Chapter 4

Discrete Fourier Transform (DFT) And Signal Spectrum

Fourier Transform History

- Born 21 March 1768 (Auxerre).
- Died 16 May 1830 (Paris)
- French mathematician and physicist.
- Best known for initiating the investigation of Fourier series.
- Fourier series applications to problems of heat transfer and vibrations.
- The Fourier series is used to represent a periodic function by a discrete sum of complex exponentials.
- Fourier transform is then used to represent a general, non-periodic function by a continuous superposition or integral of complex exponentials (the period approaches to infinity).

Jean-Baptiste Joseph Fourier

Discrete Fourier Transform

- In this chapter we introduce the concept of Fourier or frequency-domain representation of signals.
- Discrete Fourier Transform (DFT) transforms (break up the signal into summations of sinusoidal components) the time domain signal samples to the frequency domain components (frequency analysis).

In the time domain, representation of digital signals describes the signal amplitude versus the sample number (time).

The representation of the digital signal in terms of its frequency component in a frequency domain, displays the frequency information of a digital signal (signal spectrum).

- Fourier analysis is like a glass prism, which splits a beam of light into frequency components corresponding to different colors.

Continuous-time sinusoids

- A continuous-time sinusoidal signal may be represented as a function of time t by the equation

$$
\begin{aligned}
& \quad \text { Amplitude } \underbrace{\text { phase in radians }}_{\text {frequency }} \\
& x(t)=A \cos \left(2 \pi F_{0} t+\theta\right), \quad-\infty<t<\infty
\end{aligned}
$$

- The angular or radian frequency (radians per second.) $\Omega_{0}=2 \pi F_{0}$
- A discrete-time sinusoidal signal is conveniently obtained by sampling the continuous-time sinusoid at equally spaced points $t=n T$

$$
\left.\begin{array}{rl}
x[n] & =x(n T)=A \cos \left(2 \pi F_{0} n T+\theta\right)=A \cos \left(2 \pi \frac{F_{0}}{F_{\mathrm{s}}} n+\theta\right) \\
& =A \cos \left(\omega_{0} n+\theta\right), \quad-\infty<n<\infty
\end{array}\right)\left\{\begin{array}{l}
f \triangleq \frac{F}{F}=F T, \quad \begin{array}{l}
\text { normalized } \\
\\
\omega \triangleq 2 \pi f=2 \pi \frac{F}{F_{\mathrm{s}}}=\Omega T, \\
\quad
\end{array} \quad \text { normalized angular }
\end{array}\right.
$$

- Using Euler's identity $\mathrm{e}^{ \pm i \phi}=\cos \phi \pm \mathrm{j} \sin \phi$, we can express every sinusoidal signal in terms of two complex exponentials with the same frequency

$$
A \cos \left(\Omega_{0} t+\theta\right)=\frac{A}{2} \mathrm{e}^{\mathrm{j} \theta} \mathrm{e}^{\mathrm{j} \Omega_{0} t}+\frac{A}{2} \mathrm{e}^{-\mathrm{j} \theta} \mathrm{e}^{-\mathrm{j} \Omega_{0} t} .
$$

- Frequency (positive quantity.), viewed as the number of cycles completed per unit of time.

- Negative frequencies is a convenient way to describe

DFT: Graphical Example

Time domain

Time domain representation

$\underbrace{\text { DFI }}$
Frequency domain representation

$1000-\mathrm{Hz}$ sinusoid with 32 samples at a sampling rate of 8000 Hz in

Sampling Rate
8000 samples $=1$ second
-> sampling period $T_{S}=\frac{1}{8000}=125 \mu \mathrm{~s}$
Duration of 32 samples $=32 * 0.125 \mathrm{~ms}=4 \mathrm{~ms}$

Signal Frequency

$1000-\mathrm{Hz}$ sinusoid $->T=1 \mathrm{~ms}$
32 samples $=4 \mathrm{~ms}$-> 4 cycles.

DFT Coefficients of Periodic Signals

- Given a set of N harmonically related complex exponentials $e^{j \frac{j \pi}{N} k n}$, We can synthesize a signal $x[n]$
$x[n]=\sum_{k=0}^{N-1} c_{k} \mathrm{e}^{\frac{2 \pi}{N} k n}$.
$x[n]$ is sampled at a rate of $f_{S} H z\left(\right.$ period $\left.T_{0}=N T=N \frac{1}{f_{s}}\right)$

Equation of DFT coefficients:

We determine the coefficients c_{k} from the values of the periodic signal $x[n]$ Sum over one period
$c_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] \mathrm{e}^{-\mathrm{j} \frac{2 \pi}{N} k n}$. $k=0, \pm 1, \pm 2, \cdots, \stackrel{\substack{\text { Discrete-Time } \\ \text { Fourier Series }}}{\text { DTFS }}$

Fourler Synthesls Equation

$$
x[n]=\sum_{k=0}^{N-1} c_{k} \mathrm{e}^{\mathrm{j} \frac{2 \pi}{N} k n}
$$

Fourier Series

Periodic Digital Signal $x[n]$
Fourler Analysls Equation
$\stackrel{\text { DTFS }}{\longleftrightarrow} c_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] \mathrm{e}^{-\mathrm{j} \frac{2 \pi}{N} k n}$

We have: $\quad e^{j \theta}=\cos (\theta)+j \sin (\theta)$ and $e^{j(\theta+2 \pi)}=e^{j \theta}$ period of 2π For $\theta(t)=\omega t \rightarrow e^{j \omega t}=\cos (\omega t)+j \sin (\omega t) \quad$ Rotation of a point on a circle

DFT Coefficients of Periodic Signals

- Fourier series coefficient C_{k} is periodic of N

Remarks

$$
c_{k+N}=\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi(k+N) n}{N}}=\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi k n}{N}} e^{-j 2 \pi n}
$$

Since $e^{-j 2 \pi n}=\cos (2 \pi n)-j \sin (2 \pi n)=1$

$$
C_{K+N}=C_{K}
$$

1. spectral portion between the frequency - f_{s} and f_{s} (folding frequency) represents frequency information of the periodic signal.
2. For the $\mathrm{k}^{\text {th }}$ harmonic, the frequency is $f=\mathrm{k} f_{0} \mathrm{~Hz}\left(f_{0}\right.$ is the frequency resolution $=$ The frequency spacing between the consecutive spectral lines)
3. the spectral portion from $\frac{f_{s}}{2}$ to f_{s} is a copy of the spectrum in the negative frequency range from $-f_{s} / 2$ to 0 Hz due to the spectrum being periodic for every $f_{s}=\mathrm{N} f_{0} \mathrm{~Hz}$.

