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Fourier Series Orthogonal Function

Orthogonal Functions

Firstly, we will introduce a tool called inner product to define orthogonal
functions and sets of orthogonal functions.

Definition

The inner product of two functions f and g on the interval [α, β] is the
scalar (real number)

(f, g) =

∫ β

α
f(x)g(x) dx.

Definition

We say that The two functions f and g are orthogonal functions on the
interval [α, β] if

(f, g) =

∫ β

α
f(x)g(x) dx = 0.
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Fourier Series Orthogonal Function

Example (1)

The two functions f(x) = cosx and g(x) = sinx are orthogonal on the
interval [−π, π] since

(f, g) =

∫ π

−π
cosx. sinxdx = 0.

Example (2)

The two functions f(x) = x and g(x) = e|x| are orthogonal on any
symmetric interval [−A,A], where A is a positive real constant. By using
integration by parts, It can be easily checked that

(f, g) =

∫ A

−A
xe|x|dx = 0.
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Fourier Series Orthogonal Function

Definition

We say that The set of functions {ϕ1(x), ϕ2(x), ϕ3(x), . . . , ϕn(x), . . . } is
orthogonal on the interval [α, β] if

(ϕn(x), ϕm(x)) =

∫ β

α
ϕn(x)ϕm(x) dx = 0, n 6= m.

Definition

We define the norm (length) of function f in terms of the inner product as
the quantity

||f || =
√

(ϕn, ϕn) =

(∫ β

α
ϕ2
n(x) dx

)1/2

.
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Fourier Series Orthogonal Function

Definition

If {ϕ1(x), ϕ2(x), ϕ3(x), . . . , ϕn(x), . . . } is an orthogonal set of function
on the interval [α, β] with the property ||ϕn|| = 1 for n = 1, 2, . . . , then
the set {ϕn(x)}n≥1 is said to be an orthonormal set on the interval.

(ϕn(x), ϕm(x)) =

∫ β

α
ϕn(x)ϕm(x) dx = 0, n 6= m.

Definition

A set of real-valued functions {ϕ1(x), ϕ2(x), ϕ3(x), . . . , ϕn(x), . . . } is said
to be orthogonal with respct to weight function w(x) > 0 on the interval
[α, β] if We define the norm (length) of function f in terms of the inner
product as the quantity

(ϕn, ϕm)w(x) =

∫ β

α
w(x)ϕn(x)ϕm(x) dx = 0, n 6= m.
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Fourier Series Orthogonal Function

Example (3)

Show that the set of functions
{1, sinx, cosx, sin 2x, cos 2x, ..., sinmx, cosmx, ..} is orthogonal on the
interval [−π, π]. Find the corresponding orthonormal set on [−π, π].

Solution We have to show that

(1, sinnx) = 0, (1, cosnx) = 0, (sinnx, sinmx) = 0,

(cosnx, cosmx) = 0, (sinnx, cosmx) = 0, ∀n 6= m.

(1, sinnx) =

∫ π

−π
sinnxdx = − 1

n
cosnx|π−π = 0,

(1, cosnx) =

∫ π

−π
cosnxdx =

1

n
sinnx|π−π = 0,

(sinnx, sinmx) =

∫ π

−π
sinnx sinmxdx

=

∫ π

−π

cos(n−m)x− cos(n+m)x

2
dx = 0, n 6= m,
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Fourier Series Orthogonal Function

(cosnx, cosmx) =

∫ π

−π
cosnx cosmxdx

=

∫ π

−π

cos(n−m)x+ cos(n+m)x

2
dx = 0, n 6= m,

(sinnx, cosmx) =

π∫ π

−π
sinnx cosmx dx

=

∫ π

−π

sin(n−m)x+ sin(n+m)x

2
dx = 0.

To determine the orthonormal set on [−π, π], we have to divide each
element by its norm.

‖1‖2 =
∫ π

−π
dx = 2π,
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Fourier Series Orthogonal Function

‖sinmx‖2 =

∫ π

−π
(sinmx)2dx =

∫ π

−π

1− cos 2mx

2
dx = π,

‖cosmx‖2 =

∫ π

−π
(cosmx)2dx =

∫ π

−π

1 + cos 2mx

2
dx = π.

Hence the orthonormal set on [−π, π] :{
1√
2π
,
sinx√
π
,
cosx√
π
,
sin 2x√

π
,
cos 2x√

π
, ...,

sinmx√
π

,
cosmx√

π
, ..

