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Numerical Differentiation and Integration

Introduction

Engineers are frequently confronted with the problem of differentiating functions which are defined
in tabular or graphical form rather than as explicit functions. The interpretation of experimentally
obtained data is a good example of this. A similar situation involves the integration of functions
which have explicit forms that are difficult or impossible to integrate in terms of elementary func-

tions.

Important Points of the Chapter 5

I. In this chapter we shall find the approximate solutions of derivative (first- and second-order) and
antiderivative (definite integral only).

II. Given data points should be equally spaced only (length of each subinterval should be same).
Smaller the length of the interval better the approximation.

ITI. Numerical methods for differentiation and integration can be derived using Lagrange interpo-
lating polynomial at equally-spaced data points.

IV. Error term for each numerical method will be discuss
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Numerical Differentiation

When a function is represented by a table of values, the most obvious approach is to differentiate

the Lagrange interpolation formula

[n+1 n(r
£l = e+ ) Ty

(1) (5.3)

First Derivative Numerical Formulas

To obtain general formula for approximation of the first derivative of a function f(z), we consider
that {xg,z1,....2,} are (n+ 1) distinct equally spaced points in some interval I and function f(z)
is continuous and its (n + 1)th derivatives exist in the given interval, that is, f € C"*}(I). Then
by differentiating (5.3) with respect to x and at z = x, we have

[n—}-l] nlx
TA:) - Zf )Lr‘ f ?1)I-‘f)) H : (5.4)

2=

ik
The formula (5.4) is called the (n+1)-point formula to approximate f'(xy).
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Two-point Formula

Consider two distinct points xg and 1, 17 = x9 + h for some h £ 0

1@ = i) = (Z22) flao) + (2222 fa)

By taking derivative . with respect to x and at x = xp, we obtain

() oz & Pu(@)pmsy = L0 4 f@)

o — I 331—:]'?[]'

Py —L 200 JEO ¥ R) - g LR = )

h h

It is called the two-point formula for smaller values of h.

= Dpf(z0). (5.6)

If h < 0, then the formula (5.6) is also called the two-point backward-difference formula, which can

be written as
f(zo) — f(xo — h)

f(xg) = .
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Example 5.1 Let f(r) = e*. Then use the two-point formula to approrimate f'(2), when h = 0.1

and h = 0.01.

Solution. Using the formula (5.6), with g = 2, we have

Py 10N 1)

Then for h = 0.1, we get

[ - f2)  El-¢

Fi(2)rs = = Y7712,

0.1 0.1

Similarly, by using h = 0.01, we obtain

201 2

Since the exact solution of f'(2) = e? is, 7.3891, so the corresponding actual errors with h = 0.1
and h = 0.01 are, —0.3821 and —0.0371 respectively. This shows that the approrimation obtained

with h = 0.01 s better than the approrimation with h = 0.1.

Similarly, by using the formula (5.7), with xq = 2, we have f(2) ~ F2)—52-h)

2 1.9
then for h = 0.1, we have f/(2) = F(2) — f(L9) N - 7.0316.
0.1 0.1
EZ L el.gﬂ
For h = 0.01, we have f(2) = oo 7.3522.
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Error Term of Two-point Formula

Wl o 1
1@ -m@ =GP @), ) € o)

(z — ) (z — 1)
)
2

Fao) — w0 = (070t

T=Iq

¥ F(n 2(31”)) (d:r(m — x(xg + h) — x20 + T0(ZT0 + h))

x:m[;)

Since d—f”(?}(:}:)) = 0 only if & = xg, so error in the forward-difference formula (5.6) is
1

Bp(f.h) = f'(@0) — Daf(zo) = —of"(n(a)), where n(z) € (0, 1), (5.8)

which is called the error formula of the two-point formula (5.6). Hence the formula (5.6) can be

written as
f(@o+h)— flxo) h

) Qf”('.';(a':)), where 1 € (xg,x1). (5.9)

f’(ﬂfn) =
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Example 5.3 Let f(x) = 22 cosx. Then

(a) Compute the approzimate value of f'(x) at x =1, taking h = 0.1 using (5.6).

(b) Compute the error bound for your approrimation using the formula (5.8).

(c) Compute the absolute error,

(d) What best mazimum value of stepsize h required to obtain the approzimate value of f'(1) correct
to two decimal places.

