

Discrete Fourier Transform (DFT) And Signal Spectrum

Fourier Transform History

- Born 21 March 1768 (Auxerre).
- Died 16 May 1830 (Paris)
- French mathematician and physicist.
- Best known for initiating the investigation of Fourier series.
- Fourier series applications to problems of heat transfer and vibrations.
- The Fourier series is used to represent a periodic function by a discrete sum of complex exponentials.
- Fourier transform is then used to represent a general, non-periodic function by a continuous superposition or integral of complex exponentials (the period approaches to infinity).

Jean-Baptiste Joseph Fourier

Discrete Fourier Transform

- In this chapter we introduce the concept of Fourier or *frequency-domain representation of signals*.
- **Discrete Fourier Transform** (**DFT**) transforms (*break up the signal into summations of sinusoidal components*) the time domain signal samples to the frequency domain components (*frequency analysis*).

In the *time domain*, representation of digital signals describes the signal amplitude versus the sample number (time).

The representation of the digital signal in terms of its frequency component in a *frequency domain*, displays the frequency information of a digital signal (signal spectrum).

• Fourier analysis is like a *glass prism*, which splits a beam of light into frequency components corresponding to different colors.

Continuous-time sinusoids

• A *continuous-time sinusoidal* signal may be represented as a function of time *t* by the equation

Amplitude frequency phase in radians $x(t) = A\cos(2\pi F_0 t + \theta), \quad -\infty < t < \infty$

- The angular or radian frequency (radians per second.) $\Omega_0 = 2\pi F_0$
- A *discrete-time sinusoidal signal* is conveniently obtained by sampling the continuous-time sinusoid at equally spaced points t = nT

$$\begin{aligned} x[n] &= x(nT) = A\cos(2\pi F_0 nT + \theta) = A\cos\left(2\pi \frac{F_0}{F_s}n + \theta\right) \\ &= A\cos(\omega_0 n + \theta), \quad -\infty < n < \infty \end{aligned} \begin{bmatrix} f \triangleq \frac{F}{F} = FT, & \text{frequency} \\ \omega \triangleq 2\pi f = 2\pi \frac{F}{F_s} = \Omega T, \text{ normalized angular frequency} \end{bmatrix}$$

• Using Euler's identity $e^{\pm j\phi} = \cos \phi \pm j \sin \phi$, we can express every sinusoidal signal in terms of two complex exponentials with the same frequency

$$A\cos(\Omega_0 t + \theta) = \frac{A}{2}e^{j\theta}e^{j\Omega_0 t} + \frac{A}{2}e^{-j\theta}e^{-j\Omega_0 t}.$$

- Frequency (positive quantity.), viewed as the number of cycles completed per unit of time.
- Negative frequencies is a convenient way to describe signals in terms of complex exponentials. CEN352, DR. Nassim Ammour, King Saud University

For continuous-time sinusoids, $F_1 < F_2$ always implies that $T_1 > T_2$.

DFT: Graphical Example

Time domain

CEN352, DR. Nassim Ammour, King Saud University

DFT Coefficients of Periodic Signals

• Given a set of *N* harmonically related complex exponentials $e^{j\frac{2\pi}{N}kn}$, We can synthesize a signal x[n]

$$x[n] = \sum_{k=0}^{N-1} c_k e^{j\frac{2\pi}{N}kn}.$$

x[n] is sampled at a rate of $f_s Hz$ (period $T_0 = NT = N \frac{1}{f_s}$)

Equation of DFT coefficients:

We have:
$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$
 and $e^{j(\theta+2\pi)} = e^{j\theta}$ period of 2π
For $\theta(t) = \omega t \rightarrow e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$ Rotation of a point on a circle

x(N+1) = x(1)

x(n)

x(0)

0

 \mathbf{N}

DFT Coefficients of Periodic Signals

• Fourier series coefficient C_k is periodic of N

$$c_{k+N} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi(k+N)n}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi kn}{N}} e^{-j2\pi n}$$

Since $e^{-j2\pi n} = \cos(2\pi n) - j\sin(2\pi n) = 1$ $C_{K+N} = C_K$

Remarks

1. spectral portion between the frequency $-f_s$ and f_s (folding frequency) represents frequency information of the periodic signal.

2. For the kth harmonic, the frequency is $f = kf_0$ Hz (f_0 is the frequency resolution =The frequency spacing between the consecutive spectral lines)

3. the spectral portion from $\frac{f_s}{2}$ to f_s is a copy of the spectrum in the negative frequency range from $-f_s/2$ to 0 Hz due to the spectrum being periodic for every $f_s = Nf_0$ Hz.