}
.
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Fourier Series Orthogonal Function

Example (4)

Show that the functions

f(x) = 1, g(x) = 2x, h(x) = 4x2 − 2

are orthogonal with respect to the weight function w(x) = e−x
2

on the
interval (−∞,∞).

(1, 2x)w(x) =

∫ ∞
−∞

2xe−x
2
dx = −2

∫ ∞
−∞

e−x
2
dx = −2 e−x2

∣∣∣∞
−∞

= 0,

(1, 4x2 − 2)w(x) =

∫ ∞
−∞

(4x2 − 2)e−x
2
dx

= −
∫ ∞
−∞

2xe−x
2
dx− 2

∫ ∞
−∞

e−x
2
dx

= −2xe−x2
∣∣∣∞
−∞

+ 2

∫ ∞
−∞

e−x
2
dx− 2

∫ ∞
−∞

e−x
2
dx

= 0.
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Fourier Series Orthogonal Function

In the same way and by integration by parts, we find that

(2x, 4x2 − 2)w(x) = 0.
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Fourier Series Orthogonal Function

Exercises

1 Show that the set of the following functions are orthogonal on the
given intervals.

f(x) = sin2 x, g(x) = cosx, [0, π]
f(x) = ex, g(x) = xe−x − e−x, [0, 2]

f(x) = cosx, g(x) = e−x,

[
π

4
,
5π

4

]
2 Show that the set of the following functions are orthogonal with

respect to the given weight function on the indicated interval.

f(x) = 1− x, g(x) =
1

2
x2 − 2x+ 1; w(x) = e−x, [0,∞)

3 Determine the constants λ and δ so that the functions

f(x) = λx+ 2, g(x) = δx2 − 6x+ 1 and h(x) = x− 1

are mutually orthogonal on [0, 1] and then obtain the corresponding
orthonormal set.
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Fourier Series Orthogonal Function

4 Show that the set of functions{
1, cos

nπx

L
, sin

nπx

L

}
; m,n = 1, 2, 3, · · · ; [0, L]

are orthogonal on the given interval and find the norm of each
function.
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Fourier Series Fourier Series

Fourier Series

Theorem

Suppose that f and f ′ are piecewise continuous on the interval [−T, T ].
Further, suppose that f is define outside the interval [−T, T ] so that it is
periodic with period 2R. Then f has a Fourier series

f(x) =
a0
2

+

∞∑
n=1

(
an cos

nπx

T
+ bn sin

nπx

T

)
.

Whose coefficients are given by

an =
1

T

∫ T

−T
f(x) cos

nπx

T
dx, (n = 1, 2, . . . ),

bn =
1

T

∫ T

−T
f(x) sin

nπx

T
dx, (n = 1, 2, . . . ), a0 =

1

T

∫ T

−T
f(x) dx.
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Fourier Series Fourier Series

Even and Odd Functions

Recall that if f(x) is an even function then f(−x) = +f(x).

Examples

f(x) = x4 − x2, f(x) = (2− x)2 for 0 < x < 2 and f(x) = 2 for
x ∈ [−a, a].

Recall that if f(x) is an odd function then f(−x) = −f(x)

Examples

f(x) = x3, f(x) = x.
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Fourier Series Fourier Series

Two symmetry properties of functions will be useful in the study of Fourier
series. A function f(x) that satisfies f(−x) = f(x) for all x in the domain
of f has a graph that is symmetric with respect to the y − axis. This
function is said to be even. For example:

f(x) =
√

2 + x4, g(x) = e−|x|,

h(x) = cosx+ ln
(
1 + x2

)
,

k(x) =

{
|sinx| , |x| ≤ π

0, |x| > π
.
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Fourier Series Fourier Series

A function f that satisfies f(−x) = −f(x) for all x in the domain of f
has a graph that is symmetric with respect to the origin. It is said to be an
odd function. For example:

f(x) = e|x| sinx,

h(x) =
√
1 + x2 tanx, − π

2
< x <

π

2
.

k(x) =


x− 1, 0 < x < 1,
x+ 1, − 1 < x < 0,
0, |x| > 1

,

M(x) = x1/3 − sinx.
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Fourier Series Fourier Series

Properties of Symmetric Functions

If f(x) is an even piecewise continuous function on [−L,L], then∫ L

−L
f(x) dx = 2

∫ L

0
f(x) dx

If f(x) is an odd piecewise continuous function on [−L,L], then∫ L

−L
f(x) dx = 0

For an even function, we have the Fourier coefficients

an =
2

T

∫ T

0
f(x) cos

nπx

T
dx, (n = 1, 2, . . . ),

a0 =
2

T

∫ T

0
f(x) dx,

and
bn = 0, (n = 1, 2, . . . )
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Fourier Series Fourier Series