Solution. (a) Given xq = 1,h = 0.1, then by using the formula (5.6), we have

FULH0.D) — 1) _ (LD — F(D)

f (L 0.1 0.1

= D f (1)
Thus

" (1.1)%cos(1.1) — (1)?cos(1)  0.5489 — 0.5403

T 0.1 . 0.1

which is the required approximation of f'(x) at x = 1.

= 0.0860,

(b) To find the error bound, we use the formula (5.8), which gives

Ep(f,h) = —%f”(n(w)), where n(z) € (1,1.1),

or

. 0.1
Ep(f,l)| = | = = ||f"m@))l, for n e (1,11
The second derivative f"(x) of the function can be found as

f(z) =x%cosz, giwes f"(x)=(2—x%) cosx — 4xsinz.
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The value of the second derivative f"(n(x)) cannot be computed exactly because n(x) is not known.
But one can bound the error by computing the largest possible value for |f"(n(z))|. So bound |f"|
on [1,1.1] can be obtain

M = max |(2—x?)cosx — 4z sinz| = 3.5630,
1<z<1.1
at x = 1.1. Since |f"(n(x))| < M, therefore, for h = 0.1, we have

|
\Ep(f,h)| < O—M — 0.05(3.5630) = 0.1782,

which is the possible mazimum error in our approrimation.

(c) Since the exact value of the derivative f'(1) is 0.2392, therefore the absolute error |E| can be
computed as follows:

= | (1) — Duf(1)| = |0.2391 — 0.0860| = 0.1531.

(d) Since the given accuracy required is 1072, so

Er (£, )] = |~ of"(n(@))] < 1072

for n(x) € (1,1.1). This gives

h 5 (2361072)
— M < ) < -
QM' <107°, or h< i
Using M = 3.5630, we obtain

h< — = —0.0056.
=~ 356.3000 "

which is the best maximum value of h to get the required accuracy. .
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Total Error

| h 1[}_
The total error, E(h), E(h) = Eirunc + Eround = ;
where M = max |f"(n(zo))|, tis the required decimal digits of accuracy,
Ly =L ’

the optimal value for h. Thus the minimum error is

M |2 10—*
j_;(hfmf) — H x 107t + 5 4 = \/Qﬂ{f x 10—t

ﬂxl[}_

Example 5.4 Consider f(z) = x?cosx and xg = 1. To show the effect of rounding error, the
values f; are obtained by rounding f(x;) to seven significant digits, compute the total error for
h = 0.1 and also, find the optimum h.

-2 2 .
SolitGi E(h) = EM’ 4 1['}5 where M = 1511»}:%%1 (2 —2%) cosz — 4z sin x| = 3.5630

-7

0.1
Now to find the optimum h, we use

5 3
T S R T \/ 10-7 = 0.00024.
V= flopt =\ 37 X 3.5630 '

which is the smallest value of h, below which the total error will begin to increase.

= 0.17815 + 0.000001 = 0.178151.

0.1
Then  B(h) = —-(3.5630) +

Note that for h = 0.00024, E(h) = 0.000844,
h = 000015,  E(h) = 0.000934,
h = 000001, E(h) = 0.010018.
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Three-point Central Difference Formula

Consider the quadratic Lagrange interpolating polynomial pa(z) to the three distinct equally spaced
points xq, x1, and xo, with @1 = xg + h and x2 = xg + 2h, for smaller value h, we have

smalal e (z —x1)(x — x2) ’ (x — o) (x — x2) "
f(@) ~ pa(a) (o — z1) (@0 — .‘172)f( 0)+ (x1 — o) (21 — .Ig)f 1) + (X9 — xg)(x

Now taking the derivative of the above expression with respect to x and then take x = x, for
k=0,1,2, we have

/ - (2zf — x1 — T3) (2z) — zo — T3)
i (zo — 1) (w0 — I2)f(mO) "

. (2x — o — 1) .
(21 — o) (21 — 22) i)+ (z2 — zo)(z2 — Il}f( 2)

Firstly, we take x, = z1,

o - (2:??1 — T — :132) o (221 — xg — 332) . (221 — @9 — 331) .
[l(@) =~ (a:u—ﬂ.‘-l)(ﬂrn—a:z)f( o) + (ﬂ?l—ﬂrn)(ﬂrl—ma)ﬂ 1) + T—— —~f(@2)-

z1+h)— f(zi—h
G )th(l )=th(ﬂ.‘-1).