The periodic signal x(t) is sampled at $f_s = 4Hz$ $x(t) = sin(2\pi t)$

a. Compute the spectrum C_k using the samples in one period.

b. Plot the two-sided amplitude spectrum $|C_k|$ over the range from -2 to 2 Hz.

$$c_1 = \frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j2\pi \times 1n/4} = \frac{1}{4} \left(x(0) + x(1) e^{-j\pi/2} + x(2) e^{-j\pi} + x(3) e^{-j3\pi/2} \right)$$

$$= \frac{1}{4} \left(x(0) - jx(1) - x(2) + jx(3) = 0 - j(1) - 0 + j(-1) \right) = -j0.5$$

Example 1 -contd. (2)

$$c_2 = \frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j2\pi \times 2n/4} = 0$$
, and $c_3 = \frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j2\pi \times 3n/4} = j0.5$

Using periodicity, it follows that $c_{-1} = c_3 = j0.5$, and $c_{-2} = c_2 = 0$

Discrete Fourier Transform DFT Formulas

11

DFT Formulas

Given N data samples of x[n], the N-point discrete Fourier transform (DFT) X(k) is defined by:

$$X(k) = Nc_k = \sum_{n=0}^{N-1} x(n)e^{-\frac{j2\pi kn}{N}}, \quad k = 0, 1, \dots, N-1$$

$$= \sum_{n=0}^{N-1} x(n)W_N^{kn}, \quad \text{for } k = 0, 1, \dots, N-1$$

Fourier series coefficients

• k is the discrete frequency index (frequency bin number) indicating each calculated DFT coefficient.

$$X(k) = x(0)W_N^{k0} + x(1)W_N^{k1} + x(2)W_N^{k2} + \dots + x(N-1)W_N^{k(N-1)}, \text{ for } k = 0, 1, \dots, N-1$$

Where the factor W_N is called the *twiddle factor* $W_N = e^{-j2\pi/N} = \cos\left(\frac{2\pi}{N}\right) - j\sin\left(\frac{2\pi}{N}\right)$

Inverse DFT

Given N DFT coefficients X[k], The *inverse of the DFT* x[n] is given by

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi kn/N}$$
Inverse DFT (IDFT)
$$= \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}, \quad \text{for } n = 0, 1, \dots, N-1$$

$$x(n) = \frac{1}{N} \Big(X(0) W_N^{-0n} + X(1) W_N^{-1n} + X(2) W_N^{-2n} + \dots + X(N-1) W_N^{-(N-1)n} \Big),$$
for $n = 0, 1, \dots, N-1$

Analysis equation Synthesis equation

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \xleftarrow{\text{DFT}}_N x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn},$$

$$x_N = \frac{1}{N} W_N^H X_N = \frac{1}{N} W_N^* X_N.$$
 (IDFT)
$$W_N^H \text{ is the conjugate transpose of } W_N$$

MATLAB Functions

We can use MATLAB functions *fft()* and *ifft()* to compute the DFT coefficients and the inverse DFT with the syntax listed in Table:

```
FFT: Fast Fourier Transform
```

MATLAB FFT functions.

- $\mathbf{X} = \mathrm{fft}(\mathbf{x})$
- $\mathbf{x} = ifft(\mathbf{X})$
- x = input vector
- X = DFT coefficient vector

% Calculate DFT coefficients % Inverse DFT

Given a sequence x(n) for $0 \le n \le 3$ where x(0) = 1, x(1) = 2, x(2) = 3, and x(3) = 4. evaluate DFT X(k).

Solution:

Since N = 4 and
$$W_4 = e^{-j\frac{\pi}{2}}$$

 $X(k) = \sum_{n=0}^{3} x(n)W_4^{kn} = \sum_{n=0}^{3} x(n)e^{-j\frac{\pi kn}{2}}$
Thus, for $k = 0$ $X(0) = \sum_{n=0}^{3} x(n)e^{-j0} = x(0)e^{-j0} + x(1)e^{-j0} + x(2)e^{-j0} + x(3)e^{-j0}$
 $= x(0) + x(1) + x(2) + x(3)$

for
$$k = 1$$
 $X(1) = \sum_{n=0}^{3} x(n)e^{-j\frac{\pi n}{2}} = x(0)e^{-j0} + x(1)e^{-j\frac{\pi}{2}} + x(2)e^{-j\pi} + x(3)e^{-j\frac{3\pi}{2}}$
= $x(0) - jx(1) - x(2) + jx(3)$
= $1 - j2 - 3 + j4 = -2 + j2$

CEN352, DR. Nassim Ammour, King Saud University

Example 2 -contd.