For an odd function, we have the Fourier coefficients

bn =
1

T

∫ T

−T
f(x) sin

nπx

T
dx, (n = 1, 2, . . . ),

an = 0, (n = 0, 1, 2, . . . )

When n is an integer

sinnπ = 0 and cosnπ = (−1)n.
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Fourier Series Fourier Series

Example (1)

Assume that there is a Fourier series converging to the function

f(x) =

{
−x, − T ≤ x < 0
x, 0 ≤ x ≤ T ;

f(x+ 2T ) = f(x).

Compute the Fourier series for the given function.

Solution The Fourier series has the form

f(x) =
a0
2

+

∞∑
n=1

(an cos
nπx

T
+ bn sin

nπx

T
).

Since f(−x) = f(x) ∀x ∈ [−T, T ], then f is even on [−T, T ], hence
bn = 0, (n = 1, 2, ...).
We compute to find that

a0 =
2

T

∫ T

0
f(x)dx = T,
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Fourier Series Fourier Series

an =
2

T

∫ T

0
f(x) cos

nπx

T
dx, (n = 1, 2, ...),

=
2

T

∫ T

0
x cos

nπx

T
dx

=
2T

(nπ)2
(cosnπ − 1) , (n = 1, 2, ...),

Thus the Fourier series for the function f is given by

f(x) =
T

2
− 4T

π2

∞∑
n=1

1

(2n− 1)2
cos

(2n− 1)πx

T
.

Observe that from the obtained Fourier series, we can deduce that

∞∑
n=1

1

(2n− 1)2
=
π2

8
.

This follows from the fact that the Fourier series converges to f(0) = 0 at
x = 0.
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Fourier Series Fourier Series

Example (2)

Find a Fourier series to represent the function

f(x) = x− x2

from x = −π to x = π. Deduce that

∞∑
n=1

(−1)n+1

n2
=
π2

12
.

We write

x− x2 = a0
2

+

∞∑
n=1

an cosnx+

∞∑
n=1

bn sinnx.

We have

a0 =
1

π

∫ π

−π
(x− x2)dx =

−2
3
π2,
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Fourier Series Fourier Series

an =
1

π

∫ π

−π
(x− x2) cosnxdx = − 2

π

∫ π

0
x2 cosnxdx

=
4

n2
(−1)n+1,

bn =
1

π

∫ π

−π
(x− x2) sinnxdx =

2

π

∫ π

0
x sinnxdx

=
2

n
(−1)n+1.

Hence

x− x2 = −1
3
π2 − 4

∞∑
n=1

(−1)n

n2
cosnx− 2

∞∑
n=1

(−1)n

n
sinnx.

By setting x = 0, we obtain

−1
3
π2 − 4

∞∑
n=1

(−1)n

n2
= 0.
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Fourier Series Fourier Series

From which it follows that

∞∑
n=1

(−1)n+1

n2
=
π2

12
.
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Fourier Series Fourier Series

Example (3)

Let f be 2π-periodic function defined by

f(x) =

{
1, − π < x < 0
−1, 0 ≤ x < π.

Sketch the graph of f on [−3π, 3π], find the Fourier series of f , and

deduce the sum of the series
∞∑
n=1

(−1)n−1

2n− 1
.

Solution We can see that f is an odd function on (−π, π); x 6= 0

−3π −2π −π π 2π 3π

−1

1

x

y
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Fourier Series Fourier Series

Thus,

an = 0, n = 0, 1, · · ·

bn =
−2
π

∫ π

0
(1) sin(nx)dx =

x2

π

[
cos(nx)

n

]π
0

=
2

nπ
((−1)n − 1) ,

hence, n = 1, 2, · · ·

f(x+) + f(x−)

2
=

∞∑
n=1

2

nπ
((−1)n − 1) sin(nx), −π < x < π

At x = π
2 , we have

f
(π
2

)
= −1 =

∞∑
n=1

2

nπ
((−1)n − 1) sin

(nπ
2

)
Note that sin

(
nπ
2

)
= 0, n is even.
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Fourier Series Fourier Series

Thus,

−1 =

∞∑
n=1

2

(2n− 1)π

(
(−1)2n−1 − 1

)
sin

(
(2n− 1)π

2

)

−1 =

∞∑
n=1

−4
(2n− 1)π

sin

(
(2n− 1)π

2

)

−1 =
−4
π

∞∑
n=1

1

2n− 1
sin

(
(2n− 1)π

2

)
π

4
=

∞∑
n=1

(−1)n−1

2n− 1
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Fourier Series Fourier Series

Exercises

1 Compute the Fourier series for the function

f(x) =

{
1
2π + x, − π ≤ x < 0
1
2π − x, 0 ≤ x ≤ π;

f(x+ 2T ) = f(x) for all x ∈ R.

