
Chapter 7 – Design and Implementation

Lecture 1

1Chapter 7 Design and implementation

Topics covered

 Object-oriented design using the UML

 Design patterns

 Implementation issues

 Open source development

2Chapter 7 Design and implementation

Design and implementation

 Software design and implementation is the stage in the

software engineering process at which an executable

software system is developed.

 Software design and implementation activities are

invariably inter-leaved.

 Software design is a creative activity in which you identify

software components and their relationships, based on a

customer’s requirements.

 Implementation is the process of realizing the design as a

program.

3Chapter 7 Design and implementation

Build or buy

 In a wide range of domains, it is now possible to buy

off-the-shelf systems (COTS)

 that can be adapted and tailored to the users’

requirements.

 For example, if you want to implement a medical records

system, you can buy a package that is already used in

hospitals.

 It can be cheaper and faster to use this approach rather than

developing a system in a conventional programming language.

 When you develop an application in this way, the design

process becomes concerned with

 how to use the configuration features of that system

to deliver the system requirements.
4Chapter 7 Design and implementation

An object-oriented design process

Structured object-oriented design processes
involve developing a number of different
system models.

They require a lot of effort for development
and maintenance of these models and,

for small systems, this may not be cost-
effective.

However, for large systems developed by
different groups design models are an
important communication mechanism.

5Chapter 7 Design and implementation

Process stages

There are a variety of different object-oriented

design processes that depend on the

organization using the process.

Common activities in these processes include:

 Define the context and modes of use of the system;

 Design the system architecture;

 Identify the principal system objects;

 Develop design models;

 Specify object interfaces.

Process illustrated here using a design for a

wilderness weather station.
6Chapter 7 Design and implementation

System context and interactions

 Understanding the relationships between the software that

is being designed and its external environment is essential

for

 deciding how to provide the required system functionality

 and how to structure the system to communicate with

its environment.

 Understanding of the context also lets you establish the

boundaries of the system.

 Setting the system boundaries helps you decide

 what features are implemented in the system being

designed

 and what features are in other associated systems.

7Chapter 7 Design and implementation

In this case, you need to decide

how functionality is distributed between

 the control system for all of the weather stations,

 and the embedded software in the weather station

itself.

Chapter 7 Design and implementation 8

Context and interaction models

A system context model

 is a structural model that demonstrates the

other systems in the environment of the

system being developed.

An interaction model

 is a dynamic model that shows how the

system interacts with its environment as it

is used.

9Chapter 7 Design and implementation

The context model of a system

May be represented using associations.

Associations simply show that there are some

relationships between the entities involved in

the association.

You may therefore document the environment

of the system using a simple block diagram,

 showing the entities in the system and their

associations.

Chapter 7 Design and implementation 10

System context for the weather station

11Chapter 7 Design and implementation

Interaction model

When you model the interactions of a system

with its environment you should use an

abstract approach that does not include too

much detail.

 One way to do this is to use a use case

model.

Each possible interaction is named in an ellipse

and the external entity involved in the

interaction is represented by a stick figure

Chapter 7 Design and implementation 12

Weather station use cases

13Chapter 7 Design and implementation

Weather Station Use Cases

 Report weather—send weather data to the weather

information system

 Report status—send status information to the weather

information system

 Restart—if the weather station is shut down, restart the

system

 Shutdown—shut down the weather station

 Reconfigure—reconfigure the weather station software

 Powersave—put the weather station into power-

savingmode

 Remote control—send control commands to any

weatherstation subsystem
Chapter 7 Design and implementation 14

Use case description—Report weather

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Description The weather station sends a summary of the weather data that has been
collected from the instruments in the collection period to the weather
information system. The data sent are the maximum, minimum, and average
ground and air temperatures; the maximum, minimum, and average air
pressures; the maximum, minimum, and average wind speeds; the total
rainfall; and the wind direction as sampled at five-minute intervals.