for

for
$$k = 2$$

$$X(2) = \sum_{n=0}^{3} x(n)e^{-j\pi n} = x(0)e^{-j0} + x(1)e^{-j\pi} + x(2)e^{-j2\pi} + x(3)e^{-j3\pi}$$

$$= x(0) - x(1) + x(2) - x(3)$$

$$= 1 - 2 + 3 - 4 = -2$$
and for $k = 3$

$$X(3) = \sum_{n=0}^{3} x(n)e^{-j\frac{3\pi n}{2}} = x(0)e^{-j0} + x(1)e^{-j\frac{3\pi}{2}} + x(2)e^{-j3\pi} + x(3)e^{-j\frac{9\pi}{2}}$$

$$= x(0) + jx(1) - x(2) - jx(3)$$

$$= 1 + j2 - 3 - j4 = -2 - j2$$

Using MATLAB,

$$\gg X = \text{fft}([1 \ 2 \ 3 \ 4])$$

X = 10.0000 - 2.0000 + 2.0000i - 2.0000 - 2.0000 - 2.0000i

Example 2 -contd.

Using the DFT complex matrix

We first compute the entries of the matrix W_4 using the property: $W_N^{k+N} = W_N^k = e^{-j\frac{2\pi}{N}k} = \cos\left(\frac{2\pi}{N}k\right) - j\sin\left(\frac{2\pi}{N}k\right)$.

The result is a complex matrix given by:

$$W_{4} = \begin{bmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{3} & W_{4}^{0} & W_{4}^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\ 1 & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\ 1 & W_{4}^{3} & W_{4}^{2} & W_{4}^{1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}.$$

The DFT coefficients are evaluated by the matrix-by-vector multiplication

$$\begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ -2 + 2j \\ -2 \\ -2 - 2j \end{bmatrix}$$

In MATLAB these computations are done using the commands:

The DFT $x = [0 \ 1 \ 2 \ 3]'; W = dftmtx(4); X = W * x;$

The inverse DFT x = inv(W) *X

Using DFT coefficients X(k) for $0 \le n \le 3$ of previous example, evaluate the inverse DFT (IDFT) to determine the time domain sequence x(n).

13

Solution:

$$N = 4 \text{ and } W_4^{-1} = e^{j\frac{\pi}{2}}, \qquad x(n) = \frac{1}{4} \sum^3 X(k) W_4^{-nk} = \frac{1}{4} \sum^3 X(k) e^{j\frac{\pi kn}{2}}.$$

for $n = 0$
$$x(0) = \frac{1}{4} \sum_{k=0}^3 X(k) e^{j0} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j0} + X(2) e^{j0} + X(3) e^{j0} \right)$$

$$= \frac{1}{4} (10 + (-2 + j2) - 2 + (-2 - j2)) = 1$$

for $n = 1$
$$x(1) = \frac{1}{4} \sum_{k=0}^3 X(k) e^{j\frac{k\pi}{2}} = \frac{1}{4} \left(X(0) e^{j0} + X(1) e^{j\frac{\pi}{2}} + X(2) e^{j\pi} + X(3) e^{j\frac{3\pi}{2}} \right)$$

$$= \frac{1}{4} (X(0) + jX(1) - X(2) - jX(3))$$

$$= \frac{1}{4} (10 + j(-2 + j2) - (-2) - j(-2 - j2)) = 2$$

71

Example 3 -contd.

for
$$n = 2$$
 $x(2) = \frac{1}{4} \sum_{k=0}^{3} X(k)e^{jk\pi} = \frac{1}{4} \left(X(0)e^{j0} + X(1)e^{j\pi} + X(2)e^{j2\pi} + X(3)e^{j3\pi} \right)$
 $= \frac{1}{4} \left(X(0) - X(1) + X(2) - X(3) \right)$
 $= \frac{1}{4} \left(10 - \left(-2 + j2 \right) + \left(-2 \right) - \left(-2 - j2 \right) \right) = 3$
and for $n = 3$ $x(3) = \frac{1}{4} \sum_{k=0}^{3} X(k)e^{j\frac{k\pi 3}{2}} = \frac{1}{4} \left(X(0)e^{j0} + X(1)e^{j\frac{3\pi}{2}} + X(2)e^{j3\pi} + X(3)e^{j\frac{9\pi}{2}} \right)$
 $= \frac{1}{4} \left(X(0) - jX(1) - X(2) + jX(3) \right)$
 $= \frac{1}{4} \left(10 - j(-2 + j2) - \left(-2 \right) + j(-2 - j2) \right) = 4$

Using MATLAB,

$$\gg \mathbf{x} = \operatorname{ifft}([10 - 2 + 2j - 2 - 2 - 2j])$$

$$\mathbf{x} = 1 \quad 2 \quad 3 \quad 4.$$

Frequency of bin k

- The calculated N DFT coefficients X (k) represent the frequency components ranging from 0 Hz to f_s Hz.
- The relationship between the frequency **bin k** and its associated frequency is computed using:

$$f = k \frac{f_s}{N} = k \Delta f (Hz)$$

• The *frequency resolution* (frequency step between two consecutive DFT coefficients)

$$\Delta f = \frac{f_s}{N} \text{ (Hz)}$$

In the previous example, if the sampling rate is 10 Hz,

- a. Determine the sampling period, time index, and sampling time instant for a digital sample x(3) in the time domain;
- b. Determine the frequency resolution, frequency bin, and mapped frequencies for the DFT coefficients X(1) and X(3) in the frequency domain.