Amplitude spectrum of the periodic digital signal

Example 1

The periodic signal $x(t)$ is sampled at $f_{s}=4 H z \quad x(t)=\sin (2 \pi t)$
a. Compute the spectrum C_{k} using the samples in one period.
b. Plot the two-sided amplitude spectrum $\left|C_{k}\right|$ over the range from -2 to 2 Hz .

Solution:

a. We match $x(t)=\sin (2 \pi t)$ with $x(t)=\sin (2 \pi f t)$ and get $f=1 H z$

Therefore the signal has 1 cycle or 1 period in 1 second Sampling rate $f_{s}=4 \mathrm{~Hz} \square 1$ second has 4 samples.
Hence, there are 4 samples in 1 period for this particular signal.

$$
T=\frac{1}{f_{s}}=0.25 \mathrm{sec} \quad \text { Sampled signal } \Longrightarrow x(n)=x(n T)=\sin (2 \pi n T)=\sin (0.5 \pi n) .
$$

Example 1 -contd. (1)

$$
v(n)-(n) \quad x(n)
$$

$$
x(n)=x(n T)=\sin (2 \pi n T)=\sin (0.5 \pi n)
$$

$$
\begin{array}{ll}
x(0)=0 ; & x(1)=1 \\
x(2)=0 ; & x(3)=-1
\end{array}
$$

b. spectrum

$$
c_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi n n}{N}}, \quad k=0,1, \cdots, N-1
$$

$$
c_{0}=\frac{1}{4} \sum_{n=0}^{3} x(n)=\frac{1}{4}(x(0)+x(1)+x(2)+x(3))=\frac{1}{4}(0+1+0-1)=0
$$

$$
\begin{aligned}
c_{1} & =\frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j 2 \pi \times 1 n / 4}=\frac{1}{4}\left(x(0)+x(1) e^{-j \pi / 2}+x(2) e^{-j \pi}+x(3) e^{-j 3 \pi / 2}\right) \\
& =\frac{1}{4}(x(0)-j x(1)-x(2)+j x(3)=0-j(1)-0+j(-1))=-j 0.5
\end{aligned}
$$

Example 1 -contd. (2)

$$
c_{2}=\frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j 2 \pi \times 2 n / 4}=0, \text { and } c_{3}=\frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j 2 \pi \times 3 n / 4}=j 0.5
$$

Using periodicity, it follows that

$$
c_{-1}=c_{3}=j 0.5, \text { and } c_{-2}=c_{2}=0
$$

The amplitude spectrum for the digital signal

Discrete Fourier Transform DFT Formulas

DFT Formulas

Given N data samples of $x[n]$, the N-point discrete Fourier transform $(D F T) X(k)$ is defined by:

$$
X(k)=N c_{k}=\sum_{n=0}^{N-1} x(n) e^{-\frac{2 \pi k n}{N}}, \quad k=0,1, \cdots, N-1
$$

$$
=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad \text { for } k=0,1, \cdots, N-1
$$

- k is the discrete frequency index (frequency bin number) indicating each calculated DFT coefficient.

$$
X(k)=x(0) W_{N}^{k 0}+x(1) W_{N}^{k 1}+x(2) W_{N}^{k 2}+\cdots+x(N-1) W_{N}^{k(N-1)}, \text { for } k=0,1, \cdots, N-1
$$

Where the factor W_{N} is called the twiddle factor $W_{N}=e^{-j 2 \pi / N}=\cos \left(\frac{2 \pi}{N}\right)-j \sin \left(\frac{2 \pi}{N}\right)$

Inverse DFT

Given N DFT coefficients $X[k]$, The inverse of the DFT $x[n]$ is given by

$$
\begin{aligned}
x(n) & =\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi k n / N} \quad \text { Inverse DFT (IDFT) } \\
& =\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}, \quad \text { for } n=0,1, \cdots, N-1
\end{aligned}
$$

$$
\begin{aligned}
x(n) & =\frac{1}{N}\left(X(0) W_{N}^{-0 n}+X(1) W_{N}^{-1 n}+X(2) W_{N}^{-2 n}+\cdots+X(N-1) W_{N}^{-(N-1) n}\right), \\
\text { for } n & =0,1, \cdots, N-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Analysis equation } \quad \text { Synthesis equation } \\
& X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \underset{N}{\stackrel{\mathrm{DFT}}{\longrightarrow}} x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n}
\end{aligned}
$$

$x_{N}=\frac{1}{N} W_{N}^{H} X_{N}=\frac{1}{N} W_{N}^{*} X_{N} . \quad(\mathrm{IDFT})$
W_{N}^{H} is the conjugate transpose of W_{N}

MATLAB Functions

We can use MATLAB functions $f f t()$ and ifft() to compute the DFT coefficients and the inverse DFT with the syntax listed in Table:

FFT: Fast Fourier Transform

MATLAB FFT functions.

$\begin{array}{ll}\mathrm{X}=\mathrm{fft}(\mathrm{x}) & \text { \% Calculate DFT coefficients } \\ \mathrm{x}=\mathrm{ifft}(\mathrm{X}) & \text { \% Inverse DFT } \\ \mathrm{x}=\text { input vector } & \\ \mathrm{X}=\mathrm{DFT} \text { coefficient vector } & \end{array}$

Example 2

Given a sequence $x(n)$ for $0 \leq n \leq 3$ where $x(0)=1, x(1)=2, x(2)=3$, and $x(3)=4$. evaluate DFT $X(k)$.

