
Chapter 6 – Architectural Design

Lecture 1

1Chapter 6 Architectural design

Topics covered

 Architectural design decisions

 Architectural views

 Architectural patterns

 Application architectures

2Chapter 6 Architectural design

Objectives

 understand why the architectural design of software is

important;

 understand the decisions that have to be made about

the system architecture during the architectural design

process;

 have been introduced to the idea of architectural

patterns, well-tried ways of organizing system

architectures, which can be reused in system designs;

 know the architectural patterns that are often used

in different types of application system, including

transaction processing systems and language

processing systems.
Chapter 6 Architectural design 3

Software architecture

 The design process for identifying the sub-systems

making up a system and the framework for sub-

system control and communication is architectural

design.

 The output of this design process is a description of the

software architecture.

4Chapter 6 Architectural design

Architectural design

 An early stage of the system design process.

 Represents the link between specification and design

processes.

Often carried out in parallel with some specification

activities.

 It involves identifying major system components and

their communications.

5Chapter 6 Architectural design

The architecture of a packing robot control

system

6Chapter 6 Architectural design

Architectural abstraction

 Architecture in the small is concerned with the

architecture of individual programs. At this level, we are

concerned with the way that an individual program is

decomposed into components.

 Architecture in the large

 is concerned with the architecture of complex enterprise

systems that include other systems, programs, and program

components.

 These enterprise systems are distributed over different

computers, which may be owned and managed by different

companies.

7Chapter 6 Architectural design

Why is Software architecture Important

 It affects the performance, robustness,

distributability, and maintainability of a system.

 Individual components implement the functional

system requirements.

 The non-functional requirements depend on the system

architecture—the way in which these components are

organized and communicate.

 In many systems, non-functional requirements are also

influenced by individual components, but there is no

doubt that the architecture of the system is the

dominant influence.

Chapter 6 Architectural design 8

Advantages of explicit architecture

 Stakeholder communication

 Architecture may be used as a focus of discussion by system
stakeholders, for the negotiation of system requirements.

 It is an essential tool for complexity management. It hides
details and allows the designers to focus on the key system
abstractions.

 System analysis

 Means that analysis of whether the system can meet its non-
functional requirements is possible.

 Architectural design decisions have a profound effect on
whether or not the system can meet critical requirements
such as performance, reliability, and maintainability.

 Large-scale reuse

 The architecture may be reusable across a range of systems
with similar requirements and so can support large-scale
software reuse

 Product-line architectures may be developed where the same

9Chapter 6 Architectural design

Architectural representations

 Simple, informal block diagrams showing entities and

relationships are the most frequently used method for

documenting software architectures.

 Example the figure above.

 Each box in the diagram represents a component.

 Boxes within boxes indicate that the component has

been decomposed to sub-components.

 Arrows mean that data and or control signals are

passed from component to component in the direction of

the arrows.

10Chapter 6 Architectural design

 +ve

 present a high-level picture of the system structure, which

people from different disciplines, who are involved in the system

development process, can readily understand.

 -ve

 But these have been criticized because they are very Abstract

 lack semantics, do not show the types of relationships

between entities nor the externally visible properties of entities in

the architecture.

Chapter 6 Architectural design 11

Use of architectural models

 Depends on the use of architectural models.

 As a way of facilitating discussion about the system design

 A high-level architectural view of a system is useful for

communication with system stakeholders and project planning

because it is not cluttered with detail.

 Stakeholders can relate to it and understand an abstract view of the

system. They can then discuss the system as a whole without being

confused by detail.

 Block diagrams are good for this purpose

 As a way of documenting an architecture that has been designed

 The aim here is to produce a complete system model that shows the

different components in a system, their interfaces and their

connections.

 In this case it is better to use a notation with well-defined semantics

for architectural description.
Chapter 6 Architectural design 12

Architectural design decisions

 Architectural design is a creative process so the

process differs depending on the type of system

being developed. the background and experience of

the system architect, and the specific requirements for

the system.

 However, a number of common decisions span all

design processes

 and these decisions affect the non-functional

characteristics of the system.

 System architects have to consider the following

fundamental questions about the system:

13Chapter 6 Architectural design

Architectural design decisions

 Is there a generic application architecture that can be used?

 When designing a system architecture, you have to decide what your

system and broader application classes have in common, and

decide how much knowledge from these application architectures

you can reuse.