Deduce that
∞∑
n=1

1

(2n− 1)2
=
π2

8
.

2 Obtain the Fourier series for the function

f(x) =
1

4
(π − x)2, 0 < x < 2π,

and deduce that
∞∑
n=1

1

n2
=
π2

6
.
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Fourier Series Fourier Cosine and Sine Series

Fourier Cosine and Sine Series

Sometimes it is possible to represent a function as a Fourier Cosine or Sine
Series.

To do this we use the properties of even and odd functions as defined
previously.

To determine a series we usually extend the interval of definition to create
a new function that is either even or odd depending on the type of series
required.

If we require a Fourier cosine series then the new function created is
chosen to be an even function. Similarly, If we require a Fourier sine series
then the new function created is chosen to be an odd function.

For example, let f(x) be defined on the interval [0, L].

MATH204-Differential Equations Center of Excellence in Learning and Teaching 29 / 44



Fourier Series Fourier Cosine and Sine Series

If we require a Fourier cosine series then we create a new function
created, fe(x), which is an even function over the interval [−L,L].
That is, we let

fe(x) =

{
f(x), 0 < x < L,

f(−x), − L ≤ x ≤ 0;

with fe(x+ 2L) = fe(x).

If we require a Fourier sine series then we create a new function
created, fo(x), which is an odd function over the interval [−L,L].
That is, we let

fo(x) =

{
f(x), 0 < x < L,

−f(−x), − L < x < 0,

and extending fo(x) to all x using the 2L periodicity.
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Fourier Series Fourier Cosine and Sine Series

Definition

Let f(x) be piecewise continuous function on the interval [0, L].

The Fourier cosine series of f(x) on [0, L] is

a0
2

+

∞∑
n=1

an cos
nπx

L
,

where

an =
2

L

∫ L

0
f(x) cos

nπx

L
dx, (n = 0, 1, 2, . . . ).
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Fourier Series Fourier Cosine and Sine Series

The Fourier sine series of f(x) on [0, L] is

∞∑
n=1

bn sin
nπx

L
,

where

bn =
2

L

∫ L

0
f(x) sin

nπx

L
dx, (n = 1, 2, . . . ).
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Fourier Series Fourier Cosine and Sine Series

Example (1)

Compute the Fourier sine series for the function

f(x) = cos
πx

3
, 0 < x < 3.

Solution We extend f(x) as an odd function on [−3, 3]

fo(x) =

{
cos πx3 , 0 ≤ x < 3,
− cos πx3 − 3 ≤ x < 0.

The Fourier sine series representation of

f(x) = cos
πx

3

is

f(x) = cos
πx

3
=
∞∑
n=1

bn sin
nxπ

3
, 0 < x < 3,
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Fourier Series Fourier Cosine and Sine Series

where

bn =
2

3

∫ 3

0
cos

πx

3
sin

nπx

3
dx

=
1

3

∫ 3

0

(
sin

(n+ 1)πx

3
− sin

(n− 1)πx

3

)
dx

=

{
0, n odd

4n
π(n2−1) , n even

According to Fourier theorem, equality holds for 0 < x < 3, but not at
x = 0 and x = 3 :

cos
πx

3
=

8

π

∫ ∞
n=1

n

(4n2 − 1)
sin

2nxπ

3
, 0 < x < 3.

At x = 0 and x = 3, the Fourier series converges to

f(0+) + f(0−)

2
= 0
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Fourier Series Fourier Cosine and Sine Series

and
f(3+) + f(3−)

2
= 0,

respectively.
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Fourier Series Fourier Cosine and Sine Series

Example (2)

Compute the Fourier cosine series for the function

f(x) = e2x, 0 ≤ x ≤ 1.

and deduce that

2

e2 − 1
=

∞∑
n=1

4

4 + n2π2
[
e2(−1)n − 1

]
Solution We extend f(x) as an even function on [−1, 1]

fe(x) =

{
e2x, 0 < x < 1,
e−2x − 1 < x < 0.