Solution:

Since $\mathrm{N}=4$ and $W_{4}=e^{-j \frac{\pi}{2}} \square X(k)=\sum_{n=0}^{3} x(n) W_{4}^{k n}=\sum_{n=0}^{3} x(n) e^{-j \frac{\pi k n}{2}}$
Thus, for $k=0$

$$
\text { , for } k=0 \quad \begin{aligned}
X(0) & =\sum_{n=0}^{3} x(n) e^{-j 0}=x(0) e^{-j 0}+x(1) e^{-j 0}+x(2) e^{-j 0}+x(3) e^{-j 0} \\
& =x(0)+x(1)+x(2)+x(3) \\
\text { for } k=1 \quad X(1) & =\sum_{n=0}^{3} x(n) e^{-j \frac{\pi n}{2}}=x(0) e^{-j 0}+x(1) e^{-j \frac{\pi}{2}}+x(2) e^{-j \pi}+x(3) e^{-j \frac{3 \pi}{2}} \\
& =x(0)-j x(1)-x(2)+j x(3) \\
& =1-j 2-3+j 4=-2+j 2
\end{aligned}
$$

Example 2 -contd.

$$
\text { for } \begin{aligned}
k=2 \quad X(2) & =\sum_{n=0}^{3} x(n) e^{-j \pi n}=x(0) e^{-j 0}+x(1) e^{-j \pi}+x(2) e^{-j 2 \pi}+x(3) e^{-j 3 \pi} \\
& =x(0)-x(1)+x(2)-x(3) \\
& =1-2+3-4=-2
\end{aligned}
$$

$$
\text { and for } k=3 \quad \begin{aligned}
X(3) & =\sum_{n=0}^{3} x(n) e^{-j \frac{3 \pi n}{2}}=x(0) e^{-j 0}+x(1) e^{-j \frac{\beta \pi}{2}}+x(2) e^{-j 3 \pi}+x(3) e^{-j \frac{9 \pi}{2}} \\
& =x(0)+j x(1)-x(2)-j x(3) \\
& =1+j 2-3-j 4=-2-j 2
\end{aligned}
$$

Using MATLAB,

$$
\left.\left.\begin{array}{rl}
\gg \mathrm{X} & =\mathrm{fft}\left(\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right.
\end{array}\right]\right) \mathrm{X}=10.0000 \quad-2.0000+2.0000 \mathrm{i} \quad-2.0000 \quad-2.0000-2.0000 \mathrm{i}
$$

Example 2 -contd.

Using the DFT complex matrix

We first compute the entries of the matrix W_{4} using the property: $\quad W_{N}^{k+N}=W_{N}^{k}=\mathrm{e}^{-\mathrm{j} \frac{2 \pi}{N} k}=\cos \left(\frac{2 \pi}{N} k\right)-\mathrm{j} \sin \left(\frac{2 \pi}{N} k\right)$.

The result is a complex matrix given by:

$$
W_{4}=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
1 & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
1 & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\mathrm{j} & -1 & \mathrm{j} \\
1 & -1 & 1 & -1 \\
1 & \mathrm{j} & -1 & -\mathrm{j}
\end{array}\right] .
$$

The DFT coefficients are evaluated by the matrix-by-vector multiplication

$$
\left[\begin{array}{l}
X[0] \\
X[1] \\
X[2] \\
X[3]
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\mathrm{j} & -1 & \mathrm{j} \\
1 & -1 & 1 & -1 \\
1 & \mathrm{j} & -1 & -\mathrm{j}
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
10 \\
-2+2 j \\
-2 \\
-2-2 j
\end{array}\right]
$$

In Matlab these computations are done using the commands:
The DFT

$$
\mathrm{X}=\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right]^{\prime} ; \mathrm{W}=\mathrm{dftmtx}(4) ; \mathrm{X}=\mathrm{W} * \mathrm{x} ;
$$

The inverse DFT $\mathrm{x}=\mathrm{inv}(\mathrm{W}) * \mathrm{X}$

Example 3

Using DFT coefficients $X(k)$ for $0 \leq n \leq 3$ of previous example, evaluate the inverse DFT (IDFT) to determine the time domain sequence $x(n)$.

$$
\begin{aligned}
& \text { Solution: } \\
& \qquad N=4 \text { and } W_{4}^{-1}=e^{j \frac{\pi}{2}} \Rightarrow x(n)=\frac{1}{4} \sum^{3} X(k) W_{4}^{-n k}=\frac{1}{4} \sum^{3} X(k) e^{\frac{\pi k n}{2}} .
\end{aligned}
$$

$$
\text { for } \begin{aligned}
n=0 \quad x(0) & =\frac{1}{4} \sum_{k=0}^{3} X(k) e^{j 0}=\frac{1}{4}\left(X(0) e^{j 0}+X(1) e^{j 0}+X(2) e^{j 0}+X(3) e^{j 0}\right) \\
& =\frac{1}{4}(10+(-2+j 2)-2+(-2-j 2))=1
\end{aligned}
$$

$$
\text { for } n=1 \quad x(1)=\frac{1}{4} \sum_{k=0}^{3} X(k) e^{j \frac{j \pi}{2}}=\frac{1}{4}\left(X(0) e^{j 0}+X(1) e^{j \frac{\pi}{2}}+X(2) e^{j \pi}+X(3) e^{j \frac{3 \pi}{2}}\right)
$$

$$
=\frac{1}{4}(X(0)+j X(1)-X(2)-j X(3))
$$

$$
=\frac{1}{4}(10+j(-2+j 2)-(-2)-j(-2-j 2))=2
$$

Example 3 -contd.

$$
\text { for } \begin{aligned}
n=2 \quad x(2) & =\frac{1}{4} \sum_{k=0}^{3} X(k) e^{j k \pi}=\frac{1}{4}\left(X(0) e^{j 0}+X(1) e^{j \pi}+X(2) e^{j 2 \pi}+X(3) e^{j 3 \pi}\right) \\
& =\frac{1}{4}(X(0)-X(1)+X(2)-X(3)) \\
& =\frac{1}{4}(10-(-2+j 2)+(-2)-(-2-j 2))=3
\end{aligned}
$$

and for $n=3 \quad x(3)=\frac{1}{4} \sum_{k=0}^{3} X(k) e^{j \frac{k \pi}{2}}=\frac{1}{4}\left(X(0) e^{j 0}+X(1) e^{j \frac{\beta \pi}{2}}+X(2) e^{j 3 \pi}+X(3) e^{j \frac{j \pi}{2}}\right)$

$$
\begin{aligned}
& =\frac{1}{4}(X(0)-j X(1)-X(2)+j X(3)) \\
& =\frac{1}{4}(10-j(-2+j 2)-(-2)+j(-2-j 2))=4
\end{aligned}
$$

Using MATLAB,

$$
\begin{aligned}
& \gg \mathrm{x}=\mathrm{ifft}([10-2+2 j-2 \quad-2-2 j]) \\
& \mathrm{x}=1 \quad 2 \quad 3 \quad 4 .
\end{aligned}
$$

Frequency of bin k

- The calculated \boldsymbol{N} DFT coefficients $\boldsymbol{X}(\mathbf{k})$ represent the frequency components ranging from 0 Hz to $f_{s} \mathrm{~Hz}$.
- The relationship between the frequency bin \boldsymbol{k} and its associated frequency is computed using:

$$
f=k \frac{f_{s}}{N}=k \Delta f(H z)
$$

- The frequency resolution (frequency step between two consecutive DFT coefficients)

$$
\Delta f=\frac{f_{s}}{N}(\mathrm{~Hz})
$$

Example 4

In the previous example, if the sampling rate is 10 Hz ,
a. Determine the sampling period, time index, and sampling time instant for a digital sample $x(3)$ in the time domain;
b. Determine the frequency resolution, frequency bin, and mapped frequencies for the DFT coefficients $X(1)$ and $X(3)$ in the frequency domain.

