Power Series and Analytic Function

Dr Mansoor Alshehri

King Saud University

Power Series and Analytic Function

- Some Reviews of Power Series
- Differentiation and Integration of a Power Series
- Power Series Solutions for Homogeneous Second-order Linear ODE with Nonconstant coefficients
- Ordinary Point and Singular Point
- Power Series Solutions about an Ordinary Point

A power series in $x-x_{0}$ is an infinite series of form

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots \tag{1}
\end{equation*}
$$

where the coefficients a_{n} are constants.

- The series (1) converges at the point $x=\alpha$ if

$$
\lim _{n \rightarrow \infty} S_{n}(x)=\sum_{n=0}^{\infty} a_{n}\left(\alpha-x_{0}\right)^{n}
$$

exists.

- The series (1) diverges at the point $x=\alpha$ if

$$
\lim _{n \rightarrow \infty} S_{n}(x)=\sum_{n=0}^{\infty} a_{n}\left(\alpha-x_{0}\right)^{n}
$$

does not exist.

Differentiation and Integration of a Power Series

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

then

$$
\begin{aligned}
& f^{\prime}(x)=\sum_{n=0}^{\infty} a_{n} n\left(x-x_{0}\right)^{n-1}, \text { and } \\
& f^{\prime \prime}(x)=\sum_{n=0}^{\infty} a_{n} n(n-1)\left(x-x_{0}\right)^{n-2} \\
& \quad \int f(x) d x=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n+1} /(n+1)
\end{aligned}
$$

Power Series Solutions for Homogeneous Second-order Linear ODE with Nonconstant Coefficients

A general homogeneous second-order ODE has the form

$$
\begin{equation*}
a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0 \tag{2}
\end{equation*}
$$

which we will write in standard form

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{3}
\end{equation*}
$$

where $p(x)=\frac{a_{1}(x)}{a_{2}(x)}$ and $q(x)=\frac{a_{0}(x)}{a_{2}(x)}$.

- A point $x=x_{0}$ is an ordinary point of the differential equation if $p(x)$ and $q(x)$ are analytic as $x=x_{0}$
- If $p(x)$ or $q(x)$ is not analytic at $x=x_{0}$ then we say that $x=x_{0}$ is a singular point.

Considering the defnitions of $p(x)$ and $q(x)$ above, we see that typically the points where $a_{2}(x)=0$ are the singular points of the ODE.

Example

Locate the ordinary points, regular singular points and irregular singular points of the differential equation

$$
\left(x^{4}-x^{2}\right) y^{\prime \prime}+(2 x+1) y^{\prime}+x^{2}(x+1) y=0
$$

Solution

We have $a_{2}(x)=x^{4}-x^{2}, a_{1}(x)=2 x+1, a_{0}(x)=x^{2}(x+1)$, and so

$$
a_{1}(x) / a_{2}(x)=\frac{2 x+1}{x^{4}-x^{2}}=\frac{2 x+1}{x^{2}(x-1)(x+1)}
$$

and

$$
a_{0}(x) / a_{2}(x)=\frac{x^{2}(x+1)}{x^{4}-x^{2}}=\frac{1}{x-1} .
$$

We can see that every real number except 0,1 and -1 is an ordinary point the differential equation. To see which of the singular points 0,1 and -1 is a regular singular point and which is an irregular singular point for the differential.
we need to examine the two functions: $\left(x-x_{0}\right) a_{1}(x) / a_{2}(x)$, and $\left(x-x_{0}\right)^{2} a_{0}(x) / a_{2}(x)$ at the points 0,1 and -1 .

At $x_{0}=0$, we have

$$
\left(x-x_{0}\right) a_{1}(x) / a_{2}(x)=\frac{2 x+1}{x(x-1)(x+1)},
$$

and

$$
\left(x-x_{0}\right)^{2} a_{0}(x) / a_{2}(x)=\frac{x^{2}}{x-1} .
$$

The first function is not analytic at $x_{0}=0$, hence we conclude that $x_{0}=0$ is an irregular singular point.