Solution:

b

a. Sampling period: $T = 1/f_s = 1/10 = 0.1$ second

For x(3), the time index is n = 3 and the sampling time instant is determined by

$$t = nT = 3 \cdot 0.1 = 0.3$$
 secon
Frequency resolution: $\Delta f = \frac{f_s}{N} = \frac{10}{4} = 2.5$ Hz.

Frequency bin number for X(1) is k = 1, and its corresponding frequency is $f = \frac{kf_s}{N} = \frac{1 \times 10}{4} = 2.5$ Hz.

Similarly, for X(3) is k = 3, and its corresponding frequency is

s
$$f = \frac{kf_s}{N} = \frac{3 \times 10}{4} = 7.5 \,\mathrm{Hz}.$$

Amplitude and Power Spectrum

- Since each calculated DFT coefficient is a complex number, it is not convenient to plot it versus its frequency index.
- Hence, after evaluating the N DFT coefficients, the magnitude and phase of each DFT coefficient can be determined and plotted versus its frequency index.

Amplitude Spectrum:

$$A_k = \frac{1}{N} |X(k)| = \frac{1}{N} \sqrt{\left(\text{Real}[X(k)]\right)^2 + \left(\text{Imag}[X(k)]\right)^2}, \quad k = 0, 1, 2, \dots, N-1$$

To find one-sided amplitude spectrum, we double the amplitude keeping the original DC term at k =0.

$$\overline{A}_k = \begin{cases} \frac{1}{N} |X(0)|, & k = 0\\ \frac{2}{N} |X(k)|, & k = 1, \dots, N/2 \end{cases}$$

Amplitude and Power Spectrum -contd.

Power Spectrum:

$$P_k = \frac{1}{N^2} |X(k)|^2 = \frac{1}{N^2} \Big\{ (\operatorname{Real}[X(k)])^2 + (\operatorname{Imag}[X(k)])^2 \Big\},\$$

$$k = 0, 1, 2, \dots, N-1.$$

For, one-sided power spectrum:

$$\bar{P}_k = \begin{cases} \frac{1}{N^2} |X(0)|^2 & k = 0\\ \frac{2}{N^2} |X(k)|^2 & k = 0, 1, \dots, N/2 \end{cases}$$

Phase Spectrum:

$$\varphi_k = \tan^{-1}\left(\frac{\operatorname{Imag}[X(k)]}{\operatorname{Real}[X(k)]}\right), \ k = 0, \ 1, \ 2, \dots, \ N-1.$$

Consider the sequence in the Figure, assuming that $f_s = 100 Hz$, compute the amplitude spectrum, phase spectrum, and power spectrum.

Solution:

For k = 0, $f = k \cdot f_s / N = 0 \times 100 / 4 = 0$ Hz,

$$A_0 = \frac{1}{4}|X(0)| = 2.5, \ \varphi_0 = \tan^{-1}\left(\frac{\operatorname{Imag}[X(0)]}{\operatorname{Real}([X(0)])}\right) = 0^0,$$

$$P_0 = \frac{1}{4^2} |X(0)|^2 = 6.25.$$

1

CEN352, DR. Nassim Ammour, King Saud University

5

Example 5 -contd. (1) For $k = 1, f = 1 \times 100/4 = 25$ Hz,

$$A_{1} = \frac{1}{4}|X(1)| = 0.7071, \ \varphi_{1} = \tan^{-1}\left(\frac{\operatorname{Imag}[X(1)]}{\operatorname{Real}[X(1)]}\right) = 135^{0},$$
$$P_{1} = \frac{1}{4^{2}}|X(1)|^{2} = 0.5000.$$

For
$$k = 2, f = 2 \times 100/4 = 50 \text{ Hz},$$

 $A_2 = \frac{1}{4}|X(2)| = 0.5, \varphi_2 = \tan^{-1}\left(\frac{\text{Imag}[X(2)]}{\text{Real}[X(2)]}\right) = 180^0,$
 $P_2 = \frac{1}{4^2}|X(2)|^2 = 0.2500.$

Similarly, for k = 3, $f = 3 \times 100/4 = 75$ Hz,

$$A_{3} = \frac{1}{4}|X(3)| = 0.7071, \ \varphi_{3} = \tan^{-1}\left(\frac{\operatorname{Imag}[X(3)]}{\operatorname{Real}[X(3)]}\right) = -135^{0},$$
$$P_{3} = \frac{1}{4^{2}}|X(3)|^{2} = 0.5000.$$

CEN352, DR. Nassim Ammour, King Saud University

Consider a digital sequence sampled at the rate of 10 kHz. If we use 1,024 data points and apply the 1,024-point DFT to compute the spectrum,

a. Determine the frequency resolution;

b. Determine the highest frequency in the spectrum.