Stimulus The weather information system establishes a satellite communication link
with the weather station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour but this frequency
may differ from one station to another and may be modified in the future.

15Chapter 7 Design and implementation

Architectural design

 Once interactions between the system and its

environment have been understood, you use this

information for designing the system architecture.

 You identify the major components that make up the

system and their interactions,

 and then may organize the components using an

architectural pattern such as a layered or client-

server model.

 The weather station is composed of independent

subsystems that

 communicate by broadcasting messages on a

common infrastructure.
16Chapter 7 Design and implementation

High-level architecture of the weather station

17Chapter 7 Design and implementation

 Each subsystem listens for messages on that

infrastructure and picks up the messages that are

intended for them.

 This is another commonly used architectural style in

addition to those described in Chapter 6.

 For example, when the communications subsystem

receives a control command, such as shutdown, the

command is picked up by each of the other subsystems,

which then shut themselves down in the correct way.

 The key benefit of this architecture is that it is easy to

support different configurations of subsystems because

the sender of a message does not need to address

the message to a particular subsystem.Chapter 7 Design and implementation 18

 The following Figure shows the architecture of the data

collection subsystem.

 The Transmitter and Receiver objects are concerned

with managing communications and

 the WeatherData object encapsulates the information

that is collected from the instruments and transmitted to

the weather information system.

 This arrangement follows the producer-consumer

pattern, discussed in Chapter 20.

Chapter 7 Design and implementation 19

Architecture of data collection system

20Chapter 7 Design and implementation

Object class identification

Identifying object classes is often a difficult

part of object oriented design.

There is no 'magic formula' for object

identification.

It relies on the skill, experience and domain

knowledge of system designers.

Object identification is an iterative process. You

are unlikely to get it right first time.

21Chapter 7 Design and implementation

Approaches to identification

 There have been various proposals made about how

to identify object classes in object-oriented systems:

1. Use a grammatical approach based on a natural

language description of the system. Objects and

attributes are nouns; operations or services are

verb.

2. Base the identification on tangible things in the

application domain such as such as aircraft,

 roles such as manager or doctor,

 events such as requests,

 interactions such as meetings,

 locations such as offices,

 organizational units such as companies, and

 so on

22Chapter 7 Design and implementation

3. Use a behavioural approach and identify objects

based on what participates in what behaviour.

4. Use a scenario-based analysis. The objects,

attributes and methods in each scenario are identified.

 As each scenario is analyzed, the team responsible for the

analysis must identify the required objects, attributes, and

operations

Chapter 7 Design and implementation 23

 In practice, you have to use several knowledge

sources to discover object classes.

 Object classes, attributes, and operations that are

initially identified from the informal system

description can be a starting point for the design.

 Further information from

 application domain knowledge or

 scenario analysis may then be used to refine and

extend the initial objects.

 This information can be collected from requirements

documents, discussions with users, or from

analyses of existing systems.Chapter 7 Design and implementation 24

Weather station description

A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a
barometer and a rain gauge.

Data is collected periodically.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data.
The summarised data is transmitted to the mapping computer
when a request is received.

25Chapter 7 Design and implementation

Weather station object classes

Object class identification in the weather station

system may be based on the tangible hardware

and data in the system:

 Ground thermometer, Anemometer, Barometer

• Application domain objects that are ‘hardware’ objects

related to the instruments in the system.

 Weather station

• The basic interface of the weather station to its

environment. It therefore reflects the interactions identified in

the use-case model.

 Weather data

• Encapsulates the summarized data from the instruments.

26Chapter 7 Design and implementation

Weather station object classes

27Chapter 7 Design and implementation

Design models

Design models show the objects and object

classes and relationships between these

entities.

Static models describe the static structure of

the system in terms of object classes and

relationships.

Dynamic models describe the dynamic

interactions between objects.

28Chapter 7 Design and implementation

Examples of design models

 Subsystem models that show logical groupings of

objects into coherent subsystems.