It is called the three-point central-difference formula

Error Formula of Central Difference Formula

2
Ec(f.h) = f'(z1) — D f(z1) = —%fm(ﬁ(ﬂfl))a where 7(z1) € (21 —h,z1 + h).
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Three-point Forward Difference Formula

by taking zx = x¢ in the formula (5.11),

) & —3f () + 4f(3702-£ h) — f(@o+2h) _ i,

which is called the three-point forward-difference formula

Error Formula
h2
Ep(f,h) = ?fm(??(xﬂ))e where n(zq) € (xg,z9 + 2h).

Three-point Backward Difference Formula:

Similarly, taking x; = x3 in the formula (5.11),

f(z2 —2h) —4f(z2 — h) + 3f(z2)
2h

f(x2) = = Dpf(x2),

which is called the three-point backward-difference formula

Error Formula

h?2
Eg(f,h) = Efm(n(a:g))? where n(x2) € (2 — 2h, z2).
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Example 5.5 Let f(x) = 2°cosx. Then

(a) Compute the approrimate value of f'(x) at x = 1, taking h = 0.1 using (5.12).
(b) Compute the error bound for your approximation using (5.13).
(¢) Compute the absolute error.

(d) What is the best marimum value of stepsize h required to obtain the approximate value of
(1) correct to two decimal places.

Solution. (a) Given x1 =1, h = 0.1, then using the formula (5.12), we have

F1+01)-f(1-01) _ f@.1)-f(09) _

(1) = =D (1)
Then 5 5
3 i Y [ N EN2E
£(1) ~ (1.1)?cos(1.1) — (0.9)“ cos(0.9) - 0.5489 — 0.5035 _ 0.9970.
0.2 0.2
(b) By using the error formula (5.13), we have
N - (0-1)2 "
Ec(f,h) = ———f"(n(z1)), for n(z1) € (09,11),
or ;
E 1] [ (0.1) 1
c(fi )= | = ===l for n(z1) € (0.9,1.1).
Since

f"(n(1)) = —6n(x1) cosn(z1) — (6 — n(z1)*) sing(z1)

This formula cannot be computed exactly because n(x1) is not known. But one can bound the error
by computing the largest possible value for |f" (n(xy))|. So bound |f"'| on [0.9,1.1] is

M= max |—6zcosz— (6— x?)sinz|="7.4222,
0.9<z<1.1

12
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at v = 0.9. Thus, for |f"(n(z1)) < M and h = 0.1, gives

Eo(f,h)| < %M _ %(rmz) — 0.0124,

which is the possible maximum error in our approximation.

(¢) Since the exact value of the derivative f'(1) is, 0.2391, therefore, the absolute error |E| can be
computed as follows

|E| = |f'(1) — Dy f(1)] = 0.2391 — 0.2270] = 0.0121.

d) Since the given accuracy required is 1072, so
3

h? s
Eo(f,m)| = | - " (aa)| <102,
forn(x1) € (0.9,1.1). Then
hZ
—M <1072
g =
Solving for h and taking M = 0.0121, we obtain
6
2
" = = .01
< 742.22 0.0l
So the best mazimum value of h is (.1. .
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Example 5.6 Consider the following table for set of data points

z |1 16 2 23 28 3 39 4 48 5
f(x) | 0.00 047 0.69 0.83 1.03 1.10 1.36 139 1.57 1.61

(a) Use the best three-point formula to find approximation of f'(3) and f'(1.5).

(b) The function tabulated is Inx, find error bound and absolute error for the approrimation
of £(3).

(c) What is the best mazimum value of stepsize h required to obtain the approximate value of f'(3)
within the accuracy 10™%,

Solution. (a) For the given table of data points, we can use all three-points formulas as for the
central difference we can take

i =Fi—h=2, =3 mm=mit+h=4, gives h=1,
for the forward difference formula we can take
zg=3, T1=39g+h=39, zm=21+2h=48, gives h=0.9,
and for the backward difference formula we can taoke
Tg = go—2h=18; Hr=F—h=23; E:x=3, gies h=0.7.

