
Chapter 8 – Software Testing

Lecture 1

1Chapter 8 Software testing

Topics covered

 Development testing

 Test-driven development

 Release testing

 User testing

2Chapter 8 Software testing

Program testing

 Testing is intended to show that a program does what it is

intended to do and to discover program defects before it is

put into use.

 When you test software, you execute a program using

artificial data.

 You check the results of the test run for errors, anomalies

or information about the program’s non-functional

attributes.

 Can reveal the presence of errors NOT their

absence (i.e., an overlooked test case may discover

further problems).

 Testing is part of a more general verification and

validation process, which also includes static validation

techniques.
Chapter 8 Software testing 3

Program testing goals

 To demonstrate to the developer and the customer

that the software meets its requirements.

 For custom software, this means that there should be at least

one test for every requirement in the requirements document.

For generic software products, it means that there should be

tests for all of the system features, plus combinations of

these features, that will be incorporated in the product release.

 To discover situations in which the behavior of the

software is incorrect, undesirable or does not

conform to its specification.

 Defect testing is concerned with rooting out undesirable

system behavior such as system crashes, unwanted

interactions with other systems, incorrect computations and

data corruption.
4Chapter 8 Software testing

Validation and defect testing

 The first goal leads to validation testing

 You expect the system to perform correctly using a given set of

test cases that reflect the system’s expected use.

 The second goal leads to defect testing

 The test cases are designed to expose defects.

 The test cases in defect testing can be deliberately obscure

and need not reflect how the system is normally used.

 Of course, there is no definite boundary between

these two approaches to testing.

 During validation testing, you will find defects in the system;

 During defect testing, some of the tests will show that the

pro-gram meets its requirements.

5Chapter 8 Software testing

Testing process goals

 Validation testing

 To demonstrate to the developer and the system customer that

the software meets its requirements

 A successful test shows that the system operates as

intended.

 Defect testing

 To discover faults or defects in the software where its behaviour

is incorrect or not in conformance with its specification

 A successful test is a test that makes the system perform

incorrectly and so exposes a defect in the system.

6Chapter 8 Software testing

The difference between validation testing and

defect Testing

 The following Figure may help to explain the differences between

validation testing and defect testing.

 Think of the system being tested as a black box. The system

accepts inputs from some input set I and generates outputs in an

output set O.

 Some of the outputs will be erroneous. These are the outputs in set

Oe that are generated by the system in response to inputs in the set

Ie
 The priority in defect testing is to find those inputs in the set Ie

because these reveal problems with the system.

 Validation testing involves testing with correct inputs that are

outside Ie. These stimulate the system to generate the expected

correct outputs.
Chapter 8 Software testing 7

An input-output model of program testing

8Chapter 8 Software testing

 Verification:

"Are we building the product right”.

 The software should conform to its specification.

 the software meets its stated functional and non-functional

requirements

 Validation (more general than verification):

"Are we building the right product”.

 The software should do what the user really requires.

 Validation is essential because requirements specifications do not

always reflect the real wishes or needs of system customers and

users.

 These checking processes start as soon as

requirements become available and continue

through all stages of the development process.

Verification vs validation

9Chapter 8 Software testing

V & V level of confidence

 Aim of V & V is to establish confidence that the system
is ‘fit for purpose’.

 Depends on system’s purpose, user expectations and
marketing environment

 Software purpose

• The level of confidence depends on how critical the software is to
an organisation (e.g., is it a safety critical system).

 User expectations

• Users may have low expectations of certain kinds of software.

• Users may tolerate failures because the benefits of use outweigh
the costs of failure recovery

 Marketing environment

• Getting a product to market early may be more important than
finding defects in the program.

• If a software product is very cheap, users may be willing to tolerate
a lower level of reliability.

10Chapter 8 Software testing

 As well as software testing, the verification and

validation process may involve software

inspections and reviews.

 Inspections and reviews analyze and check

 the system requirements,

 design models,

 the program source code, and

 even proposed system tests.

 These are so-called ‘static’ V & V techniques in

which you don’t need to execute the software to

verify it.

Inspections and testing

11Chapter 8 Software testing

 Software inspections Concerned with analysis of

the static system representation to discover problems

(static verification)

 May be supplement by tool-based document and code analysis.

 Discussed in Chapter 15.

 Software testing Concerned with exercising and

observing product behaviour (dynamic verification)

 The system is executed with test data and its operational

behaviour is observed.