Solution:

a.
$$\Delta f = \frac{f_s}{N} = \frac{10000}{1024} = 9.776 \text{ Hz}$$

b. The highest frequency is the folding frequency, given by

$$f_{\max} = \frac{N}{2}\Delta f = \frac{f_s}{2}$$

$$= 512 \cdot 9.776 = 5000 \text{ Hz}$$

Zero Padding for FFT

FFT: Fast Fourier Transform.

A fast version of DFT; It requires signal length to be power of 2 (N = 2, 4, 8, 16, ...).

Therefore, we need to pad zero at the end of the signal.

$$\overline{x}(n) = \begin{cases} x(n) & 0 \le n \le N-1 \\ 0 & N \le n \le \overline{N}-1 \end{cases}$$

However, it does not add any new information.

The frequency spacing is reduced due to more DFT points

Consider a digital signal has sampling rate = 10 kHz. For amplitude spectrum we need frequency resolution of less than 0.5 Hz. For FFT how many data points are needed?

Solution:

$$\Delta f = 0.5$$
 Hz $N = \frac{f_s}{\Delta f} = \frac{10,000}{0.5} = 20,000$

For FFT, we need N to be power of 2.

 $2^{14} = 16384 < 20000$ And $2^{15} = 32768 > 20000$

Recalculated frequency resolution,

$$\Delta f = \frac{f_s}{N} = \frac{10000}{32768} = 0.31 \,\mathrm{Hz}.$$

MATLAB Example -1

Consider the sinusoid with a sampling rate of $f_s = 8,000 \text{ Hz}$. $x(n) = 2 \cdot \sin\left(2,000 \pi \frac{n}{8,000}\right)$

Use the MATLAB DFT to compute the signal spectrum with the frequency resolution to be equal to or less than 8 Hz.

Solution:

```
The number of data points is
```

$$V = \frac{f_s}{\Delta f} = \frac{8,000}{8} = 1,000$$

% Generate the sine wave sequence fs=8000;

```
N=1000;
x=2*sin(2000*pi*[0:1:N-1]/fs);
```

% Sampling rate % Number of data points

 $2\pi \ 1000 \ nT_s \to f = 1Khz$

```
xf=abs(fft(x))/N; %Compute the amplitude spectrum
```

```
P = xf.*xf; %Compute the power spectrum
```

f = [0:1:N-1]*fs/N; %Map the frequency bin to the frequency (Hz)

MATLAB Example -contd. (1)

subplot(2,1,1); plot(f,xf);grid

xlabel('Frequency (Hz)'); ylabel('Amplitude spectrum (DFT)');

subplot(2,1,2);plot(f,P);grid

xlabel('Frequency (Hz)'); ylabel('Power spectrum (DFT)');

MATLAB Example -contd. (2)

% Convert it to one-sided spectrum

xf(2:N) = 2*xf(2:N); % Get the single-sided spectrum

P = xf.*xf; % Calculate the power spectrum

f = [0:1:N/2]*fs/N % Frequencies up to the folding frequency

subplot(2,1,1); plot(f,xf(1:N/2+1));grid

xlabel('Frequency (Hz)'); ylabel('Amplitude spectrum (DFT)'); subplot(2,1,2);plot(f,P(1:N/2+1));grid

xlabel('Frequency (Hz)'); ylabel('Power spectrum (DFT)');

Effect of Window Size

When applying DFT, we assume the following:

- 1. Sampled data are periodic to themselves (repeat).
- 2. Sampled data are continuous to themselves and band limited to the folding frequency.

Effect of Window Size -contd. (1)

If the window size is not multiple of waveform cycles, the discontinuity produces undesired harmonic frequencies:

Effect of Window Size -contd. (2)

Signal samples and spectra without spectra leakage and with spectral leakage.

Reducing Leakage Using Window

To reduce the effect of spectral leakage, a window function w(n) can be used whose amplitude tapers smoothly and gradually toward zero at both ends

Window function, w(n)Data sequence, x(n)Obtained windowed sequence, $x_w(n)$

Example 8

Given,

x(2) = 1 and w(2) = 0.2265; x(5) = -0.7071 and w(5) = 0.7008, **Calculate**, windowed sequence data $x_w(2)$ and $x_w(5)$

Applying the window function operation leads to

 $x_w(2) = x(2) \times w(2) = 1 \times 0.2265 = 0.2265$ and $x_w(5) = x(5) \times w(5) = -0.7071 \times 0.7008 = -0.4956$

Using the window function the spectral leakage is greatly reduced.