 Sequence models that show the sequence of object

interactions.

 State machine models that show how individual

objects change their state in response to events.

 Other models include

 use-case models,

 aggregation models,

 generalisation models, etc.

29Chapter 7 Design and implementation

Subsystem models

Shows how the design is organised into

logically related groups of objects.

In the UML, these are shown using packages -

an encapsulation construct.

This is a logical model.

The actual organisation of objects in the

system may be different.

30Chapter 7 Design and implementation

Sequence models

Sequence models show the sequence of
object interactions that take place

 Objects are arranged horizontally across the top;

 Time is represented vertically so models are read
top to bottom;

 Interactions are represented by labelled arrows,
Different styles of arrow represent different types
of interaction (e.g. Synchronous or Asynchronous
);

 A thin rectangle in an object lifeline represents the
time when the object is the controlling object in
the system.

31Chapter 7 Design and implementation

Sequence diagram describing data collection

32Chapter 7 Design and implementation

1. The SatComms object receives a request from the

weather information system to collect a weather report

from a weather station. It acknowledges receipt of this

request.

 The stick arrowhead on the sent message indicates that the

external system does not wait for a reply but can carry on with

other processing.

2. SatComms sends a message to WeatherStation, via a

satellite link, to create a summary of the collected

weather data.

 Again, the stick arrowhead indicates that SatComms does not

suspend itself waiting for a reply.

Chapter 7 Design and implementation 33

3. WeatherStation sends a message to a Commslink

object to summarize the weather data.

 In this case, the squared-off style of arrowhead indicates that

the instance of the WeatherStation object class waits for a

reply.

4. Commslink calls the summarize method in the object

WeatherData and waits for a reply.

5. The weather data summary is computed and returnedto

WeatherStation via the Commslink object.

6. WeatherStation then calls the SatComms object to

transmit the summarized data to the weather

information system, through the satellite

communications system.Chapter 7 Design and implementation 34

State diagrams

 Summarize the behavior of an object or a subsystem in
response to messages and events.

 State diagrams are used to show

 how objects respond to different service requests and

 the state transitions triggered by these requests.

 State diagrams are useful high-level models of a system
or an object’s run-time behavior.

 You don’t usually need a state diagram for all of the
objects in the system.

 Many of the objects in a system are relatively simple
and a state model adds unnecessary detail to the
design.

35Chapter 7 Design and implementation

Weather station state diagram

36Chapter 7 Design and implementation

You can read this diagram as follows:

1. If the system state is Shutdown then

 it can respond to a restart(), a reconfigure(), or a powerSave()

message.

 The unlabeled arrow with the black blob indicates that the

Shutdown state is the initial state.

 A restart() message causes a transition to normal operation.

 Both the powerSave() and reconfigure() messages cause a

transition to a state in which the system reconfigures itself.

 The state diagram shows that reconfiguration is only allowed if

the system has been shut down.

Chapter 7 Design and implementation 37

 In the Running state, the system expects further

messages.

 If a shutdown() message is received, the object returns to the

shutdown state.

 if a reportWeather() message is received, the system moves to

the Summarizing state.

 When the summary is complete, the system moves to a

Transmitting state where the information is transmitted to the

remote system. It then returns to the Running state.

 If a reportStatus() message is received, the system moves to the

Testing state, then the Transmitting state, before returning to the

Running state

 .

Chapter 7 Design and implementation 38

 If a signal from the clock is received, the system moves to the

Collecting state, where it collects data from the instruments.

Each instrument is instructed in turn to collect its data from the

associated sensors.

 If a remoteControl() message is received, the system moves to a

controlled state in which it responds to a different set of

messages from the remote control room. These are not shown

on this diagram.

Chapter 7 Design and implementation 39

Interface specification

 Object interfaces have to be specified so that the

objects and other components can be designed in

parallel.