Chapter 8 Software testing 12

Inspections and testing

13Chapter 8 Software testing

Software inspections

 These involve people examining the source

representation with the aim of discovering anomalies and

defects.

 Inspections not require execution of a system so may

be used before implementation.

 They may be applied to any representation of the

system (requirements, design, configuration data, test

data, etc.).

 They have been shown to be an effective technique for

discovering program errors.

 Fagan (1986) reported that more than 60% of the errors in a

program can be detected using informal program inspections.

14Chapter 8 Software testing

Advantages of inspections

 During testing, errors can mask (hide) other errors.

Because inspection is a static process, you don’t have to

be concerned with interactions between errors.

 Incomplete versions of a system can be inspected

without additional costs. If a program is incomplete,

then you need to develop specialized test harnesses to

test the parts that are available.

 As well as searching for program defects, an inspection

can also consider broader quality attributes of a

program, such as

 compliance with standards, portability and maintainability.

Chapter 8 Software testing 15

Inspections Limitations

 Inspections can check conformance with a specification

but not conformance with the customer’s real

requirements.

 Inspections are not good for discovering defects that

arise because of unexpected interactions between

different parts of a program, timing problems, or

problems with system performance.

 Inspections cannot check non-functional

characteristics such as performance, usability, etc.

 It can be difficult and expensive to put together a

separate inspection team as all potential members of

the team may also be software developers.
16Chapter 8 Software testing

Inspections and testing

 Inspections cannot replace software testing

 Inspections and testing are complementary and not

opposing verification techniques.

 Both should be used during the V & V process.

Chapter 8 Software testing 17

Test Cases

 Test cases are specifications of the inputs to the test

and the expected output from the system (the test

results),plus a statement of what is being tested.

 Test data are the inputs that have been devised to test a

system.

 Test data can sometimes be generated automatically,

but automatic test case generation is impossible,

 People who understand what the system is supposed to do must

be involved to specify the expected test results.

 However, test execution can be automated.

 The expected results are automatically compared with the

predicted results so there is no need for a person to look for

errors and anomalies in the test run
Chapter 8 Software testing 18

A model of the software testing process

19Chapter 8 Software testing

Stages of testing

 Development testing, where the system is tested during

development to discover bugs and defects.

 System designers and programmers are likely to be involved in the

testing process.

 Release testing, where a separate testing team test a complete

version of the system before it is released to users.

 The aim of release testing is to check that the system meets the

requirements of system stakeholders.

 User testing, where users or potential users of a system test the

system in their own environment.

 Acceptance testing is one type of user testing where the customer

formally tests a system to decide if it should be accepted from the

system supplier or if further development is required.

Chapter 8 Software testing 20

Development testing

 Testing may be carried out at three levels of

granularity:

 Development testing includes all testing activities

that are carried out by the team developing the

system.

 Unit testing, where individual program units or object classes

are tested. Unit testing should focus on testing the

functionality of objects or methods.

 Component testing, where several individual units are

integrated to create composite components. Component

testing should focus on testing component interfaces.

 System testing, where some or all of the components in a

system are integrated and the system is tested as a whole.

System testing should focus on testing component

interactions. Chapter 8 Software testing 21

Unit testing

 Unit testing is the process of testing individual

components in isolation.

 It is a defect testing process.

 Units may be:

 Individual functions or methods within an object

 Object classes with several attributes and methods

 Composite components with defined interfaces used to access

their functionality.

22Chapter 8 Software testing

Object class testing

 Complete test coverage of a class involves

 Testing all operations associated with an object

 Setting and interrogating all object attributes

 Put the object into all possible states.

• This means that you should simulate all events that cause a

state change.

 Inheritance makes it more difficult to design object

class tests as the information to be tested is not

localised.

 You have to test the inherited operation in all of the

contexts where it is used.

23Chapter 8 Software testing

The weather station object interface

24Chapter 8 Software testing

Weather station testing

 Need to define test cases for reportWeather, calibrate,

test, startup and shutdown.

 Using a state model, identify sequences of state

transitions to be tested and the event sequences to

cause these transitions

 For example:

 Shutdown -> Running-> Shutdown

 Configuring-> Running-> Testing -> Transmitting -> Running

 Running-> Collecting-> Running-> Summarizing -> Transmitting

-> Running

25Chapter 8 Software testing

Automated testing

 Whenever possible, unit testing should be automated

so that tests are run and checked without manual

intervention.

