u′2 =
W2

W
= x+ 1,

then

u2 =
x2

2
+ x.
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Therefore,

yp = y1u1 + y2u2 = (−x
3

3
− x2

2
)e2x + x(

x2

2
+ x)e2x = (

x3

6
+
x2

2
)e2x,

and The general solution of the differential equation is

y = yc + yp = c1e
2x + c2xe

2x + (
x3

6
+
x2

2
)e2x.

In this example we can use the undetermined coefficients, where

yp = x2(A+Bx)e2x.
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Example (3)

Solve the Differential equation

y′′ − 3y′ + 2y =
1

1 + e−x
.

Solution
1) The general solution of

y′′ − 3y′ + 2y = 0.

is
yc = c1e

x + c2e
2x.

2) Let
y1 = ex and y2 = e2x,

then

W (x, y1, y2) =

∣∣∣∣ ex e2x

ex 2e2x

∣∣∣∣ = e3x,
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W1(x, y1, y2) =

∣∣∣∣ 0 e2x
1

1+e−x 2e2x

∣∣∣∣ = −e2x

1 + e−x
,

W2(x, y1, y2) =

∣∣∣∣ ex 0
ex 1

1+e−x

∣∣∣∣ = ex

1 + e−x
,

hence

u′1 =
W1

W
= − e−x

1 + e−x

and

u1(x) = −
∫

e−x

1 + e−x
dx = ln

(
1 + e−x

)
.

But

u′2 =
W2

W
=

e−2x

1 + e−x
,

and

u2 =

∫
e−2x

1 + e−x
dx = −(1 + e−x) + ln

(
1 + e−x

)
,

MATH204-Differential Equations Center of Excellence in Learning and Teaching 89 / 100



Linear Differential Equations of Higher Order General Solutions of Nonhomogeneous Linear Differential Equations

so we have

y = yc + yp = (c1 − 1)ex + (c2 − 1)e2x + (ex + e2x) ln
(
1 + e−x

)
,

= c3e
x + c4e

2x + (ex + e2x) ln
(
1 + e−x

)
.
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Example (4)

Find the general solution of the differential equation

y′′′ + y′ = tanx ; 0 < x <
π

2
.

Solution
1) The the general solution of

y′′′ + y′ = 0,

is
yc = c1 + c2 cosx+ c3 sinx.

2) Let y1 = 1 , y2 = cosx and y3 = sinx . The particular solution of
the differential equation has the form

yp = u1y1 + u2y2 + u3y3.
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We have

W (x, y1, y2, y3) =

∣∣∣∣∣∣
1 cosx sinx
0 − sinx cosx
0 − cosx − sinx

∣∣∣∣∣∣ = 1,

W1(x, y1, y2, y3) =

∣∣∣∣∣∣
0 cosx sinx
0 − sinx cosx

tanx − cosx − sinx

∣∣∣∣∣∣ = tanx ,

W2(x, y1, y2, y3) =

∣∣∣∣∣∣
1 0 sinx
0 0 cosx
0 tanx − sinx

∣∣∣∣∣∣ = − sinx ,

W3(x, y1, y2, y3) =

∣∣∣∣∣∣
1 cosx 0
0 − sinx 0
0 − cosx tanx

∣∣∣∣∣∣ = − sin2(x)

cosx
.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 92 / 100



Linear Differential Equations of Higher Order General Solutions of Nonhomogeneous Linear Differential Equations

Then we have,

u′1 =
W1

W
= tanx,

and

u1 =

∫
tanxdx = − ln(cosx) .

But

u′2 =
W2

W
= − sinx ,

then

u2 = −
∫

sinxdx = cosx.

Also

u′3 =
W3

W
=
− sin2(x)

cosx
,
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hence,

u3 = −
∫

sin2(x)

cosx
dx = −

∫
1− cos2(x)

cosx
dx = − ln(secx+ tanx) + sinx.

Thus,

yp = u1y1 + u2y2 + u3y3,

= − ln(cosx) + cos2(x)− sinx ln(secx+ tanx) + sin2(x),

= 1− ln(cosx)− sinx ln(secx+ tanx).

So the general solution of the differential equation is

y = yc + yp = (c1 + 1) + c2 cosx+ c3 sinx− ln(cosx)

− sinx ln(secx+ tanx)

y = c4 + c2 cosx+ c3 sinx− ln(cosx)− sinx ln(secx+ tanx).
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Example (5)

Find the solution of the initial value problem (IV P ){
2x2y′′ + xy′ − 3y = x−3 ; x > 0

y(1) = 1 , y′(1) = −1.

Solution
1) We have to find the general solution of

2x2y′′ + xy′ − 3y = 0.

By substituting y = xm, we have

m(m− 1) +m− 3 = (2m− 3)(m+ 1) = 0,

hence the general solution of the homogeneous differential equation is

yc = c1 x
−1 + c2 x

3
2 .
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2) Let y1 = x−1 , y2 = x
3
2 , then

yp = u1y1 + u2y2.

We have

W (x, y1, y2) =

∣∣∣∣∣ x−1 x
3
2

−x−2 3
2x

1
2

∣∣∣∣∣ = 5

2
x−

1
2 ,

W1(x, y1, y2) =

∣∣∣∣∣ 0 x
3
2

1
2x
−5 3

2x
1
2

∣∣∣∣∣ = −1

2
x−

7
2 ,

W2(x, y1, y2) =

∣∣∣∣ x−1 0
−x−2 1

2x
−5

∣∣∣∣ = 1

2
x−6.

Then we have

u′1 =
W1

W
= −1

5
x−3,

and

u1 =
1

10
x−2.
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Also we have

u′2 =
W2

W
=

1

5
x−

11
2 ,

hence

u2 = −
2

45
x−

9
2 .

So

yp = u1y1 + u2y2 =
1

10
x−3 − 2

45
x−3 =

1

18
x−3.

Then the general solution of the differential equation is

y = yc + yp = c1 x
−1 + c2 x

3
2 +

1

18
x−3.

We can obtain yp by substituting yp = Ax−3, which implies A = 1
18 .
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3)

y′(x) = −c1x−2 +
3

2
c2x

1
2 − 1

6
x−4.

From the conditions y(1) = 1 and y′(1) = −1, we deduce

c1 + c2 =
17

18
,

and

−c1 +
3

2
c2 = −

5

6
,

which implies c1 =
9
10 and c2 =

2
45 . Thus the solution of the IV P is

y =
9

10
x−1 +

2

45
x

3
2 +

1

18
x−3.
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Exercises

Use the variation of parameters method to find the general solution or
initial value problems of the following differential equations.

y′′ + y = secx; 0 < x <
π

2

y′′ − 2y′ + y =
ex

x
; x > 0

y′′ − 12y′ + 36y = e6x lnx; x > 0

y′′ − 2y′ + y =
ex

(ex + 1)2

y′′ − y =
2√

1− e−2x

y′′′ + 4y′ = sec 2x; 0 < x <
π

4
2y′′′ − 6y′′ = x2
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y′′ + y = tanx; y
(π
3

)
= 1, y′

(π
3

)
= 0

y′′ + y = sec3(x); y(0) = 1, y′(0) = 1

y′′ − 2y′ + y =
ex

x
; y(1) = e, y′(1) = 0
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