 Designers should avoid designing the interface data

representation (as attributes are not defined in an

interface specification) but should hide this in the object

itself.

 Objects may have several interfaces which are

viewpoints on the methods provided.

 The UML uses class diagrams for interface specification

but Java may also be used.

40Chapter 7 Design and implementation

 There is not a simple 1:1 relationship between objects

and interfaces.

 The same object may have several interfaces,

 each of which is a viewpoint on the methods that it

provides.

 This is supported directly in Java, where interfaces are

declared separately from objects and objects ‘implement’

interfaces.

 Equally, a group of objects may all be accessed

through a single interface

Chapter 7 Design and implementation 41

Weather station interfaces

42Chapter 7 Design and implementation

Key points

 Software design and implementation are inter-leaved activities. The

level of detail in the design depends on the type of system and

whether you are using a plan-driven or agile approach.

 The process of object-oriented design includes activities to design

the system architecture, identify objects in the system, describe the

design using different object models and document the component

interfaces.

 A range of different models may be produced during an object-

oriented design process. These include static models (class models,

generalization models, association models) and dynamic models

(sequence models, state machine models).

 Component interfaces must be defined precisely so that other

objects can use them. A UML interface stereotype may be used to

define interfaces.
43Chapter 7 Design and implementation

Chapter 7 – Design and Implementation

Lecture 2

44Chapter 7 Design and implementation

Design patterns

 A design pattern is a way of reusing abstract knowledge

about a problem and its solution.

 A pattern is a description of the problem and the essence

of its solution.

 It should be sufficiently abstract to be reused in different

settings.

 Pattern descriptions usually make use of object-oriented

characteristics such as inheritance and polymorphism.

45Chapter 7 Design and implementation

Pattern elements

 Name

 A meaningful pattern identifier.

 Problem description.

 Solution description.

 Not a concrete design but a template for a design solution that

can be instantiated in different ways.

 Consequences

 The results and trade-offs of applying the pattern.

46Chapter 7 Design and implementation

The Observer pattern

 Name

 Observer.

 Description

 Separates the display of object state from the object itself.

 Problem description

 Used when multiple displays of state are needed.

 Solution description

 See slide with UML description.

 Consequences

 Optimisations to enhance display performance are impractical.

47Chapter 7 Design and implementation

The Observer pattern (1)

Pattern

name

Observer

Description Separates the display of the state of an object from the object itself and

allows alternative displays to be provided. When the object state

changes, all displays are automatically notified and updated to reflect the

change.

Problem

description

In many situations, you have to provide multiple displays of state

information, such as a graphical display and a tabular display. Not all of

these may be known when the information is specified. All alternative

presentations should support interaction and, when the state is changed,

all displays must be updated.

This pattern may be used in all situations where more than one

display format for state information is required and where it is not

necessary for the object that maintains the state information to know

about the specific display formats used.

48Chapter 7 Design and implementation

The Observer pattern (2)

Pattern name Observer

Solution

description

This involves two abstract objects, Subject and Observer, and two concrete

objects, ConcreteSubject and ConcreteObject, which inherit the attributes of the

related abstract objects. The abstract objects include general operations that are

applicable in all situations. The state to be displayed is maintained in

ConcreteSubject, which inherits operations from Subject allowing it to add and

remove Observers (each observer corresponds to a display) and to issue a

notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and

implements the Update() interface of Observer that allows these copies to be kept

in step. The ConcreteObserver automatically displays the state and reflects

changes whenever the state is updated.

Consequences The subject only knows the abstract Observer and does not know details of the

concrete class. Therefore there is minimal coupling between these objects.

Because of this lack of knowledge, optimizations that enhance display

performance are impractical. Changes to the subject may cause a set of linked

updates to observers to be generated, some of which may not be necessary.

49Chapter 7 Design and implementation

Multiple displays using the Observer pattern

50Chapter 7 Design and implementation

A UML model of the Observer pattern

51Chapter 7 Design and implementation

Design problems

 To use patterns in your design, you need to recognize

that any design problem you are facing may have an

associated pattern that can be applied.