The Fourier cosine series representation of

f(x) = e2x,
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Fourier Series Fourier Cosine and Sine Series

is

f(x) = e2x =
a0
2

+

∞∑
n=1

an cosnπx, 0 ≤ x ≤ 1,

where

a0 = 2

∫ 1

0
e2xdx = e2 − 1,

an = 2

∫ 1

0
e2x cosnπxdx

= 2

[
1

2
e2x cosnπx

∣∣1
0
+

1

2
nπ

∫ 1

0
e2x sinnπxdx

]
= e2(−1)n − 1 + nπ

[
1

2
nπe2x sinnπx

∣∣1
0
− 1

2
nπ

∫ 1

0
e2x cosnπxdx

]
= e2(−1)n − 1− 1

2
n2π2

∫ 1

0
e2x cosnπxdx.
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Fourier Series Fourier Cosine and Sine Series

Hence

an =
4

4 + n2π2
[
e2(−1)n − 1

]
The Fourier series is then

e2x =
e2 − 1

2
+

∞∑
n=1

4

4 + n2π2
[
e2(−1)n − 1

]
cosnπx, 0 ≤ x ≤ 1.

At x = 0, we have

1− e2

2
=

∞∑
n=1

4

4 + n2π2
[
e2(−1)n − 1

]
.
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Fourier Series Fourier Cosine and Sine Series

Exercises

Test whether each of the following functions is odd or even, then expand it
in a cosine or sine series.

f(x) = | cosx|, |x| < π.

f(x) = x cosx, |x| < π.

f(x) = x2|x|, |x| < 1.

M(x) =

{
x+ 1, − 3 < x < 0
−x+ 1, 0 ≤ x < 3.
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Fourier Series Complex Form of a Fourier Series

Complex form of a Fourier Series

We have seen that Fourier Series in the interval (−T, T ) of a functon f(x)
is given by

f(x) =
a0
2

+

∞∑
n=1

(
an cos

nπx

T
+ bn sin

nπx

T

)
.

Thus, from The Euler’s formula we have the complex form of Fourier
Series of f is given by

f(x) =

∞∑
n=−∞

cne
inπx
T ,

where

cn =
1

2T

∫ T

−T
f(x)e

inπx
T dx.
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Fourier Series Complex Form of a Fourier Series

Example

Obtain the complex form of the Fourier series for the function f(x) = eλx

−π < x < π in the form

eλx =
sinhλπ

π

∞∑
n=−∞

(−1)n λ+ in

λ2 + n2
einx,

and deduce that
π

λ sinhλπ
=

∞∑
n=−∞

(−1)n

λ2 + n2
.
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Fourier Series Complex Form of a Fourier Series

Solution We look for the coefficients cn in the series
∑∞

n=−∞ cne
inx,

cn =
1

2π

∫ π

−π
eλxe−inxdx =

1

2π

∫ π

−π
e(λ−in)xdx

=
1

2π

[
e(λ−in)π − e−(λ−in)π

λ− in

]

=
1

2π

[
eλπ(cosnπ − i sinnπ)− e−λπ(cosnπ + i sinnπ)

λ− in

]
=

1

2π(λ− in)

(
eλπ − e−λπ

)
cosnπ

=
1

2π(λ− in)
(eλπ − e−λπ) cosnπ

=
1

2π(λ− in)
(2 sinhλπ) cosnπ

=
(−1)n sinhλπ
π(λ− in)

=
(−1)n(λ+ in) sinhλπ

π(λ2 + n2)
.
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Fourier Series Complex Form of a Fourier Series

Substituting this found cn in the series to get

f(x) = eλx =
sinhλπ

π

∞∑
n=−∞

(−1)n(λ+ in)

λ2 + n2
einx. (1)

Now by setting x = 0 in (1), we obtain

π

sinhλπ
=

∞∑
n=−∞

(−1)n
(

λ

λ2 + n2
+ i

n

λ2 + n2

)
.

By equating the real part, we have

π

λ sinhλπ
=

∞∑
n=−∞

(−1)n

λ2 + n2
.

MATH204-Differential Equations Center of Excellence in Learning and Teaching 43 / 44



Fourier Series Complex Form of a Fourier Series

Exercises

Find the complex form of the Fourier series for:

f(x) = ex, |x| < π.

f(x) = e−x, |x| < 1.

f(x) = cos(θx), |x| < π.
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