 In automated unit testing, you make use of a test

automation framework (such as JUnit) to write and run

your program tests.

 Unit testing frameworks provide generic test classes

that you extend to create specific test cases.

 They can then run all of the tests that you have

implemented and report, often through some GUI, on the

success of otherwise of the tests.

Chapter 8 Software testing 26

Automated test components

 An automated test has three parts:

1. A setup part, where you initialize the system with

the test case, namely the inputs and expected

outputs.

2. A call part, where you call the object or method

to be tested.

3. An assertion part where you compare the result

of the call with the expected result.

If the assertion evaluates to true, the test has been

successful if false, then it has failed.

Chapter 8 Software testing 27

Using Mock Objects

 Sometimes the object that you are testing has

dependencies on other objects that may not have

been written or which slow down the testing process if

they are used.

 For example, if your object calls a database, this may involve

a slow setup process before it can be used.

 In these cases, you may decide to use mock objects.

Mock objects are objects with the same interface as

the external objects being used that simulate its

functionality.

 A mock object simulating a database may have only a

few data items that are organized in an array.

Chapter 8 Software testing 28

Choosing unit test cases:

 Testing is expensive and time consuming, so it is

important that you choose effective unit test cases.

 The test cases should show that, when used as

expected, the component that you are testing does what

it is supposed to do.

 If there are defects in the component, these should be

revealed by test cases.

29Chapter 8 Software testing

2 types of unit test case

This leads to 2 types of unit test case:

 The first of these should reflect normal

operation of a program and should show that

the component works as expected.

 The other kind of test case should be based

on testing experience of where common

problems arise. It should use abnormal

inputs to check that these are properly

processed and do not crash the component.

Chapter 8 Software testing 30

write two kinds of test case

 You should therefore write two kinds of test case. The

first of these should reflect normal operation of a

program and should show that the component works.

 For example, if you are testing a component that creates and

initializes a new patient record, then your test case should show

that the record exists in a database and that its fields have been

set as specified.

 The other kind of test case should be based on testing

experience of where common problems arise.

 It should use abnormal inputs to check that these are properly

processed and do not crash the component.

Chapter 8 Software testing 31

Testing strategies

1. Partition testing, where you identify groups of inputs

that have common characteristics and should be

processed in the same way.

 Examples of these classes are positive numbers, negative

numbers, and menu selections

 That is if you test a program that does a computation and

requires two positive numbers, then you would expect the

program

• to behave in the same way for all positive numbers.

• Because of this equivalent behavior, these classes are sometimes

called equivalence partitions or domains

• Test cases are designed so that the inputs or outputs lie within

these partitions

Chapter 8 Software testing 32

2. Guideline-based testing, where you use testing

guidelines to choose test cases.

 These guidelines reflect previous experience of the kinds of

errors that programmers often make when developing

components.

Chapter 8 Software testing 33

Partition testing

 Input data and output results often fall into different

classes where all members of a class are related.

 Each of these classes is an equivalence partition or

domain where the program behaves in an equivalent

way for each class member.

 Test cases should be chosen from each partition.

34Chapter 8 Software testing

 In the following Figure, the large shaded ellipse on the left represents the

set of all possible inputs to the program that is being tested.

 The smaller unshaded ellipses represent equivalence partitions.

 A program being tested should process all of the members of an input

equivalence partitions in the same way.

 Output equivalence partitions are partitions within which all of the outputs

have something in common.

 Sometimes there is a 1:1 mapping between input and output equivalence

partitions.

 However, this is not always the case; you may need to define a separate

input equivalence partition, where the only common characteristic of the

inputs is that they generate outputs within the same output partition.

 The shaded area in the left ellipse represents inputs that are invalid.

 The shaded area in the right ellipse represents exceptions that may

occur (i.e., responses to invalid inputs).Chapter 8 Software testing 35

Equivalence partitioning

36Chapter 8 Software testing

A good rule of thumb

 Choose test cases on the boundaries of the partitions,

plus cases close to the midpoint of the partition.

 The reason for this is that designers and programmers

tend to consider typical values of inputs when

developing a system. You test these by choosing the

midpoint of the partition.

 Boundary values are often atypical (e.g., zero may

behave differently from other non-negative numbers)

so are sometimes overlooked by developers.