Different Types of Windows

Rectangular Window (no window): $w_R(n) = 1$ $0 \le n \le N - 1$

Triangular Window:

$$w_{tri}(n) = 1 - \frac{|2n - N + 1|}{N - 1}, \ 0 \le n \le N - 1$$

Hamming Window:

$$w_{hm}(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), \ 0 \le n \le N-1$$

Hanning Window:

$$w_{hn}(n) = 0.5 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right), \ 0 \le n \le N-1$$

Example 9

Considering the sequence x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4 and given $f_s = 100$ Hz, T = 0.01 seconds, compute the amplitude spectrum, phase spectrum, and power spectrum using the *Hamming window function*.

Solution:

Since N = 4, Hamming window function can be found as:

$$w_{hm}(0) = 0.54 - 0.46 \cos\left(\frac{2\pi \times 0}{4-1}\right) = 0.08$$

$$w_{hm}(1) = 0.54 - 0.46 \cos\left(\frac{2\pi \times 1}{4-1}\right) = 0.77.$$

Similarly, $w_{hm}(2) = 0.77$, $w_{hm}(3) = 0.08$.

Example 9 -contd. (1)

• The windowed sequence is computed as:

$$\begin{aligned} x_w(0) &= x(0) \times w_{hm}(0) = 1 \times 0.08 = 0.08 \\ x_w(1) &= x(1) \times w_{hm}(1) = 2 \times 0.77 = 1.54 \\ x_w(2) &= x(2) \times w_{hm}(2) = 3 \times 0.77 = 2.31 \\ x_w(0) &= x(3) \times w_{hm}(3) = 4 \times 0.08 = 0.32 \end{aligned}$$

• DFT Sequence:

$$X(k) = x(0) W_N^{k0} + x(1) W_N^{k1} + x(2) W_N^{k2} + \dots + x(N-1) W_N^{k(N-1)}$$
$$X(k) = x_W(0) W_4^{k \times 0} + x_W(1) W_4^{k \times 1} + x_W(2) W_4^{k \times 2} + x_W(3) W_4^{k \times 3}$$

We obtain:

$$\begin{cases} X(0) = 4.25 \\ X(1) = -2.23 - j1.22 \\ X(2) = 0.53 \\ X(3) = -2.23 + j1.22 \end{cases} \Delta f = \frac{1}{NT} = \frac{1}{4 \cdot 0.01} = 25 \text{ Hz}$$

Example 9 -contd. (2)

Amplitude spectrum	Power spectrum	Phase spectrum	
$A_0 = \frac{1}{4} X(0) = 1.0625,$ $A_1 = \frac{1}{4} X(1) = 0.6355,$ $A_2 = \frac{1}{4} X(2) = 0.1325,$	$P_{0} = \frac{1}{4^{2}} X(0) ^{2} = 1.1289$ $P_{1} = \frac{1}{4^{2}} X(1) ^{2} = 0.4308$ $P_{2} = \frac{1}{4^{2}} X(2) ^{2} = 0.0176$	$\begin{split} \phi_0 &= \tan^{-1} \left(\frac{0}{4.25} \right) = 0^0, \\ \phi_1 &= \tan^{-1} \left(\frac{-1.22}{-2.23} \right) = -151.32^0, \\ \phi_2 &= \tan^{-1} \left(\frac{0}{0.53} \right) = 0^0, \end{split}$	
$A_3 = \frac{1}{4} X(3) = 0.6355,$	$P_3 = \frac{1}{4^2} X(3) ^2 = 0.4308$	$\phi_3 = \tan^{-1}\left(\frac{1.22}{-2.23}\right) = 151.32^0,$	

MATLAB Example -2

Given the sinusoid obtained using a sampling rate of $f_s = 8,000 Hz$

$$x(n) = 2 \cdot \sin\left(2,000\pi \frac{n}{8,000}\right)$$

Use the DFT to compute the spectrum of a Hamming window function with window size = 100.