Since we know that smaller the vale of h better the approrimation of the derivative of the function,
therefore, for the given problem, backward difference is the best formula to find approzimation of
f(3) as

1.6) —4f(2.3) +3f(3) _ [0.47 —4(0.83) + 3(1.10)]

~ = 0.3214.
2(0.7) 1.4

Numerical Differentiation and Integration Dr. Mohamed Abdelwahed
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(b) Using error term of backward difference formula, we have

h? . h?
Ep(f.h) =% f"(m). or |Ea(fh)| <5 |f" ()l

Taking | f"(n(x2))| < M = max |f"(z)] = max |2/x% = 0.4883. Thus using h = 0.7, we obtain

1.6<z<3 1.6<z<3
. 0:7)2
Eg(f.h)| < ( 3) (0.4883) = 0.0798,

the required error bounds for the approrimations. To compute the absolute error we do as
|E| = |f'(3) — 0.3214| = |0.3333 — 0.3214| = 0.0119.
(¢) Since the given accuracy required is 1071, so
[Ep(f.h)| = ‘%f’”(n)’ <1074,

forn € (1.6,3). Then

h?

—M <1074

et
Solving for h by taking M = 0.4883, we obtain

8o

2T =0.024
— 0.4883 MO,

and so h = 0.025 the best mazimum value of h. °
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Second Derivative Numerical Formula

Three-point Central Difference Formula

Pl e Flay F-h) — 2f}5;31) Ly —h)

is called the three-point central-difference formula for the approximation of the second derivative
of a function f(x) at the given point x = x;.

Error Formula

h? .
Ec(f.h) = —Ef“j(??(ﬂh)), where n(zq) € (x1 — h,x1 + h).

Example 5.13 Consider following set of data points

z |00 01 02 03 04 05 06 07 09 10 11 12
flz)[1.00 110 1.18 1.26 132 138 1.43 147 152 154 155 1.56

Use the table, find the best approxzimation of f'(0.75) and the worst approximations of f'(0.1) and
f"(0.6) by using three-point formulas.
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Solution. For the best approrimation of f'(0.75), we have to take small h = 0.15, so using the
three-point formula (5.12), we get

f(0.9) — £(0.6) 152143 _

f@aEys 2(0.15) 0.3

0.3,

while the exact value of f'(0.75) is 0.3184. For the worst approzimation of f'(0.1), we have to take
big h = 0.5, so using again the three-point formula (5.15), we get

—3£(0.1) +4/(0.6) — f(11) _ —3(L1)+4(1.43) — 1.5

Fon~ 2(0.5) 1

= 0.87.

Similarly, for the worst approvimation of f"(0.6), we have to take big h = 0.6, so using the three-
point formula (5.19), we get

f(0.0) —2£(0.6) + f(1.2)

" -
f(0.6) = 0.36
[1.0 — 2(1.43) + 1.56]
036 ~ —0.8333,
the required approximation. °
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Numerical Integration

we wish to find an approximation to the definife integral

b
I(f)= | f(z)dz,

L

An obvious approach is to replace a function f(x) in the integral (5.21) by

b b
I(f) = f(a")d::r::z/p(m)dac.

Simple Trapezoidal Rule

rg=a,xr1 =band h =z, — xg.

£@) ~i(a) = (Z2E) fGao) + (2252 san)

/ f(x)dx ~ f(wo) /:r‘(__a )da"+ (@) (a:—aro)d'J:,
20 Tog — &1 ry — g Jax
_:1:-2”:1 7 i Wl e i i
. S {(m =) ] , S [( ) ]ﬁ—( L) £ (ag) + £(z)l
i i i | 2o 1 L0 i 1)

and by taking h = 1 — xg, we get

; h |
/a fle)dz =~ Ti(f) = 5[f(z0) + f(z1)].

Numerical Differentiation and Integration Dr. Mohamed Abdelwahed
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Example 5.16 Approxrimate the following integral

2 1
/ dx,
1 *+1

using the Trapezoidal rule and compute the absolute error.

1
4=1

Solution. Given f(x) = = and h =1, so using Trapezoidal rule (5.28), gives

Ty(f) = S [F(1) + £(2)] = 0.4167.

o | —

The exact solution of the given integral is

I(f) = In(3/2) = 0.4055, so

Er, () = |I(f) — T1(f)| = |0.4055 — 0.4167| = 0.0112,

is the required absolute error. °
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Composite Trapezoidal Rule

The interval [a,b] is partitioned into n subintervals (x;—1,2;), = 1,2,...,n with a = xp and

¥

b=z, of equal width h = (b —a)/n

Theorem 5.2 (Composite Trapezoidal Rule)

Let f € C?[a,b], n may be odd or even, h = (b — a)/n, and x; = a + ih for each i = 0,1,2,...,n.
Then the composite Trapezoidal rule for n subintervals can be written as

n—1

b=xn
[ @iz~ Tu(r) = 5 | fl@) +2 3 Fai) + 0)] (5:29)
& i=1

=g

Proof. Since for the composite form of the Trapezoidal rule, the interval is divided into n equal

.
subintervals of width h so that h =

then we have

a s .
, and (n+1) distinct pointsa =9 < 1 < T2...< Tp = b,

Ly

L f(z)dz.