At $x_{0}=1$, we have

$$
\left(x-x_{0}\right) a_{1}(x) / a_{2}(x)=\frac{2 x+1}{x^{2}(x+1)},
$$

and

$$
\left(x-x_{0}\right)^{2} a_{0}(x) / a_{2}(x)=x-1
$$

Since both of these expressions are analytic at $x_{0}=1$, we conclude that $x_{0}=1$ is a regular singular point.

Finally, for $x_{0}=-1$, we have

$$
\left(x-x_{0}\right) a_{1}(x) / a_{2}(x)=\frac{2 x+1}{x^{2}(x-1)}
$$

and

$$
\left(x-x_{0}\right)^{2} a_{0}(x) / a_{2}(x)=\frac{(x+1)^{2}}{x-1}
$$

Since both of these functions are analytic at $x_{0}=-1$, we conclude that $x_{0}=-1$ is a regular singular point for the differential equation.

Exercises

Locate the ordinary points, regular singular points and irregular singular points of the differential equation

- $x y^{\prime \prime}-(2 x-1) y^{\prime}+y=0$
- $x\left(x^{2}+1\right)^{3} y^{\prime \prime}+y^{\prime}-8 x y=0$
- $x^{3}\left(1-x^{2}\right) y^{\prime \prime}+(2 x-3) y^{\prime}+x y=0$

Power Series Solutions about an Ordinary Point

We now wish to find a series solution by expanding about an ordinary point $x=x_{0}$ of an ODE using the following method:

- Assume a solution of the form $y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$
- Substitute the series into the ODE.
- Obtain an equation relating the coefficients, called a recurrence relationship.
- Apply any initial conditions.

Example (1)

Find the general solution of the differential equation

$$
\begin{equation*}
y^{\prime}-2 x y=0 \tag{4}
\end{equation*}
$$

about the ordinary point $x_{0}=0$.
Solution It is clear that $x_{0}=0$ is an ordinary point since there are no finite singular points. The solution of (4) is of the form

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{5}
\end{equation*}
$$

We have

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

then equation (4) becomes

$$
\begin{equation*}
\sum_{n=1}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} 2 a_{n} x^{n+1}=0 \tag{6}
\end{equation*}
$$

We first make the same power of x as x^{n} in both series in (6) by letting $k=n-1$ in the first series and $k=n+1$ in the second one, we have

$$
\begin{equation*}
\sum_{k=0}^{\infty}(k+1) a_{k+1} x^{k}-\sum_{k=1}^{\infty} 2 a_{k-1} x^{k}=0 \tag{7}
\end{equation*}
$$

We now let the index of summation starts by 1 in both series in (7), so that

$$
\begin{equation*}
a_{1}+\sum_{k=1}^{\infty}\left[(k+1) a_{k+1}-2 a_{k-1}\right] x^{k}=0 . \tag{8}
\end{equation*}
$$

For equation (8) to be satisfied, it is necessary that $a_{1}=0$ and

$$
\begin{equation*}
(k+1) a_{k+1}-2 a_{k-1}=0, \quad \text { for all } k \geq 1 \tag{9}
\end{equation*}
$$

Equation (9) provides a recurrence relation and we write

$$
\begin{equation*}
a_{k+1}=\frac{2 a_{k-1}}{k+1} \quad \text { for all } k \geq 1 \tag{10}
\end{equation*}
$$

Iteration of (10) then gives for $k=1$

$$
a_{2}=a_{0}
$$

For $k=2$

$$
a_{3}=\frac{2}{3} a_{1}=0 .
$$

For $k=3$

$$
a_{4}=\frac{2}{4} a_{2}=\frac{1}{2} a_{0} .
$$

For $k=4$

$$
a_{5}=\frac{2}{5} a_{3}=0 .
$$

And for $k=5$

$$
a_{6}=\frac{2}{6} a_{4}=\frac{1}{3!} a_{0}
$$

and so on.
Thus from the original assumption, we find

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots \\
& =a_{0}\left(1+\frac{x^{2}}{1!}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\ldots\right) \\
& =a_{0} \sum_{n=0}^{\infty} \frac{x^{2 n}}{n!} \quad \text { for all } x \in \mathbb{R} . \\
& =a_{0} e^{x^{2}} .
\end{aligned}
$$

