Ordinary Differential Equation Systems with Constant Coefficients

Dr Mansoor Alshehri
King Saud University

Introduction
 - The D operator

Elimination Method

The D operator

Definition

A differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation, accepting a function and returning another (in the style of a higher-order function in computer science).

Here we will use the following notations:

$$
D=d / d t, D^{2}=d^{2} / d^{2} t, \ldots, D^{n}=d^{n}
$$

where t is the independent variable.
Simple Equivalents:

- D_{u} means $D_{u} \equiv \frac{d u}{d t}$ but $u D \equiv u \frac{d}{d t}$.
- $D_{y}^{2} \equiv D \times D_{y} \equiv \frac{d}{d t}\left(\frac{d y}{d t}\right)$.
- Similarly $D^{2} \equiv \frac{d^{2}}{d t^{2}}$ and $D^{3} \equiv \frac{d^{3}}{d t^{3}}$.

The following differential equation:

$$
3 \frac{d^{2} y}{d t^{2}}+7 \frac{d y}{d t}+2 y=0
$$

may be expressed as:

$$
\left(3 D^{2}+7 D+2\right) y=0
$$

or

$$
3 D^{2}+7 D+2=0
$$

Elimination Method

Definition

The elimination method consists in bringing the system of n differential equations into a single differential equation of order n.

In the elimination method you either add or subtract the system of differential equations into a single differential equation.

Example (1)

Find the general solution of the system

$$
\left\{\begin{array}{c}
\frac{d^{2} x}{d t^{2}}+\frac{d^{2} y}{d t^{2}}+\frac{d x}{d t}-3 \frac{d y}{d t}-x+2 y=0 \tag{1}\\
\frac{d x}{d t}+2 \frac{d y}{d t}+2 x-4 y=0
\end{array}\right.
$$

Solution We first write the system (1) in its operator form

$$
\left\{\begin{array}{c}
\left(D^{2}+D-1\right)[x]+\left(D^{2}-3 D+2\right)[y]=0, \tag{2}\\
(D+2)[x]+(2 D-4)[y]=0 .
\end{array}\right.
$$

To eliminate x, we apply the operator $D^{2}+D-1$ to the second equation in (2) and $D+2$ to the first one and substrate the first from the second, we get

$$
\left(\left(D^{2}+D-1\right)(2 D-4)-(D+2)\left(D^{2}-3 D+2\right)\right)[y]=0
$$

or

$$
\begin{equation*}
\left(D^{3}-D^{2}-2 D\right)[y]=0 \Leftrightarrow y^{\prime \prime \prime}-y^{\prime \prime}-2 y^{\prime}=0 . \tag{3}
\end{equation*}
$$

The characteristic equation for (3) is

$$
m^{3}-m^{2}-2 m=0
$$

whose roots are $0,2,-1$. Thus

$$
y(t)=c_{1}+c_{2} e^{2 t}+c_{3} e^{-t} .
$$

Substitution of this last expression in the second equation of (1) gives

$$
\begin{equation*}
x^{\prime}+2 x=4 c_{1}+6 c_{3} e^{-t} . \tag{4}
\end{equation*}
$$

Equation (4) is a linear equation, we solve it to obtain

$$
x(t)=2 c_{1}+6 c_{3} e^{-t}+c_{4} e^{-2 t} .
$$

To eliminate the constant c_{4} from the solution $x(t)$, we replace $x(t)$ and $y(t)$ in the first equation in (2) and we find $c_{4}=0$. Consequently

$$
x(t)=2 c_{1}+6 c_{3} e^{-t} .
$$

Example (2)

Solve the system

$$
\left\{\begin{array}{c}
x^{\prime \prime}+y^{\prime}-3 x^{\prime}+2 x-y=0 \tag{5}\\
x^{\prime}+y^{\prime}-2 x+y=0
\end{array}\right.
$$