Solution:

```
% Generate the sine wave sequence
```

```
fs = 8000; T = 1/fs;
```

```
% Sampling rate and sampling period
```

```
% Generate the sine wave sequence
```

x = 2* sin (2000*pi*[0:1:100]*T);

```
% Apply the FFT algorithm
N=length(x);
```

```
index_t = [0:1:N-1];
```

```
f = [0:1:N-1]*fs/N;
```

xf = abs(fft(x))/N;

%Using the Hamming window x_hm = x.*hamming(N)'; xf_hm=abs(fft(x_hm))/N;

%Apply the Hamming window function
%Calculate the amplitude spectrum

MATLAB Example -2 contd.

subplot (2,2,1);plot(index_t,x);grid xlabel ('Time index n'); ylabel ('x(n)'); subplot (2,2,3); plot(index_t,x_hm);grid xlabel ('Time index n'); ylabel ('Hamming windowed x(n)'); subplot (2,2,2);plot(f,xf);grid;axis([0 fs 0 1]); xlabel ('Frequency (Hz)'); ylabel ('Ak (no window)'); subplot (2,2,4); plot(f,xf_hm);grid;axis([0 fs 0 1]); xlabel ('Frequency (Hz)'); ylabel ('Hamming windowed Ak');

DFT Matrix

• The N equations for the DFT coefficients can be expressed in matrix form as: Let, $w_N = e^{-2j\pi/N}$ then,

Compact form : $X_N = W_N \cdot x_N$

DFT Equation:
$$X(k) = \sum_{m=0}^{N-1} x(m) w_N^{mk}$$
 $k = 0, ..., N-1$

DFT requires N^2 complex multiplications

DFT Matrix Example

Determine the DFT coefficients of the four point segment x[0] = 0, x[1] = 1, x[2] = 2, x[3] = 3 of a sequence x[n]Solution

We first compute the entries of the matrix W_4 using the property $W_N^{k+N} = W_N^k = e^{-j\frac{2\pi}{N}k} = cos\left(\frac{2\pi}{N}k\right) - jsin\left(\frac{2\pi}{N}k\right)$

$$W_{4} = \begin{bmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\ 1 & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\ 1 & W_{4}^{3} & W_{4}^{2} & W_{4}^{1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$

The DFT coefficients are evaluated by the matrix-by-vector multiplication

The result is a complex

matrix given by

$$\begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ -2+j2 \\ -2 \\ -2-j2 \end{bmatrix}$$

x = [0 1 2 3]'; W = dftmtx(4); X = W*x;

FFT

FFT: Fast Fourier Transform

A very efficient algorithm to compute DFT; it requires less multiplication.

- The length of input signal, x(n) must be 2^m samples, where m is an integer. Samples N= 2, 4, 8, 16 or so.
- If the input length is not 2^m , append (pad) zeros to make it 2^m .

DFT to FFT: Decimation in Frequency
DFT:
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$$
 for $k = 0, 1, ..., N-1$, $w_N = e^{-j2\pi/N}$ twiddle factor
 $X(k) = x(0) + x(1) W_N^k + ... + x(N-1) W_N^{k(N-1)}$ split Equation
 $X(k) = x(0) + x(1) W_N^k + ... + x\left(\frac{N}{2} - 1\right) W_N^{k(N/2-1)} + x\left(\frac{N}{2}\right) W^{kN/2} + ... + x(N-1) W_N^{k(N-1)}$
 $X(k) = \sum_{n=0}^{(N/2)-1} x(n) W_N^{kn} + \sum_{n=N/2}^{N-1} x(n) W_N^{kn}$ $W_N^{(n+\frac{N}{2})k} = W_N^{nk} W_N^{(\frac{N}{2})k}$
 $X(k) = \sum_{n=0}^{(N/2)-1} x(n) W_N^{kn} + W_N^{(N/2)k} \sum_{n=0}^{N/2-1} x\left(n + \frac{N}{2}\right) W_N^{kn}$ $W_N^{n/2} = e^{-j\frac{\pi N}{2}jk} = W_N^{nk} e^{-j\pi k}$
 $X(k) = \sum_{n=0}^{(N/2)-1} x(n) W_N^{kn} + W_N^{(N/2)k} \sum_{n=0}^{N/2-1} x\left(n + \frac{N}{2}\right) W_N^{kn}$ $W_N^{n/2} = e^{-j\frac{\pi N}{2}jk} = W_N^{nk} e^{-j\pi k}$
 $W_N^{N/2} = e^{-j\frac{\pi N}{2}jk} = e^{-j\pi} = -1$

CEN352, DR. Nassim Ammour, King Saud University

Now decompose into even (k = 2m) and odd (k = 2m+1) sequences.