Solution:

a. Sampling period: $\quad T=1 / f_{s}=1 / 10=0.1$ second

For $\mathrm{x}(3)$, the time index is $\mathrm{n}=3$ and the samoling time instant is determined by

$$
t=n T=3 \cdot 0.1=0.3 \text { second }
$$

b. Frequency resolution: $\Delta f=\frac{f_{s}}{N}=\frac{10}{4}=2.5 \mathrm{~Hz}$.

Frequency bin number for $X(1)$ is $k=1$, and its corresponding frequency is

$$
f=\frac{k f_{s}}{N}=\frac{1 \times 10}{4}=2.5 \mathrm{~Hz} .
$$

Similarly, for $X(3)$ is $k=3$, and its corresponding frequency is

$$
f=\frac{k f_{s}}{N}=\frac{3 \times 10}{4}=7.5 \mathrm{~Hz} .
$$

Amplitude and Power Spectrum

- Since each calculated DFT coefficient is a complex number, it is not convenient to plot it versus its frequency index.
- Hence, after evaluating the N DFT coefficients, the magnitude and phase of each DFT coefficient can be determined and plotted versus its frequency index.

Amplitude Spectrum:

$$
A_{k}=\frac{1}{N}|X(k)|=\frac{1}{N} \sqrt{(\operatorname{Real}[X(k)])^{2}+(\operatorname{Imag}[X(k)])^{2}}, \quad k=0,1,2, \cdots, N-1
$$

To find one-sided amplitude spectrum, we double the amplitude keeping the original DC term at $\mathrm{k}=0$.

$$
\bar{A}_{k}= \begin{cases}\frac{1}{N}|X(0)|, & k=0 \\ \frac{2}{N}|X(k)|, & k=1, \cdots, N / 2\end{cases}
$$

Amplitude and Power Spectrum -contd.

Power Spectrum:

$$
\begin{aligned}
P_{k} & =\frac{1}{N^{2}}|X(k)|^{2}=\frac{1}{N^{2}}\left\{(\operatorname{Real}[X(k)])^{2}+(\operatorname{Imag}[X(k)])^{2}\right\}, \\
k & =0,1,2, \ldots, N-1 .
\end{aligned}
$$

For, one-sided power spectrum: $\quad \bar{P}_{k}= \begin{cases}\frac{1}{N^{2}}|X(0)|^{2} & k=0 \\ \frac{2}{N^{2}}|X(k)|^{2} & k=0,1, \ldots, N / 2\end{cases}$

Phase Spectrum:

$$
\varphi_{k}=\tan ^{-1}\left(\frac{\operatorname{Imag}[X(k)]}{\operatorname{Real}[X(k)]}\right), k=0,1,2, \ldots, N-1 .
$$

Example 5

Consider the sequence in the Figure, assuming that $f_{s}=100 \mathrm{~Hz}$, compute the amplitude spectrum, phase spectrum, and power spectrum.

Solution:

$$
\begin{aligned}
& A_{0}=\frac{1}{4}|X(0)|=2.5, \varphi_{0}=\tan ^{-1}\left(\frac{\operatorname{Imag}[X(0)]}{\operatorname{Real}([X(0)]}\right)=0^{0}, \\
& P_{0}=\frac{1}{4^{2}}|X(0)|^{2}=6.25 . \quad \text { Cens52, Dr. Nassim Ammour, King saud University }
\end{aligned}
$$

Example 5 -contd. (1)

For $k=1, f=1 \times 100 / 4=25 \mathrm{~Hz}$,

$$
\begin{aligned}
& A_{1}=\frac{1}{4}|X(1)|=0.7071, \varphi_{1}=\tan ^{-1}\left(\frac{\operatorname{Imag}[X(1)]}{\operatorname{Real}[X(1)]}\right)=135^{0}, \\
& P_{1}=\frac{1}{4^{2}}|X(1)|^{2}=0.5000 .
\end{aligned}
$$

$$
\begin{aligned}
\text { For } k & =2, f=2 \times 100 / 4=50 \mathrm{~Hz}, \\
A_{2} & =\frac{1}{4}|X(2)|=0.5, \varphi_{2}=\tan ^{-1}\left(\frac{\operatorname{Imag}[X(2)]}{\operatorname{Real}[X(2)]}\right)=180^{0}, \\
P_{2} & =\frac{1}{4^{2}}|X(2)|^{2}=0.2500 .
\end{aligned}
$$

Similarly, for $k=3, f=3 \times 100 / 4=75 \mathrm{~Hz}$,

$$
\begin{aligned}
& A_{3}=\frac{1}{4}|X(3)|=0.7071, \varphi_{3}=\tan ^{-1}\left(\frac{\operatorname{Imag}[X(3)]}{\operatorname{Real}[X(3)]}\right)=-135^{0}, \\
& P_{3}=\frac{1}{4^{2}}|X(3)|^{2}=0.5000 .
\end{aligned}
$$

Amplitude Spectrum

Example 5 -contd. (2)

One sided Amplitude Spectrum

Example 6

Consider a digital sequence sampled at the rate of 10 kHz . If we use 1,024 data points and apply the 1,024-point DFT to compute the spectrum,
a. Determine the frequency resolution;
b. Determine the highest frequency in the spectrum.

Solution:

a. $\Delta f=\frac{f_{s}}{N}=\frac{10000}{1024}=9.776 \mathrm{~Hz}$
b. The highest frequency is the folding frequency, given by

$$
\begin{aligned}
f_{\max } & =\frac{N}{2} \Delta f=\frac{f_{s}}{2} \\
& =512 \cdot 9.776=5000 \mathrm{~Hz}
\end{aligned}
$$

FFT: Fast Fourier Transform.

Zero Padding for FFT

A fast version of DFT; It requires signal length to be power of $2(N=2,4,8,16, \ldots)$.