 Tell several objects that the state of some other object has

changed (Observer pattern).

 Tidy up the interfaces to a number of related objects that have

often been developed incrementally (Façade pattern).

 Provide a standard way of accessing the elements in a

collection, irrespective of how that collection is implemented

(Iterator pattern).

 Allow for the possibility of extending the functionality of an

existing class at run-time (Decorator pattern).

52Chapter 7 Design and implementation

Implementation issues

 Focus here is not on programming, although this is

obviously important, but on other implementation issues

that are often not covered in programming texts:

 Reuse Most modern software is constructed by reusing existing

components or systems. When you are developing software, you

should make as much use as possible of existing code.

 Configuration management During the development process,

you have to keep track of the many different versions of each

software component in a configuration management system.

 Host-target development Production software does not usually

execute on the same computer as the software development

environment. Rather, you develop it on one computer (the host

system) and execute it on a separate computer (the target

system).
53Chapter 7 Design and implementation

Reuse

 From the 1960s to the 1990s, most new software was

developed from scratch, by writing all code in a high-

level programming language.

 The only significant reuse or software was the reuse of functions

and objects in programming language libraries.

 Costs and schedule pressure mean that this approach

became increasingly unviable, especially for commercial

and Internet-based systems.

 An approach to development based around the reuse of

existing software emerged and is now generally used for

business and scientific software.

54Chapter 7 Design and implementation

Reuse levels

 The abstraction level

 At this level, you don’t reuse software directly but use knowledge

of successful abstractions in the design of your software.

 The object level

 At this level, you directly reuse objects from a library rather than

writing the code yourself.

 The component level

 Components are collections of objects and object classes that

you reuse in application systems.

 The system level

 At this level, you reuse entire application systems.

55Chapter 7 Design and implementation

Reuse costs

 The costs of the time spent in looking for software to

reuse and assessing whether or not it meets your needs.

 Where applicable, the costs of buying the reusable

software. For large off-the-shelf systems, these costs

can be very high.

 The costs of adapting and configuring the reusable

software components or systems to reflect the

requirements of the system that you are developing.

 The costs of integrating reusable software elements with

each other (if you are using software from different

sources) and with the new code that you have

developed.
56Chapter 7 Design and implementation

Configuration management

 Configuration management is the name given to the

general process of managing a changing software

system.

 The aim of configuration management is to support the

system integration process so that all developers can

access the project code and documents in a controlled

way, find out what changes have been made, and

compile and link components to create a system.

 See also Chapter 25.

57Chapter 7 Design and implementation

Configuration management activities

 Version management, where support is provided to keep track

of the different versions of software components. Version

management systems include facilities to coordinate

development by several programmers.

 System integration, where support is provided to help

developers define what versions of components are used to

create each version of a system. This description is then used

to build a system automatically by compiling and linking the

required components.

 Problem tracking, where support is provided to allow users to

report bugs and other problems, and to allow all developers to

see who is working on these problems and when they are

fixed.

58Chapter 7 Design and implementation

Host-target development

 Most software is developed on one computer (the host),

but runs on a separate machine (the target).

 More generally, we can talk about a development

platform and an execution platform.

 A platform is more than just hardware.

 It includes the installed operating system plus other supporting

software such as a database management system or, for

development platforms, an interactive development environment.

 Development platform usually has different installed

software than execution platform; these platforms may

have different architectures.

59Chapter 7 Design and implementation

Development platform tools

 An integrated compiler and syntax-directed editing

system that allows you to create, edit and compile code.

 A language debugging system.

 Graphical editing tools, such as tools to edit UML

models.

 Testing tools, such as Junit that can automatically run a

set of tests on a new version of a program.

 Project support tools that help you organize the code for

different development projects.