 Program failures often occur when processing these

atypical values.

Chapter 8 Software testing 37

Example

 You identify partitions by using the program

specification or user documentation and from

experience where you predict the classes of input value

that are likely to detect errors.

 For example, say a program specification states that the

program accepts 4 to 10 inputs which are five-digit

integers greater than 10,000.

 You use this information to identify the input partitions

and possible test input values

Chapter 8 Software testing 38

Equivalence partitions

39Chapter 8 Software testing

Black-box vs White Box Testing

 When you use the specification of a system to identify

equivalence partitions, this is called ‘black-box testing’.

Here, you don’t need any knowledge of how the

system works.

 However, it may be helpful to supplement the black-

box tests with ‘white-box testing’, where you look at

the code of the program to find other possible tests.

 For example, your code may include exceptions to

handle incorrect inputs.

 You can use this knowledge to identify ‘exception

partitions’—different ranges where the same exception

handling should be applied.
Chapter 8 Software testing 40

2. Testing guidelines (sequences)

 For example, when you are testing programs with

sequences, arrays, or lists, guidelines that could help

reveal defects include:

 Test software with sequences which have only a

single value.

• If presented with a single-value sequence, a program

may not work properly.

 Use sequences of different sizes in different tests.

 Derive tests so that the first, middle and last

elements of the sequence are accessed.

 Test with sequences of zero length.

41Chapter 8 Software testing

General testing guidelines

 Whittaker’s book (2002) includes many examples of

guidelines that can be used in test case design.

Some of the most general guidelines that he suggests

are:

 Choose inputs that force the system to generate all

error messages

 Design inputs that cause input buffers to overflow

 Repeat the same input or series of inputs numerous

times

 Force invalid outputs to be generated

 Force computation results to be too large or too

small.
42Chapter 8 Software testing

Path testing

 Path testing is a testing strategy that aims to exercise

every independent execution path through a

component or program.

 If every independent path is executed, then all

statements in the component must have been

executed at least once.

 All conditional statements are tested for both true and

false cases.

 In an object-oriented development process, path testing

may be used when testing the methods associated

with objects.

Chapter 8 Software testing 43

Key points

 Testing can only show the presence of errors in a

program. It cannot demonstrate that there are no

remaining faults.

 Development testing is the responsibility of the software

development team. A separate team should be

responsible for testing a system before it is released to

customers.

 Development testing includes unit testing, in which you

test individual objects and methods component testing

in which you test related groups of objects and system

testing, in which you test partial or complete systems.

Chapter 8 Software testing 44

Chapter 8 – Software Testing

Lecture 2

45Chapter 8 Software testing

Component testing

 Software components are often composite components

that are made up of several interacting objects.

 For example, in the weather station system, the reconfiguration

component includes objects that deal with each aspect of the

reconfiguration.

 You access the functionality of these objects through

the defined component interface.

 Testing composite components should therefore focus

on showing that the component interface behaves

according to its specification.

 You can assume that unit tests on the individual objects within

the component have been completed.

Chapter 8 Software testing 46

 The following figure illustrates the idea of component interface

testing.

 Assume that components A, B, and C have been integrated to

create a larger component or subsystem.

 The test cases are not applied to the individual components

but rather to the interface of the composite

component created by combining these components.

 Interface errors in the composite component may not be detectable

by testing the individual objects

 because these errors result from interactions between the

objects in the component.

Chapter 8 Software testing 47

Interface testing

48Chapter 8 Software testing

Interface testing

 Objectives are to detect faults due to interface errors

or invalid assumptions about interfaces.

 Interface types

 Parameter interfaces Data passed from one method or

procedure to another. Methods in an object have a parameter

interface.

 Shared memory interfaces Block of memory is shared between

procedures or functions. Data is placed in the memory by one

subsystem and retrieved from there by other sub-systems. This

type of interface is often used in embedded systems, where

sensors create data that is retrieved and processed by other

system components.

49Chapter 8 Software testing

 Procedural interfaces Sub-system encapsulates a set

of procedures to be called by other sub-systems.

• Objects and reusable components have this form of

interface.

 Message passing interfaces Sub-systems request

services from other sub-systems by passing a

message to it.

• A return message includes the results of executing the

service.

• Some object-oriented systems have this form of interface,

as do client–server systems.

