
Chapter 9 – Software Evolution

Lecture 1

1Chapter 9 Software evolution

Topics covered

 Evolution processes

 Change processes for software systems

 Program evolution dynamics

 Understanding software evolution

 Software maintenance

 Making changes to operational software systems

 Legacy system management

 Making decisions about software change

2Chapter 9 Software evolution

Software change

 Software change is inevitable

 New requirements emerge when the software is used;

 The business environment changes (changes to other

systems in a software system’s environment);

 Errors must be repaired;

 New computers and equipment is added to the system;

 The performance or reliability of the system may have to be

improved.

 A key problem for all organizations is implementing

and managing change to their existing software

systems.

3Chapter 9 Software evolution

Importance of evolution

 Organizations have huge investments in their software
systems - they are critical business assets.

 To maintain the value of these assets to the business,
they must be changed and updated.

 The majority of the software budget in large companies
is devoted to changing and evolving existing
software rather than developing new software.

 Based on an informal industry poll, Erlikh (2000)

suggests that 85–90% of organizational software costs
are evolution costs.

 Other surveys suggest that about two-thirds of
software costs are evolution costs.

4Chapter 9 Software evolution

 Obviously, the requirements of the installed systems

change as the business and its environment change.

 Therefore, new releases of the systems,

incorporating changes, and updates, are usually created

at regular intervals.

 You should, therefore, think of software engineering

as a spiral process with requirements, design,

implementation, and testing going on throughout the

lifetime of the system.

 See Figure below.

Chapter 9 Software evolution 5

Software Engineering as a Spiral Process

 You start by creating release 1 of the system.

 Once delivered, changes are proposed and the

development of release 2 starts almost immediately.

 In fact, the need for evolution may become obvious

even before the system is deployed so that later

releases of the software maybe under development

before the current version has been released.

6

A spiral model of development and evolution

7Chapter 9 Software evolution

soft-ware maintenance

 A different development team or even organization

might be in charge of the evolution.

 In this case, there are likely to be discontinuities in

the spiral process.

 Requirements and design documents may not be

passed from one company to another.

 When the transition from development to evolution is

not seamless, the process of changing the software

after delivery is often called ‘soft-ware maintenance’.

 Maintenance involves extra process activities, such

as program understanding, in addition to the normal

activities of software development. 8

Evolution and Servicing

 Rajlich and Bennett (2000) proposed an alternative view

of the software evolution life cycle.

 Figure below.

 In this model, they distinguish between evolution

and servicing.

Evolution is the phase in which significant

changes to the software architecture and functionality

may be made.

 During servicing, the only changes that are

made are relatively small, essential changes.

Chapter 9 Software evolution 9

A Transition Point

 As the software is modified, its structure tends to

degrade and changes become more and more

expensive.

 This often happens after a few years of use when other

environmental changes, such as hardware and

operating systems, are also often required.

 At some stage in the life cycle, the software reaches

a transition point where significant changes,

implementing new requirements, become less and less

cost effective.

Chapter 9 Software evolution 10

The Phase-Out Stage

 In the final stage, phase-out, the software may still be

used but no further changes are being implemented.

 Users have to work around any problems that they

discover.

Chapter 9 Software evolution 11

Evolution and servicing

12Chapter 9 Software evolution

Evolution and servicing

 Evolution

 The stage in a software system’s life cycle where it is in

operational use and is evolving as new requirements are

proposed and implemented in the system.

 Servicing

 At this stage, the software remains useful but the only changes

made are those required to keep it operational i.e. bug fixes

and changes to reflect changes in the software’s environment.

No new functionality is added.

 Phase-out

 The software may still be used but no further changes are

made to it.

13Chapter 9 Software evolution

Evolution processes

 Software evolution processes depend on

 The type of software being maintained;

 The development processes used;

 The skills and experience of the people involved.

 Proposals for change are the driver for system

evolution.

 Should be linked with components that are affected by the

change, thus allowing the cost and impact of the change to

be estimated.

 Change identification and evolution continues

throughout the system lifetime.