In-1

b ] o
f@do= [ @iz [ f@)de ot
a €Iy 1
Applying the Trapezoidal rule (5.28) for one strip to each of these integral, we have

h

b 1 1
[ #@de ~ S15o) + fea)] + 517 @) + f@a)] + o+ 51 (nr) + o)l

Note that each of the interior point is counted twice and therefore has a coefficient of two whereas
the endpoints are counted once and therefore has a coefficient one. ®

Numerical Differentiation and Integration
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Example 5.17 Evaluate the integral / e**dx by using the Trapezoidal rule with n

0
Also compute the corresponding actual errors.
Solution. For n = 1, we use the formula (5.28) for h = 1, as follows
1
Bl )= §[f(o) + £(1)] = 27.7991.

For n = 2, using the formula (5.29) and h = 0.5, we have

Ty(f) = 0;[ (0) +2£(0.5) + £(1)] = 17.5941.
For n = 4, using the formula (5.29) and h = 0.25, we have
Ti(f) = g 2"[ (0) + 2[f(0.25) + f£(0.5) + f(0.75)] + f(1)] = 14.4980.
Finally, for n = 8, using (5.29) and h = 0.125, we have
To(f) = 0';25 [£(0) +2[£(0.125) + £(0.25) + £(0.375) + £(0.5)

+ £(0.625) + £(0.75) + £(0.875)] + £(1)] = 13.6776.

Since the exact value of the given integral is

I(f) = [e — 1] = 13.4000.

= 1,2,4,8.

So the corresponding actual errors are, —14.3991, —4.1941, —1.0980 and —0.2776, respectively,

which decrease by a factor of about four at each stage.

Numerical Differentiation and Integration
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Error Terms for Trapezoidal Rule

Theorem 5.3 (Error term for Simple Trapezoidal Rule)

Let f € C?la,b], and h = (b — a). The local error that the simple Trapezoidal rule (5.28) makes in

estimating the definite integral (5.21) is

h?x
Ery(f) = =5 (n(z)), (5.30)

where n(x) € (a,b).

Error Term for Composite Trapezoidal Rule

The global error of the Trapezoidal rule (5.29) equals the sum of n local errors of the Trapezoidal

rule (5.28), that is

3 3 3
h_ " h " h "

Br,(f) = =35 (@) = T3/ (m(@) =+ = 757 (@)

n

hB
=~ mi(e)), for (@) € (w1 m),
i=1

hg I
= —5nf"(n(@)).
h - "
= 5 (b—a)f"(n(z)), n(z) € (a.b).

Numerical Differentiation and Integration Dr. Mohamed Abdelwahed
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2

Example 5.20 (a)Find approzimation of/ f(x) dx taking h = 0.2 by using the following set of
1

data points

T ‘ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 L. 1.8 1.9 2.0
f(:r)‘[).SﬁS 0.366 0.361 0.354 0.355 0.335 0.323 0.311 0.298 0.284 0.271

The function tabulated is re™™, compute error bound and the absolute error for the approximation

using Trapezoidal rule.
(b) How many subintervals approvimate the given inlegral to an accuracy of at least 1076 2

Solution. (a) Given h = 0.2, so we have the select following set of data points for Trapezoidal

rule as
z |10 12 14 16 18 20

F(z) [ 0368 0.361 0.355 0.323 0.298 0.271

so the composite Trapezoidal rule (5.29) for siv points can be written as

2 h
/ f(x) de =~ T5(f) = 2 [f(a:n) + Q(f(ﬂil) + f(z2) + f(z3) + f(‘“)) + f('rﬁ)}’
1

and by using the given values, we get
2
f f(z) dz ~ 0.1 [0.368 +2(0.361 + 0.355 + 0.323 + 0.298) + 0.271] = 0.3313.
1

The second derivative of the function f(x) = xe ™ can be obtain as
flix) =0 —-z)e™ and f'(z)=(z—2)e".
Since n(x) is unknown point in (1,2), therefore, the bound |f"| on [1,2] is