Therefore, we need to pad zero at the end of the signal.
$\bar{x}(n)=\left\{\begin{array}{cl}x(n) & 0 \leq n \leq N-1 \\ 0 & N \leq n \leq \bar{N}-1\end{array}\right.$
However, it does not add any new information.

The frequency spacing is reduced due to more DFT points

Number of samples

Example 7

Consider a digital signal has sampling rate $=10 \mathrm{kHz}$. For amplitude spectrum we need frequency resolution of less than 0.5 Hz . For FFT how many data points are needed?

Solution:

$$
\Delta f=0.5 \mathrm{~Hz} \quad \square \quad N=\frac{f_{s}}{\Delta f}=\frac{10,000}{0.5}=20,000
$$

For FFT, we need N to be power of 2 .

$$
2^{14}=16384<20000 \quad \text { And } \quad 2^{15}=32768>20000
$$

Recalculated frequency resolution,

$$
\Delta f=\frac{f_{s}}{N}=\frac{10000}{32768 .}=0.31 \mathrm{~Hz}
$$

MATLAB Example -1

Consider the sinusoid with a sampling rate of $f_{s}=8,000 \mathrm{~Hz} . x(n)=2 \cdot \sin \left(2,000 \pi \frac{n}{8,000}\right)$ Use the MATLAB DFT to compute the signal spectrum with the frequency resolution to be equal to or less than 8 Hz .

Solution:

The number of data points is

$$
N=\frac{f_{s}}{\Delta f}=\frac{8,000}{8}=1,000
$$

```
% Generate the sine wave sequence
```

```
fs=8000; % Sampling rate
N=1000; % Number of data points
```

$x=2 * \sin (2000 * p i *[0: 1: N-1] / f s)$;
$x f=\operatorname{abs}(f f t(x)) / N ; \quad$ \%Compute the amplitude spectrum
$\mathrm{P}=\mathrm{xf} \mathrm{F}^{*} \mathrm{xf} ; \quad$ \&Compute the power spectrum
$\mathrm{f}=[0: 1: \mathrm{N}-1]^{*} \mathrm{f} / \mathrm{N} ; \mathrm{N} \quad$ gMap the frequency bin to the frequency (Hz)

MATLAB Example -contd. (1)

subplot ($2,1,1$); plot (f, xf) ; grid
xlabel ('Frequency (Hz)'); ylabel ('Amplitude spectrum (DFT)');
subplot (2, 1, 2) ; plot(f, P); grid
xlabel ('Frequency (Hz)'); ylabel ('Power spectrum (DFT)');

MATLAB Example -contd. (2)

\% Convert it to one-sided spectrum
$x f(2: N)=2 * x f(2: N)$;
\% Get the single-sided spectrum
$\mathrm{P}=\mathrm{xf} \mathrm{F}^{*} \mathrm{xf}$; \% Calculate the power spectrum
$\mathrm{f}=[0: 1: \mathrm{N} / 2] * \mathrm{fs} / \mathrm{N}$ \% Frequencies up to the folding frequency
subplot $(2,1,1)$; plot (f,xf(1:N/2+1)); grid
xlabel ('Frequency (Hz)'); ylabel ('Amplitude spectrum (DFT)'); subplot $(2,1,2)$;plot(f, P(1:N/2+1)); grid
xlabel ('Frequency (Hz)') ; ylabel ('Power spectrum (DFT)');

MATLAB Example -contd. (3)
 Frequency (Hz)
1% Zero padding to the length of 1024 I
$\mathrm{x}=[\mathrm{x}, \operatorname{zeros}(1,24)]$;
$\mathrm{N}=$ length (x);
$\mathrm{xf}=\mathrm{abs}(\mathrm{fft}(\mathrm{x})) / \mathrm{N} ; \quad$ \%Compute the amplitude spectrum with zero padding
$\mathrm{P}=\mathrm{xf} .^{*} \mathrm{xf}$; \quad ©Compute the power spectrum
$\mathrm{f}=[0: 1: \mathrm{N}-1]^{*} \mathrm{fs} / \mathrm{N} ; \quad$ \%Map frequency bin to frequency (Hz)
subplot(2,1,1); plot(f,xf);grid
xlabel ('Frequency (Hz)') ; ylabel ('Amplitude spectrum (FFT)');
subplot $(2,1,2)$;plot (f, P) ; grid
xlabel ('Frequency (Hz)'); ylabel ('Power spectrum (FFT)');

Effect of Window Size

When applying DFT, we assume the following:

1. Sampled data are periodic to themselves (repeat).
2. Sampled data are continuous to themselves and band limited to the folding frequency.

1 Hz sinusoid, with 32 samples

Effect of Window Size -contd. (1)

If the window size is not multiple of waveform cycles, the discontinuity produces undesired harmonic frequencies:

Effect of Window Size -contd. (2)

Signal samples and spectra without spectri leakage and with spectral leakage.

Reducing Leakage Using Window

To reduce the effect of spectral leakage, a window function $w(n)$ can be used whose amplitude tapers smoothly and gradually 千oward zero at both ends--,

Window function, $w(n)$

$$
x_{w}(n)=x(n) w(n), \quad \text { for } n=0,1, \cdots, N-1
$$

Data sequence, $x(n)$
Obtained windowed sequence, $x_{w}(n)$

Example 8

Given,

$$
\begin{aligned}
& x(2)=1 \text { and } w(2)=0.2265 \\
& x(5)=-0.7071 \text { and } w(5)=0.7008
\end{aligned}
$$

Calculate, windowed sequence data

$$
x_{w}(2) \text { and } x_{w}(5)
$$

Applying the window function operation leads to

$x_{w}(2)=x(2) \times w(2)=1 \times 0.2265=0.2265$ and $x_{w}(5)=x(5) \times w(5)=-0.7071 \times 0.7008=-0.4956$

Using the window function the spectral leakage is greatly reduced.

Different Types of Windows

Rectangular Window (no window): $\quad w_{R}(n)=1 \quad 0 \leq n \leq N-1$

Triangular Window: $\quad w_{t r i}(n)=1-\frac{|2 n-N+1|}{N-1}, 0 \leq n \leq N-1$

Hamming Window: $\quad w_{h m}(n)=0.54-0.46 \cos \left(\frac{2 \pi n}{N-1}\right), 0 \leq n \leq N-1$

Hanning Window:

$$
w_{h n}(n)=0.5-0.5 \cos \left(\frac{2 \pi n}{N-1}\right), 0 \leq n \leq N-1
$$

Different Types of Windows -contd.