 The processes of change identification and system

evolution are cyclic and continue throughout the

lifetime of a system. See the Figure below.
14

Change identification and evolution processes

15Chapter 9 Software evolution

Change Management

Change proposals should be linked to the

components of the system that have to be

modified to implement these proposals.

This allows the cost and the impact of the

change to be assessed.

This is part of the general process of change

management, which also should ensure that

the correct versions of components are

included in each system release.

Figure below
Chapter 9 Software evolution 16

The software evolution process

17Chapter 9 Software evolution

 The process includes the fundamental activities of change

analysis, release planning, system implementation, and

releasing a system to customers.

 The cost and impact of these changes are assessed to

see how much of the system is affected by the change and

how much it might cost to implement the change.

 If the proposed changes are accepted, a new release of

the system is planned.

 During release planning, all proposed changes (fault repair,

adaptation, and new functionality) are considered.

 A decision is then made on which changes to implement in

the next version of the system.

 The changes are implemented and validated, and a new

version of the system is released.
18

Change implementation

19Chapter 9 Software evolution

Ideally, the change implementation stage of this
process should modify the system specification,
design, and implementation to reflect the changes
to the system

Change implementation

 Iteration of the development process where the

revisions to the system are designed, implemented and

tested.

 A critical difference is that the first stage of change

implementation may involve program understanding,

especially if the original system developers are not

responsible for the change implementation.

 During the program understanding phase,

 you have to understand how the program is structured,

 how it delivers functionality and

 how the proposed change might affect the program.

20Chapter 9 Software evolution

Urgent change requests requiring an emergency

fix to the program

 Urgent changes may have to be implemented without

going through all stages of the software engineering

process

 If a serious system fault has to be repaired to allow normal

operation to continue;

 If changes to the system’s environment (e.g. an OS upgrade)

have unexpected effects;

 If there are business changes that require a very rapid

response (e.g. the release of a competing product).

 However, the danger is that the requirements, the

software design, and the code become inconsistent

 This accelerates the process of software ageing so

that future changes become progressively more

difficult and maintenance costs increase.
21

The emergency repair process

22Chapter 9 Software evolution

Agile methods and evolution

 Agile methods and processes may be used for

program evolution as well as program development.

 Agile methods are based on incremental development

so the transition from development to evolution is a

seamless one.

 Evolution is simply a continuation of the development process

based on frequent system releases.

 Automated regression testing is particularly valuable

when changes are made to a system.

 Changes may be expressed as additional user stories.

23Chapter 9 Software evolution

Handover problems

 Where the development team have used an agile

approach but the evolution team is unfamiliar with agile

methods and prefer a plan-based approach.

 The evolution team may expect detailed

documentation to support evolution and this is not produced

in agile processes.

 Where a plan-based approach has been used for

development but the evolution team prefer to use

agile methods.

 The evolution team may have to start from scratch

 developing automated tests and

 the code in the system may not have been refactored and

simplified as is expected in agile development.
24Chapter 9 Software evolution

 Program evolution dynamics is the study of the
processes of system change.

 After several major empirical studies, Lehman and
Belady proposed that there were a number of ‘laws’
which applied to all systems as they evolved.

 There are sensible observations rather than laws.

 They are applicable to large systems developed by
large organisations.

 It is not clear if these are applicable to other types of software
system.

Program evolution dynamics

25Chapter 9 Software evolution

 The system requirements are likely to change

while the system is being developed because

the environment is changing. Therefore a

delivered system won't meet its requirements!

 Systems are tightly coupled with their environment.

When a system is installed in an environment it changes

that environment and therefore changes the system

requirements.

 Systems MUST be changed if they are to remain

useful in an environment.

Change is inevitable

26Chapter 9 Software evolution

Lehman’s laws

Law Description

Continuing change

or change is

inevitable

A program that is used in a real-world environment must necessarily

change, or else become progressively less useful in that

environment.

Increasing

complexity (as

program

structures

degrades)

As an evolving program changes, its structure tends to become more

complex. Extra resources must be devoted to preserving and

simplifying the structure. You spend time improving the software

structure without adding to its functionality.

