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Orthogonal Functions

Firstly, we will introduce a tool called inner product to define orthogonal
functions and sets of orthogonal functions.

Definition
The inner product of two functions f and g on the interval [«, 3] is the
scalar (real number)

B
(f,9) = / f(x)g(x) dx.

Definition
We say that The two functions f and g are orthogonal functions on the
interval [a, 3] if

B
(f,9) = / f(2)g(x) dz = 0.
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Example (1)

The two functions f(z) = cosx and g(x) = sinx are orthogonal on the
interval [—m, 7] since

(f,g9) = / cos x. sin zdz = 0.

—T

Example (2)

The two functions f(z) = z and g(z) = el®l are orthogonal on any
symmetric interval [—A, A], where A is a positive real constant. By using
integration by parts, It can be easily checked that

A
(f,9) = /A zel®ldz = 0.
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Definition
We say that The set of functions {p1(x), p2(x), p3(x),...,pn(x),...}is
orthogonal on the interval [«, 3] if

B
(Son($)790m(x)) = / gon(a?)gom(x) der =0, n#*m.

Definition
We define the norm (length) of function f in terms of the inner product as

the quantity
B 1/2
1711 = v/Gom o) (/ () dx> |
o
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Definition
If {¢1(2), p2(x), v3(x),...,on(x),...} is an orthogonal set of function
on the interval [a, 3] with the property ||¢n|| =1 for n =1,2,..., then

the set {¢y(x)}n>1 is said to be an orthonormal set on the interval.
B
(oala)som(@)) = [ en(@)pn@) do=0, ntm.
(e

Definition

A set of real-valued functions {¢1(x), pa2(z), @3(2), ..., on(z),...} is said
to be orthogonal with respct to weight function w(x) > 0 on the interval
[a, ] if We define the norm (length) of function f in terms of the inner
product as the quantity

B
(nsomduiey = | 0@)on(@)pn(z) do =0, n#m.

a
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Example (3)

Show that the set of functions
{1,sinz, cos z, sin 2z, cos 2z, ..., sin mx, cosmz, ..} is orthogonal on the
interval [—7, 7]. Find the corresponding orthonormal set on [—m, 7.

Solution We have to show that
(I,sinnz) = 0, (1,cosnz) =0, (sinnz,sinmaz) =0,

(cosnz,cosmz) = O0,(sinnz,cosmz) =0, Vn#m.

1
(1,sinnz) = sin nxdr = — - cos nz|™_ =0,

(sinnz,sinmz) = sin nx sin madz

Q

os(n —m)z — cos(n +m)
2

xdsz, n #m,

T 1
(1,cosnz) = / cosnxdr = — sinnz|™ =0,
n
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s

(cosnx,cosmz) = cos nx cos mxdx

[ cos(n —m)zx + cos(n + m)acal:C — 0. ntm,
2
-
. s
sinnx,cosmzx) = sinnr cosmax dx
( )
—T

dzr = 0.

/7r sin(n — m)z + sin(n + m)x
2

—T

To determine the orthonormal set on [—, 7|, we have to divide each

element by its norm.
vy
1% = / dx = 2,
—T
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. 9 . 11— cos2ma:
|lsinmz||® = (sin mz)?d —————dx =,
-
i 1 2
[cos mz|® = / (cosma)?d :/ +COS SOOI gy = .
—7

Hence the orthonormal set on [—m, 7] :

{ 1 sinz cosz sin2x cos2x sinmx cosmx }
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Example (4)
Show that the functions
f(@) = 1, 9(x) = 22, h(z) = 42 — 2

are orthogonal with respect to the weight function w(z) = e~*" on the
interval (—oo, 00).

(1,22)w(a) = / 2ae™" da = —2/ e dr = -2 =0,

—00 —0o0 o0

2

(1,42 — 2w = / (422 — 2)e " dx

—00

o0 2 o0 2
= —/ 2xe " dx — 2/ e Tdx
—00 —0oQ

2|00 0 2 o0 2
= —2ze " + 2/ e ¥dr — 2/ e Tdx
-0 —00 —00
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In the same way and by integration by parts, we find that

(22,42% — 2),() = 0.
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Exercises

© Show that the set of the following functions are orthogonal on the
given intervals.

o f(z) =sin’z, g(z)=cosz, [0,n]

o f(x)=¢", g( )=z " —e ", 5[072]
o f0) =cosa, gle)=e, |15

© Show that the set of the following functions are orthogonal with
respect to the given weight function on the indicated interval.