Solution

We first write the system (5) in its operator form

$$
\left\{\begin{array}{c}
\left(D^{2}-3 D+2\right)[x]+(D-1)[y]=0 \tag{6}\\
(D-2)[x]+(D+1)[y]=0 .
\end{array}\right.
$$

To eliminate y,we apply $(D+1)$ to the first equation in (6) and ($D-1$) to the second and substrate the first from the second, we get

$$
\begin{equation*}
\left(D^{3}-3 D^{2}+2 D\right)[x]=0 \Leftrightarrow x^{\prime \prime \prime}-3 x^{\prime \prime}+2 x^{\prime}=0 . \tag{7}
\end{equation*}
$$

The general solution of (7) is

$$
x(t)=c_{1}+c_{2} e^{2 t}+c_{3} e^{t} .
$$

From the second equation in (5), we have

$$
\begin{equation*}
y^{\prime}+y=c_{3} e^{t}+2 c_{1} . \tag{8}
\end{equation*}
$$

We solve the linear equation (8) to obtain

$$
y(t)=2 c_{1}+\frac{c_{3}}{2} e^{t}+c_{4} e^{-t}
$$

To eliminate the extraneous constant c_{4}, we substitute for $x(t)$ and $y(t)$ in the first equation in (5) and find that $c_{4}=0$. Hence

$$
y(t)=2 c_{1}+\frac{c_{3}}{2} e^{t}
$$

Example (3)

Find the general solution of the system

$$
\left\{\begin{array}{c}
\frac{1}{2} x^{\prime \prime \prime}-y^{\prime \prime}=\cos t \tag{9}\\
\frac{1}{2} x^{\prime \prime}+x+y^{\prime}=-\cos t
\end{array}\right.
$$

Solution We write the system (9) in the operator form

$$
\left\{\begin{array}{c}
\frac{1}{2} D^{3}[x]-D^{2}[y]=\cos t \\
\left(\frac{1}{2} D^{2}+1\right)[x]+D[y]=-\cos t
\end{array}\right.
$$

To eliminate y, we apply the operator D to the second equation and then sum both equations

$$
\begin{equation*}
\left(D^{3}+D\right)[x]=\sin t+\cos t \Leftrightarrow x^{\prime \prime \prime}+x^{\prime}=\sin t+\cos t . \tag{10}
\end{equation*}
$$

By using the method of undetermined coefficients method, we find that the general solution of equation (10) is given by

$$
\begin{equation*}
x(t)=c_{1}+c_{2} \cos t+c_{3} \sin t-\frac{t}{2}(\cos t+\sin t) \tag{11}
\end{equation*}
$$

Substitution of the expression (11) in the second equation of (9) gives

$$
y(t)=\left(\frac{3}{2}+\frac{c_{3}}{2}-\frac{t}{4}\right) \cos t+\left(-\frac{1}{4}-\frac{c_{2}}{2}+\frac{t}{4}\right) \sin t-c_{1} t+c_{4} .
$$

To eliminate the extraneous constant c_{4}, we substitute for $x(t)$ and $y(t)$ in the second equation in (9) and find that $c_{4}=0$. Hence

$$
y(t)=\left(\frac{3}{2}+\frac{c_{3}}{2}-\frac{t}{4}\right) \cos t+\left(-\frac{1}{4}-\frac{c_{2}}{2}+\frac{t}{4}\right) \sin t-c_{1} t
$$

Exercises

Find the general solution of the following systems of differential equations
(1)

$$
\left\{\begin{array}{c}
x^{\prime}+y-x=-t^{2} \\
y^{\prime}-x-3 y=2 t
\end{array}\right.
$$

(2)

$$
\left\{\begin{array}{c}
x^{\prime \prime}-3 x^{\prime}+y^{\prime}+2 x-y=0 \\
y^{\prime}+x^{\prime}-2 x+y=0
\end{array}\right.
$$

(3)

$$
\left\{\begin{array}{c}
y^{\prime \prime}+x^{\prime}+x=0, \\
y^{\prime}-y+x=\sin t
\end{array}\right.
$$