Large program

evolution

Program evolution is a self-regulating process. System attributes

such as size, time between releases, and the number of reported

errors is approximately invariant for each system release.

Organizational

stability

Over a program’s lifetime, its rate of development is approximately

constant and independent of the resources devoted to system

development. This law confirms that large software development

teams are often unproductive because communication

overheads dominate the work of the team.

27Chapter 9 Software evolution

Lehman’s laws

Law Description

Conservation of familiarity Over the lifetime of a system, the incremental change in each

release is approximately constant. Adding new functionality

to a system inevitably introduces new system faults. The

more functionality added in each release, the more faults

there will be.

Continuing growth The functionality offered by systems has to continually

increase to maintain user satisfaction.

Declining quality The quality of systems will decline unless they are modified to

reflect changes in their operational environment.

Feedback system Evolution processes incorporate multiagent, multiloop

feedback systems and you have to treat them as feedback

systems to achieve significant product improvement.

28Chapter 9 Software evolution

The Third Law: a consequence of

structural factors and organizational

factors
 The third law is, perhaps, the most interesting and the most

contentious of Lehman’s laws.

 This determines the gross trends of the system maintenance

process and limits the number of possible system changes.

 The structural factors that affect the third law come from the

complexity of large systems. As you change and extend a program,

its structure tends to degrade.

 This degradation, if unchecked, makes it more and more difficult to

make further changes to the pro-gram.

 Making small changes reduces the extent of structural degradation

and so lessens the risks of causing serious system dependability

problems.

 If you try and make large changes, there is a high probability that

these will introduce new faults. 29

The organizational factors that affect the third

law

 Large systems are usually produced by large organizations.

 These companies have internal bureaucracies that set the

change budget for each system and control the decision-

making process.

 Companies have to make decisions on the risks and value

of the changes and the costs involved.

 Such decisions take time to make and, sometimes, it takes

longer to decide on the changes to be made than change

implementation.

 The speed of the organization’s decision-making

processes therefore governs the rate of change of the

system.

Chapter 9 Software evolution 30

 Lehman’s observations seem generally sensible.

 They should be taken into account when planning the

maintenance process.

 It may be that business considerations require them to be

ignored at any one time.

 For example, for marketing reasons, it may be necessary to

make several major system changes in a single release.

 The likely consequences of this are that one or more

releases devoted to error repair are likely to be required.

 You often see this in personal computer software when a

major new release of an application is often quickly followed

by a bug repair update.
31

Applicability of Lehman’s laws

 Lehman’s laws seem to be generally applicable to large,

tailored systems developed by large organisations.

 Confirmed in early 2000’s by work by Lehman on the FEAST

project.

 It is not clear how they should be modified for

 Shrink-wrapped software products;

 Systems that incorporate a significant number of COTS

components;

 Small organisations;

 Medium sized systems.

32Chapter 9 Software evolution

Key points

 Software development and evolution can be thought of

as an integrated, iterative process that can be

represented using a spiral model.

 For custom systems, the costs of software maintenance

usually exceed the software development costs.

 The process of software evolution is driven by requests

for changes and includes change impact analysis,

release planning and change implementation.

 Lehman’s laws, such as the notion that change is

continuous, describe a number of insights derived from

long-term studies of system evolution.

33Chapter 9 Software evolution

Chapter 9 – Software Evolution

Lecture 2

34Chapter 9 Software evolution

 Modifying a program after it has been put into use.

 The term is mostly used for changing custom software.

Generic software products are said to evolve to

create new versions.

 Maintenance does not normally involve major

changes to the system’s architecture.

 Changes are implemented by modifying existing

components and adding new components to the

system.

Software maintenance

35Chapter 9 Software evolution

 Maintenance to repair software faults

 Changing a system to correct deficiencies in the way meets its

requirements.

 Maintenance to adapt software to a different operating

environment

 Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation.

 Maintenance to add to or modify the system’s

functionality

 Modifying the system to satisfy new requirements.

Types of maintenance

36Chapter 9 Software evolution

Figure 9.8 Maintenance effort distribution

37Chapter 9 Software evolution

 Usually greater than development costs (2* to

100* depending on the application).