1
flx)=1—2z, g(x)= 5:52 -2z +1; w(x)=e% [0,00)
© Determine the constants A and ¢ so that the functions

fx) =Xz +2, g(x) =6x2 —62z+1and h(z) =z — 1

are mutually orthogonal on [0, 1] and then obtain the corresponding
orthonormal set.
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@ Show that the set of functions

{1, COS%, sin%}; m,n=1,2,3,---; [0, L]
are orthogonal on the given interval and find the norm of each

function.
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[SNEIESIVS  Fourier Series

Fourier Series

Theorem

Suppose that f and ' are piecewise continuous on the interval [T, T).
Further, suppose that f is define outside the interval [T, T] so that it is
periodic with period 2R. Then f has a Fourier series

=4 Z (an cos + b, sin w)

T

Whose coefficients are given by

/ f(z coswdx (n=1,2,...),

1 [T . nTx 1 [T
—T/Tf(x)smT dr, (n=1,2,...), ao—T/Tf(a:) dz
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[SNEIESIVS  Fourier Series

Even and Odd Functions

Recall that if f(x) is an even function then f(—xz) = +f(x).

Examples
fz)=a2*—2% f(z)=(2—2)2for 0 <z <2 and f(x) =2 for
z € [—a,a).

Recall that if f(x) is an odd function then f(—xz) = —f(x)

Examples
f(z)=4% f(z) == J
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[SNEIESIVS  Fourier Series

Two symmetry properties of functions will be useful in the study of Fourier
series. A function f(x) that satisfies f(—z) = f(z) for all z in the domain
of f has a graph that is symmetric with respect to the y — axis. This
function is said to be even. For example:

f(@) = V2+a4, g(x) = eI,

h(z) = cosz + In(1 + z?),

[ [sma), o €n
’“(”“")—{ 0, |z|>n
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[SNEIESIVS  Fourier Series

A function f that satisfies f(—xz) = —f(z) for all = in the domain of f
has a graph that is symmetric with respect to the origin. It is said to be an
odd function. For example:

f(z) = el sinz,

h(z) = v1+ z?tanz, T ca<
2 2
r—1, 0<z<l1,
k(z)=< z+1, —1<x<0, ,
0, |z| > 1

M(z) = z'/3 —sinz.
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[SNEIESIVS  Fourier Series

Properties of Symmetric Functions
o If f(x) is an even piecewise continuous function on [—L, L], then

/if(a:)dsz/oLf(x)dx

e If f(x) is an odd piecewise continuous function on [—L, L], then

/_LLf(x) dz =

@ For an even function, we have the Fourier coefficients

/ f(z coswdm (n=1,2,...),

aO:T/O f(z) dx

bp =0, (n=1,2,...)
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[SNEIESIVS  Fourier Series

@ For an odd function, we have the Fourier coefficients

1 [T
bn:T/Tf(:c)sinn;xdx, (n=1,2,...),

ap, =0, (n=0,1,2,...)
@ When n is an integer

sinnm =0 and cosnm = (—1)"
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[SNEIESIVS  Fourier Series

Example (1)
Assume that there is a Fourier series converging to the function
—x, —-T<z<0
flz) = { z, 0<x<T,
fl@+2T) = f(=z).

Compute the Fourier series for the given function.

Solution The Fourier series has the form

o
f(z) = % —i—;(ancosr? + by, sin ﬂTx)

Since f(—x) = f(x) Vo € [-T,T], then f is even on [T, T], hence
bp =0, (n=1,2,...).
We compute to find that

T
aO:;/O f(x)dx =T,
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[SNEIESIVS  Fourier Series

o = 2 [ e s, (w12,
9 (T nm
= T ; :CCOSTd-T
2T
= W(cosmr 1), (n=12,..),
nm

Thus the Fourier series for the function f is given by

T AT & 1 (2n — 1)z

J@) =5 -3 2 G271
n=1

Observe that from the obtained Fourier series, we can deduce that

i 1 2
on—_12 §°
ot (2n—1) 8

This follows from the fact that the Fourier series converges to f(0) =0 at
z = 0.
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[SNEIESIVS  Fourier Series

Example (2)
Find a Fourier series to represent the function

f(z) =z — 22

from x = —m to © = . Deduce that
0 1)+l g2
We write
r— 22 +Zancosn:c+Zb sinnx.
We have
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[SNEIESIVS  Fourier Series

Hence

an,

r—x

™ 2 s
/ (z — x?) cosnxzdr = —= / 2% cos nxzdzx
0

- T

4
E(_l)n—i_l?

1 (7 2 (7
/ (z — z?) sinnzdr = / x sin nxdz
0

T ) v
2

Z(=-1 n+1.