Example (2)

Solve the initial value problem by the method of power series about the initial point $x_{0}=0$.

$$
\left\{\begin{array}{c}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+4 y=0 \tag{11}\\
y(0)=1, y^{\prime}(0)=0
\end{array}\right.
$$

Solution The two functions

$$
a_{1}(x) / a_{2}(x)=\frac{-x}{1-x^{2}}=-\sum_{n=0}^{\infty} x^{2 n+1} \text { for }|x|<1
$$

and

$$
a_{0}(x) / a_{2}(x)=\frac{4}{1-x^{2}}=4 \sum_{n=0}^{\infty} x^{2 n} \text { for }|x|<1
$$

are analytic for all $|x|<1$, then the solution of the differential equation in (11) is given by

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n} \text { for }|x|<1
$$

Hence

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

and

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

for all $|x|<1$. So we have

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}+4 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Let $k=n-2$ in the first series and $k=n$ in the other series, we get
$\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} x^{k}-\sum_{k=2}^{\infty} k(k-1) a_{k} x^{k}-\sum_{k=1}^{\infty} k a_{k} x^{k}+4 \sum_{k=0}^{\infty} a_{k} x^{k}=0$.
All sums in (12) should start by the same index of summation 2, therefore we have

$$
\begin{aligned}
& \sum_{k=2}^{\infty}\left[(k+2)(k+1) a_{k+2}-\left(k^{2}-4\right) a_{k}\right] x^{k} \\
& +2 a_{2}+4 a_{0}+\left(6 a_{3}+3 a_{1}\right) x=0
\end{aligned}
$$

From this last identity, we conclude that

$$
2 a_{2}+4 a_{0}=0,6 a_{3}+3 a_{1}=0
$$

and

$$
a_{k+2}=\frac{\left(k^{2}-4\right) a_{k}}{(k+2)(k+1)}, \quad \text { for all } k \geq 2
$$

By using the initial conditions, we would observe that $a_{0}=y(0)=1$ and $a_{1}=y^{\prime}(0)=0$, then $a_{2}=-2, a_{3}=0$ and

$$
a_{k+2}=\frac{k-2}{k+1} a_{k}, \quad \text { for all } k \geq 2 .
$$

So for $k=2$,

$$
a_{4}=0,
$$

for $k=3$,

$$
a_{5}=0,
$$

for $k=4$,

$$
a_{6}=0
$$

for $k=5$,

$$
a_{7}=0,
$$

for $k=6$,

$$
a_{8}=0, \text { and so on }, \ldots . .
$$

and so on. Then the initial value problem (11) has a unique solution given by

$$
\begin{aligned}
y=\sum_{n=0}^{\infty} a_{n} x^{n} & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\ldots \\
& =1-2 x^{2}+\ldots
\end{aligned}
$$

for all $|x|<1$.

Exercises

(1) Find the general solution of the differential equation

$$
y^{\prime \prime}+y=0
$$

about the ordinary point $x_{0}=0$.
(2) Solve the initial value problem by the method of power series about the initial point $x_{0}=0$.

$$
\left\{\begin{array}{c}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+6 y=0 \\
y(0)=1, y^{\prime}(0)=0
\end{array}\right.
$$

(3) Compute the first four coefficients of power serises solution about the given initial point

$$
\left\{\begin{array}{c}
y^{\prime \prime}-2(x-1) y^{\prime}+2 y=0 \\
y(1)=1, y^{\prime}(1)=0
\end{array}\right.
$$