 Affected by both technical and non-technical

factors.

 Increases as software is maintained.

Maintenance corrupts the software structure so

makes further maintenance more difficult.

 Ageing software can have high support costs

(e.g. old languages, compilers etc.).

Maintenance costs

38Chapter 9 Software evolution

 The following Figure shows how overall lifetime costs

may decrease as more effort is expended during system

development to produce a maintainable system.

 Because of the potential reduction in costs of

understanding, analysis, and testing, there is a

significant multiplier effect when the system is developed

for maintainability.

 For System 1, extra development costs of $25,000 are

invested in making the system more maintainable.

 This results in a savings of $100,000 in maintenance

costs over the lifetime of the system.

Chapter 9 Software evolution 39

Figure 9.9 Development and maintenance costs

40Chapter 9 Software evolution

 I t is usually more expensive to add functionality after

a system is in operation than it is to implement the same

functionality during development.

 The reasons for this are:

 Team stability

 Maintenance costs are reduced if the same staff are involved
with them for some time.

 Contractual responsibility

 The developers of a system may have no contractual
responsibility for maintenance so there is no incentive to
design for future change.

Chapter 9 Software evolution 41

 Staff skills

 Maintenance staff are often inexperienced and have limited
domain knowledge.

 Maintenance has a poor image among software engineers.

 It is seen as a less-skilled process than system development
and is often allocated to the most junior staff.

 Furthermore, old systems maybe written in obsolete
programming languages.

 The maintenance staff may not have much experience of
development in these languages and must learn these
languages to maintain the system.

 Program age and structure

 As programs age, their structure is degraded and they become
harder to understand and change.

Maintenance cost factors

42Chapter 9 Software evolution

Maintenance prediction

 Managers hate surprises, especially if these result in

unexpectedly high costs.

 You should therefore try to predict what system changes

might be proposed and what parts of the system are

likely to be the most difficult to maintain.

 You should also try to estimate the overall maintenance

costs for a system in a given time period.

 The following Figure shows these predictions and

associated questions.

Chapter 9 Software evolution 43

Maintenance prediction

 Maintenance prediction is concerned with assessing

which parts of the system may cause problems and have

high maintenance costs

 Change acceptance depends on the maintainability of the

components affected by the change;

 Implementing changes degrades the system and reduces its

maintainability;

 Maintenance costs depend on the number of changes and costs

of change depend on maintainability.

44Chapter 9 Software evolution

Maintenance prediction

45Chapter 9 Software evolution

Change prediction

 Predicting the number of changes requires and

understanding of the relationships between a system

and its environment.

 Tightly coupled systems require changes whenever the

environment is changed.

 Factors influencing this relationship are

 Number and complexity of system interfaces;

 Number of inherently volatile system requirements;

 The business processes where the system is used.

46Chapter 9 Software evolution

Complexity metrics

 Predictions of maintainability can be made by assessing

the complexity of system components.

 Studies have shown that most maintenance effort is

spent on a relatively small number of system

components.

 Complexity depends on

 Complexity of control structures;

 Complexity of data structures;

 Object, method (procedure) and module size.

47Chapter 9 Software evolution

Process metrics

 To make legacy software systems easier to maintain,

you can reengineer these systems to improve their

structure and understandability.

 Process metrics may be used to assess maintainability

 Number of requests for corrective maintenance;

 Average time required for impact analysis;

 Average time taken to implement a change request;

 Number of outstanding change requests.

 If any or all of these is increasing, this may indicate a

decline in maintainability.

48Chapter 9 Software evolution

Reengineering may involve

 Re-documenting the system,

 refactoring the system architecture,

 translating programs to a modern programming

language,

 and modifying and

 updating the structure and values of the system’s

data.

Chapter 9 Software evolution 49

System re-engineering

 Re-structuring or re-writing part or all of a

legacy system without changing its

functionality.

 Applicable where some but not all sub-systems

of a larger system require frequent

maintenance.

 Re-engineering involves adding effort to make

them easier to maintain. The system may be re-

structured and re-documented.