 How will the system be distributed?

 The choice of distribution architecture is a key decision that affects the

performance and reliability of the system

 What architectural pattern styles are appropriate?

 An architectural pattern is a description of a system organization

such as a client–server organization or a layered architecture.

 You should be aware of common patterns, where they can be used,

and their strengths and weaknesses (section 6.3 discuss a number

of frequently used patterns).

14Chapter 6 Architectural design

What approach will be used to structure the system?

 How will the system be decomposed into modules?

 To decompose structural system units, you decide on the

strategy for decomposing components into sub-components.

 The approaches that you can use allow different types of

architectures to be implemented.

What control strategy should be used?

 you make decisions about how the execution of components

is controlled.

 You develop a general model of the control relationships

between the various parts of the system

Chapter 6 Architectural design 15

 How will the architectural design be evaluated?

 Evaluating an architectural design is difficult because the true

test of an architecture is how well the system meets its

functional and non-functional requirements when it is in use.

 However, you can do some evaluation by comparing your

design against reference architectures or generic

architectural patterns.

 Or/And use Bosch’s (2000) description of the non-functional

characteristics of architectural patterns.

 How should the architecture be documented?

 Section 6.2

Chapter 6 Architectural design 16

Architecture reuse

 Systems in the same domain often have similar

architectures that reflect domain concepts.

 Application product lines are built around a core

architecture with variants that satisfy particular

customer requirements.

 The architecture of a system may be designed around

one of more architectural patterns or ‘styles’.

 These capture the essence of an architecture and can be

instantiated in different ways.

 Discussed later in this lecture.

17Chapter 6 Architectural design

Architecture and system characteristics

 The particular architectural style and structure that
you choose should depend on the non-functional
system requirements:

 Performance

 Localize critical operations and minimize communications..

 This may mean using a few relatively large components
rather than small, fine-grain components, which reduces the
number of component communications.

 Security

 Use a layered architecture with critical assets in the inner
layers, with a high level of security validation applied to
these layers

18Chapter 6 Architectural design

 Safety

 Localise safety-critical features in a small number of sub-
systems.

 This reduces the costs and problems of safety validation

 and makes it possible to provide related protection systems that
can safely shut down the system in the event of failure.

 Availability

 Include redundant components and mechanisms for fault
tolerance, so that it is possible to replace and update
components without stopping the system. (see chapter 13)

Chapter 6 Architectural design 19

Maintainability

 If maintainability is a critical requirement, the system

architecture should be designed using fine-grain,

self-contained components that may readily be

changed.

 Producers of data should be separated from

consumers

 and shared data structures should be avoided.

Chapter 6 Architectural design 20

A Compromise Might Be Needed

 Obviously there is potential conflict between some of

these architectures.

 For example, using large components improves

performance and using small, fine-grain components

improves maintainability.

 If both performance and maintainability are important

system requirements, then some compromise must be

found.

 This can sometimes be achieved by using different

architectural patterns or styles for different parts of

the system.

Chapter 6 Architectural design 21

Architectural views (section 6.2)

 Architectural models of a software system can be used

to

 focus discussion about the software requirements or

design.

 document a design

Two relevant issues

 What views or perspectives are useful when

designing and documenting a system’s architecture?

 What notations should be used for describing

architectural models?

22Chapter 6 Architectural design

 Each architectural model only shows one view or

perspective of the system.

 It might show

 how a system is decomposed into modules,

 how the run-time processes interact

 or the different ways in which system components are

distributed across a network.

 For both design and documentation, you usually need

to present multiple views of the software architecture.

Chapter 6 Architectural design 23

 Krutchen (1995), in his well-known 4+1 view model of

software architecture,

 suggests that there should be four fundamental

architectural views, which are related using use

cases or scenarios.

 The views that he suggests are

Chapter 6 Architectural design 24

4 + 1 view model of software architecture

 A logical view, which shows the key abstractions in the

system as objects or object classes.

 It should be possible to relate the system requirements to

entities in this logical view.

 A process view, which shows how, at run-time, the

system is composed of interacting processes.

 A development view, which shows how the software is

decomposed for development.

 A physical view, which shows the system hardware

and how software components are distributed

across the processors in the system.

 This view is useful for systems engineers planning a system

deployment.
25Chapter 6 Architectural design

Use UML?

 There are differing views about whether or not software architects

should use the UML for architectural description (Clements, et al.,

2002).