2y

o
—4 E 2 cosn:U—Z E sinnw.
n
n=1

By setting © = 0, we obtain

MATH204-Differential Equations

-1, D)

Center of Excellence in Learning and Teaching

23 / 44



[SNEIESIVS  Fourier Series

From which it follows that

n2 12

n=1
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[SNEIESIVS  Fourier Series

Example (3)
Let f be 27-periodic function defined by

1, —wm<z<0
f(x)_{L 0<z<m.
Sketch the graph of f on [—3m, 3], find the Fourier series of f, and

= (1)t

deduce the sum of the series Z o1
n —

=1

Solution We can see that f is an odd function on (=7, 7);  # 0

1 Ly
T ? T X T Q
L I
-3t —2r T 2 3
& b5 —1 5 & 5
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[SNEIESIVS  Fourier Series

Thus,
ap, = 0, n=0,1,---
-2 [T ) x2 [cos(nz)]™ 2
b, = -/, (1)sm(nx)da?—7r[ 7(1 )]O—m((—l)”—l),

2 ‘= onm
At z = g we have
o
T 2 nmw
9 - 1 i ( )
f (2) n7r ) sin 2
n=1

Note that sin (%4F) = 0, n is even.
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[SNEIESIVS  Fourier Series

Thus,
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N

2

Nk

S
I
—_

WE

) (211__411)7r " ((2n - 1)77)

A4 1 ((2n—-D)7
— E S11
™ 2n —1 2

n=1

o (_1)n—1
2n—1

3
Il

i
I
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Fourier Series Fourier Series

Exercises
© Compute the Fourier series for the function

1
sm+x, —7m<z<0
(@) { %w—x, 0<z<m
flx+2T) = f(z) forall x € R.
Deduce that

On_12  8°
—(2n-1) 8
@ Obtain the Fourier series for the function
1
flz) = 1(71 — )% 0 <z < 2m,
and deduce that
2=
=n 6

MATH204-Differential Equations Center of Excellence in Learning and Teaching

28 / 44



(RNIASI  Fourier Cosine and Sine Series

Fourier Cosine and Sine Series

Sometimes it is possible to represent a function as a Fourier Cosine or Sine
Series.

To do this we use the properties of even and odd functions as defined
previously.

To determine a series we usually extend the interval of definition to create
a new function that is either even or odd depending on the type of series
required.

If we require a Fourier cosine series then the new function created is
chosen to be an even function. Similarly, If we require a Fourier sine series
then the new function created is chosen to be an odd function.

For example, let f(x) be defined on the interval [0, L].
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(RNIASI  Fourier Cosine and Sine Series

o If we require a Fourier cosine series then we create a new function
created, f.(z), which is an even function over the interval [—L, L].
That is, we let

_ flz), 0<z<lL,
fel) = { f(=z), —L<z<0;
with  fe(z+2L) = fe(x).
@ If we require a Fourier sine series then we create a new function

created, f,(x), which is an odd function over the interval [-L, L].
That is, we let

£(z) = {_f{(:z) 0<zx<L,

—z), —-L<z<0,

and extending f,(x) to all x using the 2L periodicity.
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(RNIASI  Fourier Cosine and Sine Series

Definition
Let f(z) be piecewise continuous function on the interval [0, L.

@ The Fourier cosine series of f(x) on [0, L] is

(o]
ap nmTT
E + E Qg COS T,
n=1
where

Ay =

9 (L
L/o f(x)cos?d:x, (n=0,1,2,...).
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(RNIASI  Fourier Cosine and Sine Series

@ The Fourier sine series of f(z) on [0, L] is

(0.9}

. nmx
E by, sin N
n=1

where

v

L
/ f(x)sin? dr, (n=1,2,...).
0
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(RNIASI  Fourier Cosine and Sine Series

Example (1)

Compute the Fourier sine series for the function

f(:r):cos%, 0<z<3.

Solution We extend f(x) as an odd function on [—3, 3]

cos X 0<z<3
— 37 [— 9
fo(@) { —cos &f -3<z<0.