Chapter 8 Software testing 50

Interface errors

 Interface errors are one of the most common forms of

error in complex systems (Lutz, 1993).

 These errors fall into three classes:

1. Interface misuse

 A calling component calls another component and makes an

error in its use of its interface e.g. parameters in the wrong

order, number, or type.

2. Interface misunderstanding

 A calling component embeds assumptions about the

behaviour of the called component which are incorrect.

 For example, a binary search method may be called with a

parameter that is an unordered array. The search would then

fail.
51Chapter 8 Software testing

3. Timing errors

 The called and the calling component operate at

different speeds and out-of-date information is

accessed.

 For example in real time systems the producer of

data and the consumer of data may operate at

different speeds.

 Unless particular care is taken in the interface

design, the consumer can access out-of-date

information

Chapter 8 Software testing 52

Interface testing guidelines

 Design tests so that parameters to a called procedure

are at the extreme ends of their ranges.

 Always test pointer parameters with null pointers.

 Design tests which cause the component to fail.

 Use stress testing in message passing systems.

 This means that you should design tests that generate many

more messages than are likely to occur in practice.

 This is an effective way of revealing timing problems.

 In shared memory systems, vary the order in which

components are activated.

 These tests may reveal implicit assumptions made by the

programmer about the order in which the shared data is

produced and consumed. 53Chapter 8 Software testing

System testing

 System testing during development involves

integrating components to create a version of the

system and then testing the integrated system.

 The focus in system testing is testing the interactions

between components.

 System testing checks that

 components are compatible,

 interact correctly and

 transfer the right data at the right time across their interfaces.

 System testing tests the emergent behavior of a

system.

54Chapter 8 Software testing

 When you integrate components to create a system, you get

emergent behavior.

 This means that some elements of system functionality only

become obvious when you put the components together.

 This may be planned emergent behavior, which has to be tested.

 For example, you may integrate an authentication component with a

component that updates information.

 You then have a system feature that restricts information

updating to authorized users.

 Sometimes, however, the emergent behavior is unplanned and

unwanted.

 You have to develop tests that check that the system is only

doing what it is supposed to do.

Chapter 8 Software testing 55

System and component testing

 During system testing, reusable components that have

been separately developed and off-the-shelf systems

may be integrated with newly developed components.

The complete system is then tested.

 Components developed by different team members or

sub-teams may be integrated at this stage. System

testing is a collective rather than an individual

process.

 In some companies, system testing may involve a separate

testing team with no involvement from designers and

programmers.

Chapter 8 Software testing 56

Use-case testing

 The use-cases developed to identify system interactions

can be used as a basis for system testing.

 Each use case usually involves several system

components so testing the use case forces these

interactions to occur.

 The sequence diagrams associated with the use case

documents the components and interactions that are

being tested.

 The sequence diagram helps you design the specific

test cases that you need as it shows what inputs are

required and what outputs are created:

Chapter 8 Software testing 57

Weather Station Use Cases

Chapter 8 Software testing 58

Use Case Description-Report Weather

Chapter 8 Software testing 59

Collect weather data sequence chart

60Chapter 8 Software testing

 You can use this diagram to identify operations that will

be tested and to help design the test cases to execute

the tests.

 Therefore, issuing a request for a report will result in the

execution of the following thread of methods:

SatComms:request → WeatherStation:reportWeather →

Commslink:Get(summary) → WeatherData:summarize

 The sequence diagram helps you design the specific test

cases that you need as it shows what inputs are required

and what outputs arecreated:

Chapter 8 Software testing 61

Testing policies

 Exhaustive system testing is impossible so testing

policies which define the required system test coverage

may be developed.

 Examples of testing policies:

 All system functions that are accessed through menus should be

tested.

 Combinations of functions (e.g. text formatting) that are

accessed through the same menu must be tested.

 Where user input is provided, all functions must be tested with

both correct and incorrect input.

Chapter 8 Software testing 62

Test-driven development

 Test-driven development (TDD) is an approach to

program development in which you inter-leave

testing and code development.

 Tests are written before code and ‘passing’ the tests

is the critical driver of development.

 You develop code incrementally, along with a test for

that increment. You don’t move on to the next

increment until the code that you have developed

passes its test.

 TDD was introduced as part of agile methods such as

Extreme Programming.

 However, it can also be used in plan-driven

development processes.
63Chapter 8 Software testing

Test-driven development

64Chapter 8 Software testing

TDD process activities

 Start by identifying the increment of functionality that

is required. This should normally be small and

implementable in a few lines of code.