 A survey in 2006 (Lange et al., 2006) showed that, when the UML

was used, it was mostly applied in a loose and informal way.

 The authors of that paper argued that this was a bad thing.

 The UML was designed for describing object-oriented systems

and, at the architectural design stage, you often want to describe

systems at a higher level of abstraction.

 Object classes are too close to the implementation to be useful

for architectural description.

Chapter 6 Architectural design 26

 I (the author) don’t find the UML to be useful during the

design process itself and prefer

 informal notations that are quicker to write and

which can be easily drawn on a white-board.

 The UML is of most value when you are documenting

an architecture in detail or using model-driven

development (see Chapter 5).

Chapter 6 Architectural design 27

Architectural patterns

 Patterns are a means of representing, sharing and

reusing knowledge about software systems.

 An architectural pattern is a stylized description of

good design practice, which has been tried and

tested in different environments.

 Patterns should include information about when they

are and when the are not useful.

 Patterns may be represented using tabular and

graphical descriptions.

28Chapter 6 Architectural design

 For example, the following Figures describe the well-

known Model-View-Controller pattern.

 This pattern is the basis of interaction management in

many web-based systems.

 The stylized pattern description includes

 the pattern name,

 a brief description (with an associated graphical model),

 and an example of the type of system where the pattern is

used (again, perhaps with a graphical model).

 You should also include information about when the

pattern should be used and its advantages and

disadvantages.

Chapter 6 Architectural design 29

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The

system is structured into three logical components that interact with each

other. The Model component manages the system data and associated

operations on that data. The View component defines and manages how

the data is presented to the user. The Controller component manages

user interaction (e.g., key presses, mouse clicks, etc.) and passes these

interactions to the View and the Model. See Figure 6.3.

Example Figure 6.4 shows the architecture of a web-based application system

organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also

used when the future requirements for interaction and presentation of

data are unknown.

Advantages Allows the data to change independently of its representation and vice

versa. Supports presentation of the same data in different ways with

changes made in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model

and interactions are simple.

30Chapter 6 Architectural design

The organization of the Model-View-Controller

31Chapter 6 Architectural design

Web application architecture using the MVC

pattern

32Chapter 6 Architectural design

Figure 6.4 shows a possible run-time architecture when this
pattern is used for interaction management in a web-based
system.

 It is impossible to describe all of the generic patterns

that can be used in software development.

We will discuss some selected examples of patterns

that are widely used and which capture good

architectural design principles.

 You can find further examples of generic architectural

patterns on the book’s web pages.

Chapter 6 Architectural design 33

The Layered architecture pattern

 This layered approach supports the incremental development of

systems.

 As a layer is developed, some of the services provided by that

layer may be made available to users.

 The architecture is also changeable and portable.

 So long as its interface is unchanged, a layer can be replaced by another,

equivalent layer.

 Furthermore, when layer interfaces change or new facilities are

added to a layer, only the adjacent layer is affected.

 As layered systems localize machine dependencies in inner

layers,

 this makes it easier to provide multi-platform implementations of an

application system.

 Only the inner, machine-dependent layers need be re-implemented to take

account of the facilities of a different operating system or database.
Chapter 6 Architectural design 34

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality

associated with each layer. A layer provides services to the

layer above it so the lowest-level layers represent core services

that are likely to be used throughout the system. See Figure 6.6.

Example A layered model of a system for sharing copyright

documents held in different libraries, as shown in Figure 6.7.

When used Used when building new facilities on top of existing

systems; when the development is spread across several

teams with each team responsibility for a layer of functionality;

when there is a requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is

maintained. Redundant facilities (e.g., authentication) can be

provided in each layer to increase the dependability of the

system.

Disadvantages In practice, providing a clean separation between layers is

often difficult and a high-level layer may have to interact

directly with lower-level layers rather than through the layer

immediately below it.

Performance can be a problem because of multiple levels

of interpretation of a service request as it is processed at each

layer.
35Chapter 6 Architectural design

Layered architecture

 Used to model the interfacing of sub-systems.

 Organises the system into a set of layers (or abstract

machines) each of which provide a set of services.

 Supports the incremental development of sub-

systems in different layers. When a layer interface

changes, only the adjacent layer is affected.

 However, often artificial to structure systems in this

way.