50Chapter 9 Software evolution

Advantages of reengineering

 Reduced risk

 There is a high risk in new software development. There may

be development problems, staffing problems and specification

problems.

 Reduced cost

 The cost of re-engineering is often significantly less than the

costs of developing new software.

51Chapter 9 Software evolution

The reengineering process

52Chapter 9 Software evolution

Reengineering process activities

 Source code translation

 Convert code to a new language.

 Reverse engineering

 Analyse the program to understand it;

 Program structure improvement

 Restructure automatically for understandability;

 Program modularisation

 Reorganise the program structure;

 Data reengineering

 Clean-up and restructure system data.

53Chapter 9 Software evolution

Figure 9.12 Reengineering approaches

54Chapter 9 Software evolution

Reengineering cost factors

 The quality of the software to be reengineered.

 The tool support available for reengineering.

 The extent of the data conversion which is required.

 The availability of expert staff for reengineering.

 This can be a problem with old systems based on technology
that is no longer widely used.

55Chapter 9 Software evolution

Preventative maintenance by refactoring

 Refactoring is the process of making improvements to

a program to slow down degradation through change.

 You can think of refactoring as ‘preventative

maintenance’ that reduces the problems of future

change.

 Refactoring involves

 modifying a program to improve its structure,

 reduce its complexity or make it easier to understand.

 When you refactor a program, you should not add

functionality but rather concentrate on program

improvement.

56Chapter 9 Software evolution

Refactoring and reengineering

 Re-engineering takes place after a system has been

maintained for some time and maintenance costs are

increasing.

 You use automated tools to process and re-engineer a legacy

system to create a new system that is more maintainable.

 Refactoring is a continuous process of improvement

throughout the development and evolution process. It is

intended to avoid the structure and code degradation

that increases the costs and difficulties of maintaining a

system.

57Chapter 9 Software evolution

‘Bad smells’ in program code

 Examples of bad smells that can be improved through

refactoring include:

 Duplicate code

 The same or very similar code may be included at different

places in a program. This can be removed and implemented as a

single method or function that is called as required.

 Long methods

 If a method is too long, it should be redesigned as a number of

shorter methods.

 Switch (case) statements

 These often involve duplication, where the switch depends on

the type of a value. The switch statements may be scattered

around a program. In object-oriented languages, you can often

use polymorphism to achieve the same thing. 58Chapter 9 Software evolution

‘Bad smells’ in program code

 Data clumping

 Data clumps occur when the same group of data items (fields in

classes, parameters in methods) re-occur in several places in a

program. These can often be replaced with an object that

encapsulates all of the data.

 Speculative generality

 This occurs when developers include generality in a program in

case it is required in the future. This can often simply be

removed.

59Chapter 9 Software evolution

Legacy system management

 Organisations that rely on legacy systems must choose

a strategy for evolving these systems

 Scrap the system completely and modify business processes so

that it is no longer required;

 Continue maintaining the system;

 Transform the system by re-engineering to improve its

maintainability;

 Replace the system with a new system.

 The strategy chosen should depend on the system

quality and its business value.

60Chapter 9 Software evolution

 For example, assume that an organization has 10 legacy

systems.

 You should assess the quality and the business value of

each of these systems.

 You may then create a chart showing relative

business value and system quality.

 This is shown in Figure 9.13.

 From Figure 9.13, you can see that there are four

clusters of systems:

Chapter 9 Software evolution 61

Figure 9.13 An example of a legacy system

assessment

62Chapter 9 Software evolution

Legacy system categories

 Low quality, low business value

 These systems should be scrapped.

 Low-quality, high-business value

 These make an important business contribution but are

expensive to maintain. Should be re-engineered or replaced if a

suitable system is available.

 High-quality, low-business value

 Replace with COTS, scrap completely or maintain.

 High-quality, high business value

 Continue in operation using normal system maintenance.

63Chapter 9 Software evolution

Business value assessment

To assess the business value of a system,

 you have to identify system stakeholders,

such as

 end-users of the system and their managers,

and

 ask a series of questions about the system.