T 1t . - -z _
M = lglfgz‘f ()] = 1%?%2“31 2)e™"| = 0.3679, .
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at x = 1. Thus the error formula (5.35) becomes

% (0.3679) = 0.0012,

Er,(f)] <

which is the possible maximum error in our approzimation.
We can easily computed the exact value of the given integral as

2
1

2
/ xe © dr=(—ze " —e )| = 0.32098.
1

Thus the absolute error |E| in our approzimation is given as

E

= |0.3298 — T5(f)| = |0.3298 — 0.3313| = 0.0015.
b) To find the minimum subintervals for the given accuracy, we use the formula (5.35) such that
g Yy

(b—a)’|

/ —6
— M <107,

Er ()l < =

12n

where h = (b —a)/n. Since M = 0.3679, then solving for n?, we obtain
n® > 30658.3333, gives n > 175.0952.

Hence to get the required accuracy, we need 176 subintervals or 177 points. o
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Simple Simpson’s Rule ¥
Pix]

y=Hx)

Hx ] L

Let us consider the second-degree Lagrange interpolating polynomial, with equally spaced base
points, that is, g = a,z1 = a+ h and x93 = a + 2h, with h = (b —a)/2, then

(z — ®o)(z — x2) s (z — zo)(x — 21)
(21 — zo)(z1 — -772)f(ul) " (22 — xo) (22 — 1)

f@) mpala) = A= E@T) gy

(z0 — 1)(z0 — 22)

f(z2).

Taking integral on both sides of the above equation with respect to # between the limits xy and
Ty, we have

v —J(@) o — 1) f(a)
/-'En fla)iz ~ (zo — z1)(0 — x2) Jag @ —m)@—m)dz 4 (z1 — mo)(z1 — 22) (@ = s)l@ = da)du
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where

T 3
L= [Ce-m)@-nyr =2
)

L 3
L)

L= [ @—a)(e o) = 2
o]

By using these values, we have

;  flxo) (2R3 | flm1) (—4R3) | f(z2) (243
/Gf(:r.)da:N 5 (3)+ 13 ( 3 )+ 55 (3>

Simplifying, gives

b 1
[ e~ 52(5) = Sl5) + 47@) + f(w))

which is called the simple Simpson’s rule or Simpson’s rule for two strips (or 3 points).
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Example 5.22 Approzimate the following integral

2 1
dax
/1:}:—1—131'

using simple Simpson’s rule. Compute the actual error.
g P P P

Solution. Since f(z) = —T—l and h = (2 —1)/2 = 0.5, then by using Simpson’s rule (5.37), we
T
have 05
Sa(f) = = [£(1) + 47(15) + £(2)] = (0.1667)[0.5 + 1.6 + 0.3333] = 0.4056.
Hence

2
dx =2 = (0.4056.
/1 ——da ~ Sy(f) = 0.4036

Since the exact solution of the given integral is, 0.4055, therefore, the actual error is
Es, = I(f) — Sa(f) = —0.0001.

To compare this error with the error got by using the simple Trapezoidal rule, the error in Simpson’s
rule is much smaller than for the Trapezoidal rule by a factor of about 123, a significant increase
m accuracy. .
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Theorem 5.4 (Composite Simpson’s Rule)

Let f € C*a,b], n be even, h = (b —a)/n, and x; = a + ih for each i = 0,1,2,...,n. Then the

composite Simpson’s rule for n subintervals can be written as

n/2-1 n/2

b
[ f(w)dmsn(f):g Fla)+2 > flza) +4) flzai1) + f(0)]. (5.38)
i1 i=1 i=1

Proof. Since for the composite form of the Simpson’s rule, the interval is divided into n equal

subintervals of width h so that h =

. For this rule to work, n must be even number and the
n

total number of (n+1) distinct points a = xg < x1 < x2... < Tpn = b should be odd. The total
integral can be represented as

I'n

/J: ) de=— /ﬂ: f(x)dx + /: f(z)dz + -+ .

In—2
Substitute the simple Sz'mpson’s rule (5.37) for the individual integral yields

/:"f(a:)d::: ~ [f(.To) +4f(x1) + f(xg)] + —[f(3~2) + 4f(23) + f(x4)]

(4]

h

L el g[f(g:n_2) +4f(@n-1) + f(zn))-

To avoid repetition of terms, we summed them. Note that each of the odd interior point is counted
four and so has a coefficient of four whereas each of the even interior point is counted two and so

has a coefficient of two. Endpoints are counted once and so has a coefficient one. ®
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1
Example 5.27 FEvaluate the integral / edx by using the Simpson’s rule with n = 2,4,8. Also,
0

compute the corresponding actual errors.