 Write a test for this functionality and implement this as

an automated test.

 Run the test, along with all other tests that have been

implemented. Initially, you have not implemented the

functionality so the new test will fail.

 Implement the functionality and re-run the test. This

may involve refactoring existing code to improve it and

add new code to what’s already there.

 Once all tests run successfully, you move on to

implementing the next chunk of functionality.
65Chapter 8 Software testing

Benefits of test-driven development

 A strong argument for test-driven development is that it

helps programmers clarify their ideas of what a code

segment is actually supposed to do.

 To write a test, you need to understand what is

intended, as this understanding makes it easier to write

the required code.

 Of course, if you have incomplete knowledge or

understanding, then test-driven development won’t help.

 If you don’t know enough to write the tests, you won’t

develop the required code.

Chapter 8 Software testing 66

Benefits of test-driven development

 Code coverage

 Every code segment that you write has at least one associated

test so all code written has at least one test.

 Regression testing

 A regression test suite is developed incrementally as a program

is developed.

 Simplified debugging

 When a test fails, it should be obvious where the problem lies.

The newly written code needs to be checked and modified.

 System documentation

 The tests themselves are a form of documentation that

describe what the code should be doing.

67Chapter 8 Software testing

Regression testing

 Regression testing is testing the system to check that

changes have not ‘broken’ previously working code.

 In a manual testing process, regression testing is

expensive but, with automated testing, it is simple and

straightforward.

 All tests are rerun every time a change is made to

the program.

 Tests must run ‘successfully’ before the change is

committed.

68Chapter 8 Software testing

Release testing

 Release testing is the process of testing a particular

release of a system that is intended for use outside of

the development team.

 The primary goal of the release testing process is to

convince the supplier of the system that it is good enough

for use.

 Release testing, therefore, has to show that the system delivers its

specified functionality, performance and dependability, and that

it does not fail during normal use.

 Release testing is usually a black-box testing process

where tests are only derived from the system

specification.

69Chapter 8 Software testing

Release testing and system testing

Release testing is a form of system testing.

Important differences:

 A separate team that has not been involved in the

system development, should be responsible for

release testing.

 System testing by the development team should

focus on discovering bugs in the system (defect

testing).

 The objective of release testing is to check that the

system meets its requirements and is good

enough for external use (validation testing).

70Chapter 8 Software testing

Requirements based testing

 Part of release testing

 A general principle of good requirements

engineering practice is that requirements

should be testable; that is, the requirement

should be written so that a test can be

designed for that requirement.

 A tester can then check that the requirement

has been satisfied.

 You consider each requirement and derive

a set of tests for it.

 Requirements-based testing is validation

rather than defect testing—you are trying to

demonstrate that the system has properly

71Chapter 8 Software testing

Requirements based testing

Requirements-based testing involves

examining each requirement and developing a

test or tests for it.

MHC-PMS requirements:

 If a patient is known to be allergic to any particular

medication, then prescription of that medication shall

result in a warning message being issued to the

system user.

 If a prescriber chooses to ignore an allergy warning,

they shall provide a reason why this has been

ignored.

Chapter 8 Software testing 72

Requirements tests

 Set up a patient record with no known allergies. Prescribe medication

for allergies that are known to exist. Check that a warning message is not

issued by the system.

 Set up a patient record with a known allergy. Prescribe the medication to

that the patient is allergic to, and check that the warning is issued by the

system.

 Set up a patient record in which allergies to two or more drugs are

recorded. Prescribe both of these drugs separately and check that the

correct warning for each drug is issued.

 Prescribe two drugs that the patient is allergic to. Check that two

warnings are correctly issued.

 Prescribe a drug that issues a warning and overrule that warning.

Check that the system requires the user to provide information

explaining why the warning was overruled.

Chapter 8 Software testing 73

Scenario testing

Scenario testing is an approach to release

testing where you devise typical scenarios of

use and use these to develop test cases for the

system.

A scenario is a story that describes one way

in which the system might be used.

Scenarios should be

 realistic and

 real system users should be able to relate to

them.

Chapter 8 Software testing 74

Features tested by scenario

 Authentication by logging on to the system.

 Downloading and uploading of specified patient

records to a laptop.

 Home visit scheduling.