Window size of 20 samples

Example 9

Considering the sequence $x(0)=1, x(1)=2, x(2)=3, x(3)=4$ and given $f_{s}=100 \mathrm{~Hz}$, $\mathrm{T}=0.01$ seconds, compute the amplitude spectrum, phase spectrum, and power spectrum using the Hamming window function.

Solution:

Since $N=4$, Hamming window function can be found as:

$$
\begin{aligned}
& w_{h m}(0)=0.54-0.46 \cos \left(\frac{2 \pi \times 0}{4-1}\right)=0.08 \\
& w_{h m}(1)=0.54-0.46 \cos \left(\frac{2 \pi \times 1}{4-1}\right)=0.77
\end{aligned}
$$

Similarly, $w_{h m}(2)=0.77, w_{h m}(3)=0.08$.

Example 9 -contd. (1)

- The windowed sequence is computed as:

$$
\begin{aligned}
& x_{w}(0)=x(0) \times w_{h m}(0)=1 \times 0.08=0.08 \\
& x_{w}(1)=x(1) \times w_{h m}(1)=2 \times 0.77=1.54 \\
& x_{w}(2)=x(2) \times w_{h m}(2)=3 \times 0.77=2.31 \\
& x_{w}(0)=x(3) \times w_{h m}(3)=4 \times 0.08=0.32
\end{aligned}
$$

- DFT Sequence:

$$
\begin{aligned}
& X(k)=x(0) W_{N}^{k 0}+x(1) W_{N}^{k 1}+x(2) W_{N}^{k 2}+\ldots+x(N-1) W_{N}^{k(N-1)} \\
& X(k)=x_{W}(0) W_{4}^{k \times 0}+x_{W}(1) W_{4}^{k \times 1}+x_{w}(2) W_{4}^{k \times 2}+x_{w}(3) W_{4}^{k \times 3}
\end{aligned}
$$

We obtain:

$$
\left\{\begin{array}{l}
X(0)=4.25 \\
X(1)=-2.23-j 1.22 \\
X(2)=0.53 \\
X(3)=-2.23+j 1.22
\end{array} \quad \Delta f=\frac{1}{N T}=\frac{1}{4 \cdot 0.01}=25 \mathrm{~Hz}\right.
$$

Example 9 -contd. (2)

Amplitude spectrum

Power spectrum

Phase spectrum

$$
A_{0}=\frac{1}{4}|X(0)|=1.0625,
$$

$$
A_{1}=\frac{1}{4}|X(1)|=0.6355
$$

$A_{2}=\frac{1}{4}|X(2)|=0.1325$,
$P_{0}=\frac{1}{4^{2}}|X(0)|^{2}=1.1289$
$P_{1}=\frac{1}{4^{2}}|X(1)|^{2}=0.4308$
$P_{2}=\frac{1}{4^{2}}|X(2)|^{2}=0.0176$
$A_{3}=\frac{1}{4}|X(3)|=0.6355$,

$$
P_{3}=\frac{1}{4^{2}}|X(3)|^{2}=0.4308
$$

$$
\begin{aligned}
\phi_{0} & =\tan ^{-1}\left(\frac{0}{4.25}\right)=0^{0}, \\
\phi_{1} & =\tan ^{-1}\left(\frac{-1.22}{-2.23}\right)=-151.32^{\circ}, \\
\phi_{2} & =\tan ^{-1}\left(\frac{0}{0.53}\right)=0^{\circ}, \\
\phi_{3} & =\tan ^{-1}\left(\frac{1.22}{-2.23}\right)=151.32^{0},
\end{aligned}
$$

MATLAB Example -2

Given the sinusoid obtained using a sampling rate of $f_{s}=8,000 \mathrm{~Hz}$

$$
x(n)=2 \cdot \sin \left(2,000 \pi \frac{n}{8,000}\right)
$$

Use the DFT to compute the spectrum of a Hamming window function with window size $=100$.

Solution:

\% Generate the sine wave sequence

```
fs}=8000;T=1/fs; % Sampling rate and sampling perio
% Generate the sine wave sequence
x = 2* sin(2000*pi*[0:1:100]*T);
% Apply the FFT algorithm
N=length(x);
index_t = [0:1:N - 1];
f}=[0:1:N-1]*fs/N
```