The Fourier sine series representation of

T
f(z) = cos —=
is -
f(z) :cos%x = ansmn—, 0 <z<3,
n=1
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(RNIASI  Fourier Cosine and Sine Series

where
2 3
b, = 3/0 cos%xsinnzgﬂdx

1 /3 —

= / sin (n—i_l)ﬂw—sin (n = o dz
3 Jo 3 3

B 0, n odd

- %, n even

According to Fourier theorem, equality holds for 0 < x < 3, but not at
x=0and x =3:

Tr 8 /°° n . 2nam
n

_— == 0 < 3.
cos3 - :1(4n2_1)sm 3 <z

At x = 0 and x = 3, the Fourier series converges to

f(0F) + £(07)
2
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(RNIASI  Fourier Cosine and Sine Series

and

respectively.
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Example (2)

Compute the Fourier cosine series for the function
flx)=¢e* 0<z<1.

and deduce that

e, O<ax<l,
e —1<z<O.

The Fourier cosine series representation of
fla) = e,
Center of Excellence in Learning and Teaching
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(RNIASI  Fourier Cosine and Sine Series

is ) N
fz) =e* = ?0 + Zancosnﬂx, 0<z<1,
n=1
where .
a0:2/ eXdr = e — 1,
0
1
anp = 2 / e?® cos nradr
0

1 1 1
= 92 [2 e?* cos nmc’(l) + 2n7r/ €% sin nﬂmdm}
0

1 1 !
= EA(-1)"—1+nrx [2 nme? sin nwm‘é - 2n7r/ e cos nwmdw]
0

1 1
= A(-1)"—1- 2n27r2/ e** cos nrrda.
0
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(RNIASI  Fourier Cosine and Sine Series

Hence
4

s 0 ]

Gn

The Fourier series is then
-1 & 4
20 _ € — Z 2
GI—T‘Fn:lm[e (—1)n—1]COSR7T£L', 0<zx<1.

At x = 0, we have

1—¢e2 & 4
= 2 i U]
n=1
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(RNIASI  Fourier Cosine and Sine Series

Exercises
Test whether each of the following functions is odd or even, then expand it
in a cosine or sine series.

o f(z)=|cosz|, |z| <.
o f(x)=xzcosz, |z|<m.
o f(z) =2l |a| <1.
[ 241, -3<2<0
°M(x)_{—x+1, 0<z<3.
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Complex form of a Fourier Series

We have seen that Fourier Series in the interval (=7, T) of a functon f(x)
is given by

o
f(z) = a;—l—; (ancosnjjﬂ—kbnsin%).

Thus, from The Euler's formula we have the complex form of Fourier
Series of f is given by

oo B
f(l‘) = Z CneTa
n=—00
where
1 T INmTIT
Cn = 55 . (x)e T dx.
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Fourier Series Complex Form of a Fourier Series

Example

Obtain the complex form of the Fourier series for the function f(z) = e**

—m < x < 7 in the form

)

Az _ Sinh Am = A+in pine
€ T Z (_1) )\2+n2

n=—oo

and deduce that

A smh P Z A2 +n2 n2
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Fourier Series Complex Form of a Fourier Series

Solution We look for the coefficients ¢, in the series > >°

Cn

1 (™ , 1 (7 .
/ €>\$6_”md£€ _ / (/\—zn)acdx
2 J_,

n=—oo

C eanE’

AT (cosn + i sin )

1 e(A*’L”n)ﬂ' — e (A—in)
2m A—1in
1 e M (cosnm — isinnm) —
2m A—
1 AT —AT
m <€ e ) cosnm
1 iy — AT
m(eA — € A )COST?/T('
1
2O —in) (2sinh Am) cos nw
(=1)"sinh Adr (=1)"(X 4 in)sinh A7
m(A—in) (A2 + n?) '
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Fourier Series Complex Form of a Fourier Series

Substituting this found ¢, in the series to get

fz) = sinh A7 i (=1)™(\+1in) pine

A2 4 n?

n=—oo

Now by setting = 0 in (1), we obtain

s A n
L 1) ; :
sinh A\ ZOO< ) (x\2 + n? T +n2)

By equating the real part, we have

Asinh A\t smh Y Z A2+ n2 n2
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Fourier Series Complex Form of a Fourier Series

Exercises

Find the complex form of the Fourier series for:
o f(x)=¢€" |z|<m.
o f(x)=¢€e", |z| <1,
o f(z) =cos(fx), |z|< .
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