Solution. For n = 2, using the formula (5.37) and h = 0.5, we have

So(f) = %—“’[ £(0) +4£(0.5) + £(1)] = 14.1924.

For n = /, using the formula (5.38) and h = 0.25, we have

025

Sa(f) 3

[ £(0) +4[£(0.25) + £(0.75)] +2£(0.5) + f(1)] — 13.4659.

For n = 8, using the formula (5.38) and h = 0.125, we have

_0.125
3

Ss(f) [£(0) + 4[£(0.125) + £(0.375) + £(0.625) + f(0.875)

+ 2[£(0.25) + £(0.5) + f(0.75)] + f(l)] — 13.4041.

Note that the exact value of the given integral s 13.39995, and so the corresponding errors are,
0.79245, 0.06595, and 0.00411 respectively, which decrease by a factor of about 16 at each stage. e
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Error Terms for Simpson’s Rule

Now we discuss the local error and the global error formulas for Simpson’s rule.

Theorem 5.5 (Error Term for Simple Simpson’s Rule)

Let f € C%a.b], and h = (b — a)/2. The local error that the Simpson’s rule makes in estimating
the definite integral (5.21) is

Es,(f) = _@ W (n(z)), where n(x) € (a,b).
Example 5.28 Compute the local error for the Simpson’s rule using the following integral
2 1
f dax.
1 r+1
1
olution. Given f(r) = ——, and |a,0| = |1, 2], then the fourth deriwvative of the function can be
Soluti Gi K| dla.b 1, 2|, then th h derivati h ] b
T
obtain as
—1 2 —6 24
e — W — " _ — (4) — B
P~ 7"~wvor P oo T T ey
B2 .
Es,(f) = |~ g5l [FP @), for ) € (1.2).
TS T @yl 9. € get Es,(f)| < T(U.Td) = 0.0003.

Comparing this with the actual error —0.0001, this bound is about 3 times the actual error.

30
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Error Term for Composite Simpson’s Rule

B B, hS
Es, (f) = —ggf O m(@)) = go O m(@)) = - — 557 (1j2(@)),
e (f) = =) 4 ) _
Eg (f) = 180 h* Y (n(z)), for n(x) € (a,b) and nh = b — a.

is known as the global error of the Simpson’s rule.

2
Example 5.30 Consider the integral I(f) = f In(x + 1)dz; =8,
1

(a) Find the approzimation of the give integral using the composite Simpson’s rule.
(b) Compute the error bound for the approximation using the formula (5.57).
(c) Compute the absolute error.

(d) How many subintervals approzimate the given integral to an accuracy of at least 101 using
the composite Simpson’s rule ¢

2—1 1

Solution. (a) Given f(z) =In(z+1).,n =6, and so h = R then the composite Simpson’s

rule (5.38) for n = 6, can be written as

flzln(:ﬂ—}— dx =~ Se(f) = ?[ln(l—l—l)-}—ll(ln (g-*—l)—i-ln(%—}—l)-Hn(%-i—l))]

+ [2(111 (g 53 1) +In (% + 1)) + In(2 + 1)]

1
=13 [0-6932 +4(2.7309) + 2(1.8281) + 1.0986] — 0.9095.
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(b) Since the fourth derivative of the function is

—6

WDig)=——.
@) (z+ 1)

Since n(x) is unknown point in (1,2), therefore, the bound |f™)| on [1,2] is

[ = (1) = = v
M = max | (x)| = \ ‘ 6/16 = 0.375.

z+ 1)4

Thus the error formula (5.57) becomes

l 1/6)*
|Ex,(f)] < (1/860) (0.375) = 0.000002,

which is the possible mazximum error in our approzimation in part (a).
(c) The absolute error |E| in our approrimation is given as

IE| = |31n3 — 2In2 — 1 — S(f)| == 0.0000003.

(d) To find the minimum subintervals for the given accuracy, we use the error formula (5.57)
which s

(f)l_( a)® M <104

18001

Since we know M = 0.375, then we have
nt > 20.83333, gives n > 2.136435032.

Hence to get the required accuracy, we need 4 subintervals (because n should be even) that ensures
the stipulated accuracy. ©
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