%Using the Hamming window

```
%Using the Hamming window
x_hm = x.*hamming(N)';
x_hm = x.*hamming(N)';
xf_hm=abs(fft(x_hm))/N;
```

```
xf_hm=abs(fft(x_hm))/N;
```

```
\%Apply the Hamming window function \%Calculate the amplitude spectrum
\(x f=a b s(f f t(x)) / N ;\)

\section*{MATLAB Example -2 contd.}
subplot \((2,2,1) ; p l o t\left(i n d e x \_t, x\right) ;\) grid xlabel ('Time index \(n^{\prime}\) ); ylabel ('x(n)'); subplot \((2,2,3)\); plot(index_t,x_hm) ; grid xlabel ('Time index \(\mathrm{n}^{\prime}\) ) ; ylabel ('Hamming windowed \(\left.\mathrm{x}(\mathrm{n})^{\prime}\right)\); subplot \((2,2,2) ; p l o t(f, x f) ; g r i d ; a x i s([0\) fs 01\(])\); xlabel ('Frequency (Hz)'); ylabel ('Ak (no window)'); subplot \((2,2,4) ; \operatorname{plot}\left(f, x f \_h m\right) ; g r i d ; \operatorname{axis}([0\) fs 01\(])\); xlabel ('Frequency (Hz)'); ylabel ('Hamming windowed \(\mathrm{Ak}^{\prime}\) ) ;





\section*{DFT Matrix}
- The \(N\) equations for the DFT coefficients can be expressed in matrix form as: Let, \(w_{N}=e^{-2 j \pi / N}\) then,
Frequency Spectrum DFT Matrix Time-Domain Samples
\[
\begin{aligned}
& {\left[\begin{array}{c}
X[0] \\
X[1] \\
\vdots \\
X[N-1]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & W_{N} & \ldots & W_{N}^{N-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & W_{N}^{N-1} & \ldots & W_{N}^{(N-1)(N-1)}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[1] \\
\vdots \\
x[N-1]
\end{array}\right]} \\
& \text { DFFT matrix } W_{N}
\end{aligned}
\]

Compact form : \(\quad X_{N}=W_{N} \cdot x_{N}\)
DFT Equation: \(\quad X(k)=\sum_{m=0}^{N-1} x(m) w_{N}^{m k} \quad k=0, \ldots, N-1\)
DFT requires \(\boldsymbol{N}^{2}\) complex multiplications

\section*{DFT Matrix Example}

Determine the DFT coefficients of the four point segment \(x[0]=0, x[1]=1, x[2]=2, x[3]=3\) of a sequence \(x[n]\)

\section*{Solution}

We first compute the entries of the matrix \(W_{4}\) using the property \(W_{N}^{k+N}=W_{N}^{k}=e^{-j \frac{2 \pi}{N} k}=\cos \left(\frac{2 \pi}{N} k\right)-j \sin \left(\frac{2 \pi}{N} k\right)\)
The result is a complex matrix given by
\[
\boldsymbol{W}_{4}=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
1 & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
1 & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\mathrm{j} & -1 & \mathrm{j} \\
1 & -1 & 1 & -1 \\
1 & \mathrm{j} & -1 & -\mathrm{j}
\end{array}\right]
\]

The DFT coefficients are evaluated by the matrix-by-vector multiplication
\[
\left[\begin{array}{l}
X[0] \\
X[1] \\
X[2] \\
X[3]
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\mathrm{j} & -1 & \mathrm{j} \\
1 & -1 & 1 & -1 \\
1 & \mathrm{j} & -1 & -\mathrm{j}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2+\mathrm{j} 2 \\
-2 \\
-2-\mathrm{j} 2
\end{array}\right]
\]

In Matlab these computations are done using the commands:
\[
x=\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right]^{\prime} ; W=\operatorname{dftmtx}(4) ; X=W * x ;
\]

\section*{FFT}

\section*{FFT: Fast Fourier Transform}

A very efficient algorithm to compute DFT; it requires less multiplication.
- The length of input signal, \(\mathrm{x}(\mathrm{n})\) must be \(2^{m}\) samples, where \(m\) is an integer.
\[
\text { Samples } N=2,4,8,16 \text { or so. }
\]
- If the input length is not \(2^{m}\), append (pad) zeros to make it \(2^{m}\).

\(N=5\)

\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 4 & 5 & 1 & 7 & 1 & 0 & 0 & 0 \\
\hline
\end{tabular}
\(N=8\), power of 2

\section*{DFT to FFT: Decimation in Frequency}

DFT: \(\quad X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}\) for \(k=0,1, \ldots, N-1\),
\[
X(k)=x(0)+x(1) W_{N}^{k}+\ldots+x(N-1) W_{N}^{k(N-1)}
\]

\section*{split Equation}
\(X(k)=x(0)+x(1) W_{N}^{k}+\ldots+x\left(\frac{N}{2}-1\right) W_{N}^{k(N / 2-1)}+x\left(\frac{N}{2}\right) W^{k N / 2}+\ldots+x(N-1) W_{N}^{k(N-1)}\)
\[
\begin{aligned}
X(k)=\sum_{n=0}^{(N / 2)-1} x(n) W_{N}^{k n}+\sum_{n=N / 2}^{N-1} x(n) W_{N}^{k n} & \begin{array}{l}
W_{N}^{\left(n+\frac{N}{2}\right) k}=W_{N}^{n k} W_{N}^{\left(\frac{N}{2}\right) k} \\
\\
=W_{N}^{n k} e^{-\frac{2 \pi N}{N} j k}=W_{N}^{n k} e^{-j \pi k} \\
\\
=W_{N}^{n k}(-1)^{k}
\end{array} \\
X(k)=\sum_{n=0}^{(N / 2)-1} x(n) W_{N}^{k n}+W_{N}^{(N / 2) k} \sum_{n=0}^{(N / 2)-1} x\left(n+\frac{N}{2}\right) W_{N}^{k n} & W_{N}^{N / 2}=e^{-j-\frac{2 \pi(N / 2)}{N}}=e^{-j \pi}=-1
\end{aligned}
\]
\[
X(k)=\sum_{n=0}^{(N / 2)-1}\left(x(n)+(-1)^{k} x\left(n+\frac{N}{2}\right)\right) W_{N}^{k n}
\]
\[
\begin{aligned}
& \text { for } k=2 m(\text { even }) \rightarrow(-1)^{k}=1 \text { compute } X(2 m) \\
& \text { for } k=2 m+1(\text { odd }) \rightarrow(-1)^{k}=-1 \text { compute } X(2 m+1)
\end{aligned}
\]

\section*{DFT to FFT: Decimation in Frequency}

Now decompose into even \((k=2 m)\) and odd \((k=2 m+1)\) sequences.
\(X(2 m)=\sum_{n=0}^{(N / 2)-1}\left(x(n)+x\left(n+\frac{N}{2}\right)\right) W_{N}^{2 m n} \quad X(2 m+1)=\sum_{n=0}^{(N / 2)-1}\left(x(n)-x\left(n+\frac{N}{2}\right)\right) W_{N}^{n} W_{N}^{2 m n}\)

\(X(2 m)=\sum_{n=0}^{(N / 2)-1} a(n) W_{N / 2}^{m n}=\operatorname{DFT}\{a(n)\) with \((N / 2)\) points \(\}\)
\[
X(2 m+1)=\sum_{n=0}^{(N / 2)-1} b(n) W_{N}^{n} W_{N / 2}^{m n}=\operatorname{DFT}\left\{b(n) W_{N}^{n} \text { with }(N / 2) \text { points }\right\}