36Chapter 6 Architectural design

A generic layered architecture

37Chapter 6 Architectural design

The above Figure

 is an example of a layered architecture with four layers.

1. The lowest layer includes system support software—

typically database and operating system support.

2. The next layer is the application layer that includes the

components concerned with the application functionality and

utility components that are used by other application

components.

3. The third layer is concerned with user interface management

and providing user authentication and authorization,

4. the top layer providing user interface facilities.

 Of course, the number of layers is arbitrary.

 Any of the layers in the Figure could be split into two or

more layers.
Chapter 6 Architectural design 38

The architecture of the LIBSYS system

(Another Example of Layered Architecture

pattern when applied to a library system)

39Chapter 6 Architectural design

Other Patterns

 Repository pattern (Figure 6.8), describes how a set of

interacting components can share data.

 The Client–server pattern is a very commonly used

run-time organization for distributed systems.

 The final example of an architectural pattern is the pipe

and filter pattern.

 This is a model of the run-time organization of a system where

functional transformations process their inputs and produce

outputs

Chapter 6 Architectural design 40

Repository architecture

 Sub-systems must exchange data. This may be done
in two ways:

 Shared data is held in a central database or repository and
may be accessed by all sub-systems;

 Or each sub-system maintains its own database and passes
data explicitly to other sub-systems.

When large amounts of data are to be shared, the
repository model of sharing is most commonly used
as this is an efficient data sharing mechanism.

41Chapter 6 Architectural design

The Repository pattern

Name Repository

Description All data in a system is managed in a central repository that is

accessible to all system components. Components do not

interact directly, only through the repository.

Example Figure 6.9 is an example of an IDE where the components use

a repository of system design information. Each software tool

generates information which is then available for use by other

tools.

When used You should use this pattern when you have a system in

which large volumes of information are generated that has to

be stored for a long time. You may also use it in data-driven

systems where the inclusion of data in the repository triggers

an action or tool.

Advantages Components can be independent—they do not need to

know of the existence of other components. Changes made by

one component can be propagated to all components. All

data can be managed consistently (e.g., backups done at

the same time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the

repository affect the whole system. May be inefficiencies in

organizing all communication through the repository.

Distributing the repository across several computers may

be difficult.
42Chapter 6 Architectural design

A repository architecture for an IDE

43Chapter 6 Architectural design

Client-server architecture

 Distributed system model which shows how data and
processing is distributed across a range of
components.

 Can be implemented on a single computer.

 Set of stand-alone servers which provide specific
services such as printing, data management, etc.

 Set of clients which call on these services.

 Network which allows clients to access servers.

44Chapter 6 Architectural design

 An important benefit is separation and independence.

 Services and servers can be changed without

affecting other parts of the system.

 Clients may have to know the names of the available

servers and the services that they provide.

 However, servers do not need to know the identity of

clients or how many clients are accessing their

services.

 Effective use can be made of networked systems

with many distributed processors.

 It is easy to add a new server and integrate it with the

rest of the system. Chapter 6 Architectural design 45

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is

organized into services, with each service delivered from a

separate server. Clients are users of these services and access

servers to make use of them.

Example Figure 6.11 is an example of a film and video/DVD library

organized as a client–server system.

When used Used when data in a shared database has to be accessed from a

range of locations. Because servers can be replicated, may also

be used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be

distributed across a network. General functionality (e.g., a

printing service) can be available to all clients and does not need

to be implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial

of service attacks or server failure. Performance may be

unpredictable because it depends on the network as well as the

system. May be management problems if servers are owned by

different organizations.

46Chapter 6 Architectural design

An example of a system that is based on the

client–server model.

 This is a multi-user, web-based system for providing a

film and photograph library.

 In this system, several servers manage and display the

different types of media.

 Video frames need to be transmitted quickly and in

synchrony but at relatively low resolution.

 They may be compressed in a store, so the video

server can handle video compression and

decompression in different formats.

 Still pictures however, must be maintained at a high

resolution, so it is appropriate to maintain them on a

separate server.
Chapter 6 Architectural design 47

A client–server architecture for a film library

48Chapter 6 Architectural design

Pipe and filter architecture

 Functional transformations process their inputs to
produce outputs.

May be referred to as a pipe and filter model (as in
UNIX shell).

 Variants of this approach are very common. When
transformations are sequential, this is a batch sequential
model which is extensively used in data processing
systems.

 Not really suitable for interactive systems.