60Chapter 7 Design and implementation

Integrated development environments (IDEs)

 Software development tools are often grouped to create

an integrated development environment (IDE).

 An IDE is a set of software tools that supports different

aspects of software development, within some common

framework and user interface.

 IDEs are created to support development in a specific

programming language such as Java. The language IDE

may be developed specially, or may be an instantiation

of a general-purpose IDE, with specific language-support

tools.

61Chapter 7 Design and implementation

Component/system deployment factors

 If a component is designed for a specific hardware architecture, or

relies on some other software system, it must obviously be deployed

on a platform that provides the required hardware and software

support.

 High availability systems may require components to be deployed

on more than one platform. This means that, in the event of platform

failure, an alternative implementation of the component is available.

 If there is a high level of communications traffic between

components, it usually makes sense to deploy them on the same

platform or on platforms that are physically close to one other. This

reduces the delay between the time a message is sent by one

component and received by another.

62Chapter 7 Design and implementation

Open source development

 Open source development is an approach to software

development in which the source code of a software

system is published and volunteers are invited to

participate in the development process

 Its roots are in the Free Software Foundation

(www.fsf.org), which advocates that source code should

not be proprietary but rather should always be available

for users to examine and modify as they wish.

 Open source software extended this idea by using the

Internet to recruit a much larger population of volunteer

developers. Many of them are also users of the code.

63Chapter 7 Design and implementation

Open source systems

 The best-known open source product is, of course, the

Linux operating system which is widely used as a server

system and, increasingly, as a desktop environment.

 Other important open source products are Java, the

Apache web server and the mySQL database

management system.

64Chapter 7 Design and implementation

Open source issues

 Should the product that is being developed make use of

open source components?

 Should an open source approach be used for the

software’s development?

65Chapter 7 Design and implementation

Open source business

 More and more product companies are using an open

source approach to development.

 Their business model is not reliant on selling a software

product but on selling support for that product.

 They believe that involving the open source community

will allow software to be developed more cheaply, more

quickly and will create a community of users for the

software.

66Chapter 7 Design and implementation

Open source licensing

 Afundamental principle of open-source development is

that source code should be freely available, this does not

mean that anyone can do as they wish with that code.

 Legally, the developer of the code (either a company or an

individual) still owns the code. They can place restrictions on

how it is used by including legally binding conditions in an open

source software license.

 Some open source developers believe that if an open source

component is used to develop a new system, then that system

should also be open source.

 Others are willing to allow their code to be used without this

restriction. The developed systems may be proprietary and sold

as closed source systems.

67Chapter 7 Design and implementation

License models

 The GNU General Public License (GPL). This is a so-called

‘reciprocal’ license that means that if you use open source

software that is licensed under the GPL license, then you

must make that software open source.

 The GNU Lesser General Public License (LGPL) is a variant

of the GPL license where you can write components that link

to open source code without having to publish the source of

these components.

 The Berkley Standard Distribution (BSD) License. This is a

non-reciprocal license, which means you are not obliged to re-

publish any changes or modifications made to open source

code. You can include the code in proprietary systems that

are sold.

68Chapter 7 Design and implementation

License management

 Establish a system for maintaining information about

open-source components that are downloaded and

used.

 Be aware of the different types of licenses and

understand how a component is licensed before it is

used.

 Be aware of evolution pathways for components.

 Educate people about open source.

 Have auditing systems in place.

 Participate in the open source community.

69Chapter 7 Design and implementation

Key points

 When developing software, you should always consider the

possibility of reusing existing software, either as components,

services or complete systems.

 Configuration management is the process of managing changes to

an evolving software system. It is essential when a team of people

are cooperating to develop software.

 Most software development is host-target development. You use an

IDE on a host machine to develop the software, which is transferred

to a target machine for execution.

 Open source development involves making the source code of a

system publicly available. This means that many people can

propose changes and improvements to the software.

70Chapter 7 Design and implementation