 Encryption and decryption of patient records on a

mobile device.

 Record retrieval and modification.

 Links with the drugs database that maintains side-

effect information.

 The system for call prompting.

Chapter 8 Software testing 75

A usage scenario for the MHC-PMS

Kate is a nurse who specializes in mental health care. One of her responsibilities

is to visit patients at home to check that their treatment is effective and that they

are not suffering from medication side -effects.

On a day for home visits, Kate logs into the MHC-PMS and uses it to print her

schedule of home visits for that day, along with summary information about the

patients to be visited. She requests that the records for these patients be

downloaded to her laptop. She is prompted for her key phrase to encrypt the

records on the laptop.

One of the patients that she visits is Jim, who is being treated with medication for

depression. Jim feels that the medication is helping him but believes that it has the

side -effect of keeping him awake at night. Kate looks up Jim’s record and is

prompted for her key phrase to decrypt the record. She checks the drug

prescribed and queries its side effects. Sleeplessness is a known side effect so

she notes the problem in Jim’s record and suggests that he visits the clinic to have

his medication changed. He agrees so Kate enters a prompt to call him when she

gets back to the clinic to make an appointment with a physician. She ends the

consultation and the system re-encrypts Jim’s record.

After, finishing her consultations, Kate returns to the clinic and uploads the records

of patients visited to the database. The system generates a call list for Kate of

those patients who she has to contact for follow-up information and make clinic

appointments. 76Chapter 8 Software testing

 If you are a release tester, you run through this

scenario, playing the role of Kate and observing how

the system behaves in response to different inputs.

 As ‘Kate’, you may make deliberate mistakes, such as

inputting the wrong key phrase to decode records. This

checks the response of the system to errors.

 You should carefully note any problems that arise,

including performance problems. If a system is too

slow, this will change the way that it is used.

 For example, if it takes too long to encrypt a record,

then users who are short of time may skip this stage.

 If they then lose their laptop, an unauthorized person

could then view the patient records.
Chapter 8 Software testing 77

Performance testing

 Part of release testing may involve testing the

emergent properties of a system, such as

performance and reliability.

 Tests should reflect the profile of use of the system.

 Performance tests usually involve planning a series of

tests where the load is steadily increased until the

system performance becomes unacceptable.

 Stress testing is a form of performance testing where

the system is deliberately overloaded to test its failure

behaviour.

78Chapter 8 Software testing

User testing

 User or customer testing is a stage in the testing

process in which users or customers provide input and

advice on system testing.

 User testing is essential, even when comprehensive

system and release testing have been carried out.

 The reason for this is that influences from the user’s working

environment have a major effect on the reliability, performance,

usability and robustness of a system. These cannot be replicated

in a testing environment.

79Chapter 8 Software testing

Types of user testing

 Alpha testing

 Users of the software work with the development team to test the

software at the developer’s site.

 Beta testing

 A release of the software is made available to users to allow

them to experiment and to raise problems that they discover with

the system developers.

 Acceptance testing

 Customers test a system to decide whether or not it is ready

to be accepted from the system developers and deployed in the

customer environment. Primarily for custom systems.

80Chapter 8 Software testing

The acceptance testing process

81Chapter 8 Software testing

Stages in the acceptance testing process

 Define acceptance criteria

 Plan acceptance testing

 Derive acceptance tests

 Run acceptance tests

 Negotiate test results

 Reject/accept system

82Chapter 8 Software testing

Agile methods and acceptance testing

 In agile methods, the user/customer is part of the

development team and is responsible for making

decisions on the acceptability of the system.

 Tests are defined by the user/customer and are

integrated with other tests in that they are run

automatically when changes are made.

 There is no separate acceptance testing

process.

 Main problem here is whether or not the embedded

user is ‘typical’ and can represent the interests of all

system stakeholders.

83Chapter 8 Software testing

Key points

 When testing software, you should try to ‘break’ the software by

using experience and guidelines to choose types of test case that

have been effective in discovering defects in other systems.

 Wherever possible, you should write automated tests. The tests are

embedded in a program that can be run every time a change is

made to a system.

 Test-first development is an approach to development where tests

are written before the code to be tested.

 Scenario testing involves inventing a typical usage scenario and

using this to derive test cases.

 Acceptance testing is a user testing process where the aim is to

decide if the software is good enough to be deployed and used in its

operational environment.

84Chapter 8 Software testing