49Chapter 6 Architectural design

The pipe and filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each

processing component (filter) is discrete and carries out one type

of data transformation. The data flows (as in a pipe) from one

component to another for processing.

Example Figure 6.13 is an example of a pipe and filter system used for

processing invoices.

When used Commonly used in data processing applications (both batch- and

transaction-based) where inputs are processed in separate stages

to generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style

matches the structure of many business processes. Evolution by

adding transformations is straightforward. Can be implemented as

either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between

communicating transformations. Each transformation must parse its

input and unparse its output to the agreed form. This increases

system overhead and may mean that it is impossible to reuse

functional transformations that use incompatible data structures.

50Chapter 6 Architectural design

 An example of this type of system architecture, used in a

batch processing application, is shown in Figure 6.13. An

organization has issued invoices to customers.

 Once a week, payments that have been made are

reconciled with the invoices.

 For those invoices that have been paid, a receipt is

issued.

 For those invoices that have not been paid within the

allowed payment time, a reminder is issued.

Chapter 6 Architectural design 51

An example of the pipe and filter architecture

52Chapter 6 Architectural design

Key points

 A software architecture is a description of how a software

system is organized.

 Architectural design decisions include decisions on the

type of application, the distribution of the system, the

architectural styles to be used.

 Architectures may be documented from several different

perspectives or views such as a conceptual view, a

logical view, a process view, and a development view.

 Architectural patterns are a means of reusing knowledge

about generic system architectures. They describe the

architecture, explain when it may be used and describe

its advantages and disadvantages.
Chapter 6 Architectural design 53

Chapter 6 – Architectural Design

Lecture 2

54Chapter 6 Architectural design

Application architectures (section 6.4)

 Application systems are designed to meet an

organizational need.

 As businesses have much in common, their

application systems also tend to have a common

architecture that reflects the application requirements.

 A generic application architecture is an architecture

for a type of software system that may be configured

and adapted to create a system that meets specific

requirements.

55Chapter 6 Architectural design

Use of application architectures

As a starting point for architectural design.

As a design checklist.

As a way of organizing the work of the
development team.

As a means of assessing components for
reuse.

As a vocabulary for talking about application
types.

56Chapter 6 Architectural design

Examples of application types

 Data processing applications

 Data driven applications that process data in batches without

explicit user intervention during the processing.

 Transaction processing applications

 Data-centred applications that process user requests and

update information in a system database.

 Event processing systems

 Applications where system actions depend on interpreting

events from the system’s environment.

 Language processing systems

 Applications where the users’ intentions are specified in a

formal language that is processed and interpreted by the

system. Chapter 6 Architectural design 57

Application type examples

 Focus here is on transaction processing and language
processing systems.

 Transaction processing systems

 E-commerce systems;

 Reservation systems.

 Language processing systems

 Compilers;

 Command interpreters.

58Chapter 6 Architectural design

Transaction processing systems

 Technically, a database transaction is sequence of

operations that is treated as a single unit (an atomic

unit).

 All of the operations in a transaction have to be

completed before the database changes are made

permanent.

 This ensures that failure of operations within the

transaction does not lead to inconsistencies in the

database.

Chapter 6 Architectural design 59

Transaction processing systems

 Process user requests for information from a database
or requests to update the database.

 From a user perspective a transaction is:

 Any coherent sequence of operations that satisfies a goal;

 For example - find the times of flights from London to Paris.

 Users make asynchronous requests for service which
are then processed by a transaction manager.

60Chapter 6 Architectural design

The conceptual architectural structure of

transaction processing

61Chapter 6 Architectural design

‘pipe and filter’ Architecture

Transaction processing systems may be

organized as a ‘pipe and filter’ architec-ture with

system components responsible for input,

processing, and output.

For example, consider an ATM.

 The system is composed of two cooperating soft-

ware components—the ATM software and the

account processing software in the bank’s

database server.

 The input and output components are implemented

as software in the ATM and the processing

component is part of the bank’s database server.
Chapter 6 Architectural design 62

The software architecture of an ATM system:

A ‘pipe and filter’ architecture

63Chapter 6 Architectural design

Information systems

 All systems that involve interaction with a shared

database can be considered to be transaction-based

information systems.

 An information system allows controlled access to a

large base of information, such as

 a library catalog,

 a flight timetable,

 or the records of patients in a hospital.