There are four basic issues that you have

to discuss:

Chapter 9 Software evolution 64

Business value assessment

 Assessment should take different viewpoints into

account

 System end-users;

 Business customers;

 Line managers;

 IT managers;

 Senior managers.

 Interview different stakeholders and collate results.

65Chapter 9 Software evolution

Issues in business value assessment

 The use of the system

 If systems are only used occasionally or by a small number of

people, they may have a low business value.

 The business processes that are supported

 A system may have a low business value if it forces the use of

inefficient business processes.

 System dependability

 If a system is not dependable and the problems directly affect

business customers, the system has a low business value.

 The system outputs

 If the business depends on system outputs, then the system has

a high business value.

66Chapter 9 Software evolution

System quality assessment

 Business process assessment

 How well does the business process support the current goals of

the business?

 Environment assessment

 How effective is the system’s environment and how expensive is

it to maintain?

 Application assessment

 What is the quality of the application software system?

67Chapter 9 Software evolution

Business process assessment

 Use a viewpoint-oriented approach and seek answers
from system stakeholders

 Is there a defined process model and is it followed?

 Do different parts of the organisation use different processes for
the same function?

 How has the process been adapted?

 What are the relationships with other business processes and
are these necessary?

 Is the process effectively supported by the legacy application
software?

 Example - a travel ordering system may have a low
business value because of the widespread use of web-
based ordering.

68Chapter 9 Software evolution

Factors used in environment assessment

Factor Questions

Supplier stability Is the supplier still in existence? Is the supplier financially stable and

likely to continue in existence? If the supplier is no longer in business,

does someone else maintain the systems?

Failure rate Does the hardware have a high rate of reported failures? Does the

support software crash and force system restarts?

Age How old is the hardware and software? The older the hardware and

support software, the more obsolete it will be. It may still function

correctly but there could be significant economic and business

benefits to moving to a more modern system.

Performance Is the performance of the system adequate? Do performance

problems have a significant effect on system users?

69Chapter 9 Software evolution

Factors used in environment assessment

Factor Questions

Support requirements What local support is required by the hardware and

software? If there are high costs associated with this

support, it may be worth considering system replacement.

Maintenance costs What are the costs of hardware maintenance and support

software licences? Older hardware may have higher

maintenance costs than modern systems. Support software

may have high annual licensing costs.

Interoperability Are there problems interfacing the system to other systems?

Can compilers, for example, be used with current versions

of the operating system? Is hardware emulation required?

70Chapter 9 Software evolution

Factors used in application assessment

Factor Questions

Understandability How difficult is it to understand the source code of the current

system? How complex are the control structures that are used?

Do variables have meaningful names that reflect their function?

Documentation What system documentation is available? Is the documentation

complete, consistent, and current?

Data Is there an explicit data model for the system? To what extent is

data duplicated across files? Is the data used by the system up to

date and consistent?

Performance Is the performance of the application adequate? Do performance

problems have a significant effect on system users?

71Chapter 9 Software evolution

Factors used in application assessment

Factor Questions

Programming language Are modern compilers available for the programming

language used to develop the system? Is the programming

language still used for new system development?

Configuration

management

Are all versions of all parts of the system managed by a

configuration management system? Is there an explicit

description of the versions of components that are used in

the current system?

Test data Does test data for the system exist? Is there a record of

regression tests carried out when new features have been

added to the system?

Personnel skills Are there people available who have the skills to maintain the

application? Are there people available who have experience

with the system?

72Chapter 9 Software evolution

System measurement

 You may collect quantitative data to make an

assessment of the quality of the application system

 The number of system change requests;

 The number of different user interfaces used by the system;

 The volume of data used by the system.

73Chapter 9 Software evolution

Key points

 There are 3 types of software maintenance, namely bug

fixing, modifying software to work in a new environment,

and implementing new or changed requirements.

 Software re-engineering is concerned with re-structuring

and re-documenting software to make it easier to

understand and change.

 Refactoring, making program changes that preserve

functionality, is a form of preventative maintenance.

 The business value of a legacy system and the quality of

the application should be assessed to help decide if a

system should be replaced, transformed or maintained.

74Chapter 9 Software evolution