\]

With:
\[
a(n)=x(n)+x\left(n+\frac{N}{2}\right), \quad \text { for } n=0,1 \cdots, \frac{N}{2}-1 \quad b(n)=x(n)-x\left(n+\frac{N}{2}\right), \quad \text { for } n=0,1, \cdots, \frac{N}{2}-1
\]

\section*{DFT to FFT: Decimation in Frequency}

The computation process is
\[
\operatorname{DFT}\{x(n) \text { with } N \text { points }\}=\left\{\begin{array}{c}
\operatorname{DFT}\{a(n) \text { with }(N / 2) \text { points }\} \\
\operatorname{DFT}\left\{b(n) W_{N}^{n} \text { with }(N / 2) \text { points }\right\}
\end{array}\right.
\]

First
iteration


Block1 (Even \(k\) )
\[
\frac{N}{2} \text { Point DFT } \Rightarrow \sum_{n=0}^{(N / 2)-1} x(n) W_{N / 2}^{m n} \text { and } x(n) \text { is } a(n) \text { for even } k \text { and } b(n) W_{N}^{n} \text { for odd } k
\]

\section*{DFT to FFT: Decimation in Frequency}


The splitting process continues to the end (until having 2 input points to the DFT block, in this case third iteration).


12 complex multiplication

\section*{DFT to FFT: Decimation in Frequency}

The index (bin number) of the eight-point DFT coefficient becomes inverted, and can be fixed by applying reversal bits.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Binary & index & 1st split & it 2nd split & 3rd split & Bit reversal \\
\hline 000 & 0 & 0 & 0 & 0 & 000 \\
\hline 001 & 1 & 2 & 4 & 4 & 100 \\
\hline 010 & 2 & 4 & 2 & 2 & 010 \\
\hline 011 & 3 & 6 & 6 & 6 & 110 \\
\hline 100 & 4 & 1 & 1 & 1 & 001 \\
\hline 101 & 5 & 3 & 5 & 5 & 101 \\
\hline 110 & 6 & 5 & 3 & 3 & 011 \\
\hline 111 & 7 & 7 & 7 & 7 & 111 \\
\hline
\end{tabular}

For data length of N , the number of complex multiplications:

Complex multiplications of FFT \(=\frac{N}{2} \log _{2}(N)\)

For 1024 samples data sequence, DFT requires \(1024 \times 1024=\) 1048576 complex multiplications. FFT requires \((1024 / 2) \log (1024)=\) 5120 complex multiplications.

\section*{IFFT: Inverse FFT}
\[
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}=\frac{1}{N} \sum_{k=0}^{N-1} X(k) \tilde{W}_{N}^{k n}, \quad \text { for } k=0,1, \cdots, N-1
\]

The difference is: the twiddle factor \(w_{N}\) is changed to \(\widetilde{w}_{N}=w_{N}^{-1}\), and the sum is multiplied by a factor of \(1 / \mathrm{N}\).


\section*{FFT and IFFT Examples}

\section*{FFT}

\section*{Bit index}

Bit reversal


Number of complex multiplication \(=\frac{N}{2} \log _{2}(N)=\frac{4}{2} \log _{2}(4)=4\).

IFFT


\section*{DFT to FFT: Decimation in Time}

Split the input sequence \(x(n)\) into the even indexed \(x(2 m)\) and \(x(2 m+1)\) each with \(\mathrm{N} / 2\) data points.
\[
X(k)=\sum_{m=0}^{(N / 2)-1} x(2 m) W_{N}^{2 m k}+\sum_{m=0}^{(N / 2)-1} x(2 m+1) W_{N}^{k} W_{N}^{2 m k}, \text { for } k=0,1, \cdots, N-1
\]

Using
\[
w_{N}^{2}=\left(e^{-j 2 \pi / N}\right)^{2}=e^{-j 2 \pi /(N / 2)}=w_{N / 2}
\]
\[
X(k)=\sum_{m=0}^{(N / 2)-1} x(2 m) W_{N / 2}^{m k}+W_{N}^{k} \sum_{m=0}^{(N / 2)-1} x(2 m+1) W_{N / 2}^{m k}, \text { for } k=0,1, \cdots, N-1
\]

\section*{DFT to FFT: Decimation in Time}

Define new functions as \(\quad \begin{aligned} G(k) & =\sum_{m=0}^{(N / 2)-1} x(2 m) W_{N / 2}^{m k}=\operatorname{DFT}\{x(2 m) \text { with }(N / 2) \text { points }\} \\ H(k) & =\sum_{m=0}^{(N / 2)-1} x(2 m+1) W_{N / 2}^{m k}=\operatorname{DFT}\{x(2 m+1) \text { with }(N / 2) \text { points }\}\end{aligned}\)
As, \(\quad G(k)=G\left(k+\frac{N}{2}\right)\), for \(k=0,1, \cdots, \frac{N}{2}-1\)

\[
H(k)=H\left(k+\frac{N}{2}\right), \quad \text { for } k=0,1, \cdots, \frac{N}{2}-1
\]
\(X(k)=\sum_{m=0}^{(N / 2)-1} x(2 m) W_{N / 2}^{m k}+W_{N}^{k} \sum_{m=0}^{(N / 2)-1} x(2 m+1) W_{N / 2}^{m k}, \quad\) for \(k=0,1, \cdots, N-1\)
\(X(k)=G(k)+W_{N}^{k} H(k), \quad\) for \(k=0,1, \cdots, \frac{N}{2}-1\)


\section*{DFT to FFT: Decimation in Time}

First iteration:

\section*{Second iteration:}


\section*{DFT to FFT: Decimation in Time}

\section*{Third iteration:}

\[
W_{N}=e^{-\frac{2 \pi}{N}}=\cos \left(\frac{2 \pi}{N}\right)-j \sin \left(\frac{2 \pi}{N}\right) \quad W_{8}^{2}=e^{\frac{2 \pi \times 2}{8}}=e^{-\frac{\pi}{2}}=\cos (\pi / 2)-j \sin (\pi / 2)=-j
\]

\section*{IFFT: Decimation in Time}

Similar to the decimation-in-frequency method, we change \(W_{N}\) to \(\widetilde{W}_{N}\), and the sum is multiplied by a factor of \(1 / \mathrm{N}\).
inverse FFT (IFFT) block diagram for the eight-point inverse FFT


\section*{FFT and IFFT Examples}
\(E 5\)


FFT Butterfly


Stage \(1 W\) has base \(N\), stage 2 has base \(\frac{N}{2}, \frac{N}{4}\), divide by 2 as you add stages.


\section*{Fourier Transform Properties (1)}


FT is linear:
- Homogeneity
- Additivity

Homogeneity:
\(x[] \xrightarrow{\text { DFT }} \mathrm{X}[]\)
\(k x[] \xrightarrow{\text { DFT }} \mathrm{k}[]\)

Frequency is not changed.

\section*{Fourier Transform Properties (2)}




If : \(x_{1}[n]+x_{2}[n]=x_{3}[n]\)
Then : \(\operatorname{Re} X_{1}[f]+\operatorname{Re} X_{2}[f]=\operatorname{Re} X_{3}[f]\)
and \(\operatorname{Im} X_{1}[f]+\operatorname{Im} X_{2}[f]=\operatorname{Im} X_{3}[f]\)



\section*{Additivity}



\section*{Fourier Transform Pairs}

\section*{Time Domain}

\section*{Delta Function Pairs in Polar Form}

Delta Function

\(4 \rightarrow\) Freque


\section*{Shifted Delta Function}

Same Magnitude,
Different Phase

Shifted Delta Function


```