 Increasingly , information systems are web-based

systems that are accessed through a web browser.

Chapter 6 Architectural design 64

Information systems architecture

 Information systems have a generic architecture that

can be organized as a layered architecture.

 These are transaction-based systems as interaction

with these systems generally involves database

transactions.

 Layers include:

 The user interface

 User communications

 Information retrieval

 System database

65Chapter 6 Architectural design

Layered information system architecture

66Chapter 6 Architectural design

Layered information system architecture

1. The top layer is responsible for implementing the user interface.

In this case, the UI has been implemented using a web browser.

2. The second layer provides the user interface functionality that

is delivered through the web browser.

It includes components to allow users to log in to the system and

checking components that ensure that the operations they use

are allowed by their role. This layer includes form and menu

management components that present information to users, and

data validation components that check information consistency.

3. The third layer implements the functionality of the system and

provides components that implement system security, patient

information creation and updating, import and export of

patient data from other databases, and report generators that

create management reports.

Chapter 6 Architectural design 67

The architecture of the MHC-PMS

68Chapter 6 Architectural design

Web-based information systems

 Information and resource management systems are now

usually web-based systems where the user interfaces

are implemented using a web browser.

 For example, e-commerce systems are

 Internet-based resource management systems

 that accept electronic orders for goods or services and then

 arrange delivery of these goods or services to the customer.

 In an e-commerce system, the application-specific

layer includes additional functionality supporting a

‘shopping cart’ in which users can place a number of

items in separate transactions, then pay for them all

together in a single transaction.

Chapter 6 Architectural design 69

Server implementation

 These systems are often implemented as multi-tier

client server/architectures (discussed in Chapter 18)

 The web server is responsible for all user communications,

with the user interface implemented using a web browser;

 The application server is responsible for implementing

application-specific logic as well as information storage and

retrieval requests;

 The database server moves information to and from the

database and handles transaction management.

 Using multiple servers allows high throughput and

makes it possible to handle hundreds of transactions

per minute.

 As demand increases, servers can be added at each

level to cope with the extra processing involved.Chapter 6 Architectural design 70

Language processing systems

 Accept a natural or artificial language as input and

 generate some other representation of that language.

 May include an interpreter to act on the instructions in the

language that is being processed.

 Used in situations where the easiest way to solve a

problem is to describe an algorithm or describe the

system data

 Meta-case tools process tool descriptions, method rules,

etc and generate tools.

71Chapter 6 Architectural design

The architecture of a language processing

system

72Chapter 6 Architectural design

Compiler components

 A lexical analyzer, which takes input language tokens

and converts them to an internal form.

 A symbol table, which holds information about the names

of entities (variables, class names, object names, etc.)

used in the text that is being translated.

 A syntax analyzer, which checks the syntax of the

language being translated.

 A syntax tree, which is an internal structure representing

the program being compiled.

Chapter 6 Architectural design 73

Compiler components

 A semantic analyzer that uses information from the

syntax tree and the symbol table to check the semantic

correctness of the input language text.

 A code generator that ‘walks’ the syntax tree and

generates abstract machine code.

Chapter 6 Architectural design 74

 Compilers can be implemented using a composite of a

repository and a pipe and filter model.

 In a compiler architecture, the symbol table is a

repository for shared data.

 The phases of lexical, syntactic, and semantic analysis

are organized sequentially, as shown the Figure and

communicate through the shared symbol table.

Chapter 6 Architectural design 75

A pipe and filter compiler architecture

76Chapter 6 Architectural design

 This pipe and filter model of language compilation is

effective in batch environments where programs are

compiled and executed without user interaction;

 It is less effective when a compiler is integrated with

other language processing tools such as a structured

editing system, an interactive debugger.

 In this situation, changes from one component need

to be reflected immediately in other components.

 It is better, therefore, to organize the system around a

repository, as shown in Figure 6.20.

Chapter 6 Architectural design 77

A repository architecture for a language

processing system

78Chapter 6 Architectural design

Key points

Models of application systems architectures help us

understand and compare applications, validate

application system designs and assess large-scale

components for reuse.

 Transaction processing systems are interactive systems

that allow information in a database to be remotely

accessed and modified by a number of users.

 Language processing systems are used to translate

texts from one language into another and to carry out the

instructions specified in the input language. They include

a translator and an abstract machine that executes the

generated language.
79Chapter 6 Architectural design