$$X(2m) = \sum_{n=0}^{(N/2)-1} \left(x(n) + x\left(n + \frac{N}{2}\right)\right) W_N^{2mn} \qquad X(2m+1) = \sum_{n=0}^{(N/2)-1} \left(x(n) - x\left(n + \frac{N}{2}\right)\right) W_N^{n} W_N^{2mn}$$

$$W_N^2 = e^{-\frac{j 2\pi \cdot 2}{N}} = e^{-\frac{j 2\pi \cdot 2}{(N/2)}} = W_{N/2},$$

$$X(2m) = \sum_{n=0}^{(N/2)-1} a(n) W_{N/2}^{mn} = DFT\{a(n) with(N/2) \text{ points}\}$$

$$X(2m+1) = \sum_{n=0}^{(N/2)-1} b(n) W_N^n W_{N/2}^{mn} = DFT\{b(n) W_N^n with (N/2) \text{ points}\}$$
With:

$$a(n) = x(n) + x\left(n + \frac{N}{2}\right), \text{ for } n = 0, 1 \cdots, \frac{N}{2} - 1$$

$$b(n) = x(n) - x\left(n + \frac{N}{2}\right), \text{ for } n = 0, 1, \cdots, \frac{N}{2} - 1$$

The computation process is

51

The splitting process continues to the end (until having 2 input points to the DFT block, in this case third iteration).

Third iteration

12 complex multiplication

The index (bin number) of the eight-point DFT coefficient becomes inverted, and can be fixed by applying reversal bits.

Binary	index	1st split	2nd split	3rd split	Bit reversal	
000	0	0	0	0	000	
001	1	2	4	4	100	
010	2	4	2	2	010	
011	3	6	6	6	110	
100	4	1	1	1	001	
101	5	3	5	5	101	
110	6	5	3	3	011	
111	7	7	7	7	111	

For data length of N, the number of complex multiplications: Complex multiplications of DFT = N^2 , $\int_{N \text{ multiplications}}^{\text{For each k (N) we need}} N$ Complex multiplications of FFT = $\frac{N}{2}\log_2(N)$

For 1024 samples data sequence, DFT requires 1024×1024 = 1048576 complex multiplications. FFT requires (1024/2)log(1024) = 5120 complex multiplications.

IFFT: Inverse FFT

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn} = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \tilde{W}_N^{kn}, \quad \text{for } k = 0, 1, \dots, N-1$$

The difference is: the twiddle factor w_N is changed to $\tilde{w}_N = w_N^{-1}$, and the sum is multiplied by a factor of 1/N.

CEN352, DR. Nassim Ammour, King Saud University

FFT and IFFT Examples

FFT

IFFT

CEN352, DR. Nassim Ammour, King Saud University

x(n)

Split the input sequence x(n) into the even indexed x(2m) and x(2m + 1) each with N/2 data points.

$$X(k) = \sum_{m=0}^{(N/2)-1} x(2m) W_N^{2mk} + \sum_{m=0}^{(N/2)-1} x(2m+1) W_N^k W_N^{2mk}, \text{ for } k = 0, 1, \dots, N-1$$

Using
$$w_N^2 = (e^{-j2\pi/N})^2 = e^{-j2\pi/(N/2)} = w_{N/2}$$

$$X(k) = \sum_{m=0}^{(N/2)-1} x(2m) W_{N/2}^{mk} + W_N^k \sum_{m=0}^{(N/2)-1} x(2m+1) W_{N/2}^{mk}, \text{ for } k = 0, 1, \dots, N-1$$

 $G(k) = \sum_{m=0}^{(N/2)-1} x(2m) W_{N/2}^{mk} = DFT\{x(2m) \text{ with } (N/2) \text{ points}\}$

Define new functions as

$$H(k) = \sum_{m=0}^{(N/2)-1} x(2m+1)W_{N/2}^{mk} = DFT\{x(2m+1) \text{ with } (N/2) \text{ points}\}$$
As,

$$G(k) = G\left(k + \frac{N}{2}\right), \text{ for } k = 0, 1, \dots, \frac{N}{2} - 1$$

$$H(k) = H\left(k + \frac{N}{2}\right), \text{ for } k = 0, 1, \dots, \frac{N}{2} - 1$$

$$X(k) = \sum_{m=0}^{(N/2)-1} x(2m)W_{N/2}^{mk} + W_N^k \sum_{m=0}^{(N/2)-1} x(2m+1)W_{N/2}^{mk}, \text{ for } k = 0, 1, \dots, N - 1$$

$$X(k) = G(k) + W_N^k H(k), \text{ for } k = 0, 1, \dots, \frac{N}{2} - 1$$

$$W_N^{k+\frac{N}{2}} = e^{-j\frac{2\pi}{(2)}(k+\frac{N}{2})} = e^{-j\frac{2$$

First iteration:

Second iteration:

CEN352, DR. Nassim Ammour, King Saud University

Third iteration:

IFFT: Decimation in Time

Similar to the decimation-in-frequency method, we change W_N to \widetilde{W}_N , and the sum is multiplied by a factor of 1/N.

inverse FFT (IFFT) block diagram for the eight-point inverse FFT

FFT and IFFT Examples

Fourier Transform Properties (1)

Fourier Transform Properties (2)

Fourier Transform Pairs

Sample rumber

Frequency

65

Frequency