Introduction to Systems of Linear Equations

Linear Equations

define a linear equation in the n variables x|, x», ..., x, to be one that can be expressed
in the form

ayxy+ayxr+---+ax,=b (1)
where ay, ay, . . ., a, and b are constants, and the a’s are not all zero.

In the special case where b = 0, Equation (1) has the form
aixy +axx; +---+apx, =0 4)

which is called a homogeneous linear equation in the variables x|, x;, ..., x,.

The following are linear equations:

x+3y=7 11—2){2—313—1-3(4:0
Ix—y+3z=-1 x4 4x,=1

The following are not linear equations:

x+3y*=4 3x+2y—xy=>5
sinx +y =0 Va+2n+xn=14

A finite set of linear equations is called a system of linear equations
For example:
Sx+y=3 4x; —x3+3x3=—1 (5-6)
2x—y=4 3x] + X2+ 9%y = —4 B

A general linear system of m equations in the » unknowns x;, x5, .. ., x,, can be written

as
anx, +anpxs + -+ + amx, =b;

aZEXI +a2?x3 T soomss +(12:.1Xn =b.2 )

A1 X1 + ApaX2 + -+ AupXp = bm

A solution of a linear system in n unknowns x;, x, ..., X, isa sequence of n numbers
S1, 82, ..., S, for which the substitution
X1 =981, X2=58,..., Xp =3,

the system in (6) has the solution

x|=l, X7=2, X3=—l

solutions can be written more succinctly as

(1,2,-1)



Remark:

(8is Bzsaans Si)

is called an ordered n-tuple.

Remark:

Linear systems in two unknowns arise in connection with intersections of lines. For
example, consider the linear system

axx +byy=c
arx + byy = ¢3

in which the graphs of the equations are lines in the xy-plane.
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Result:

Every system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.

P EXAMPLE 2 A Linear System with One Solution
Solve the linear system
x—y=1
2x+y=6

Solution We can eliminate x from the second equation by adding —2 times the first
equation to the second. This yields the simplified system

r—y=1
3y=4

From the second equation we obtain y = %, and on substituting this value in the first
equation we obtainx =1+ y = % Thus, the system has the unique solution

— 7 -
.X—-E, y=

TS



P EXAMPLE 3 A Linear System with No Solutions
Solve the linear system
x+ y=4
3Ix4+3y=6
Solution We can eliminate x from the second equation by adding —3 times the first
equation to the second equation. This yields the simplified system
x+y= 4
0=-6

P EXAMPLE 4 A Linear System with Infinitely Many Solutions
Solve the linear system

4x -2y =1

lox —8y =4
Solution We can eliminate x from the second equation by adding —4 times the first
equation to the second. This yields the simplified system

4x —2y=1

0=0

The second equation does not impose any restrictions on x and y and hence can be
omitted. Thus, the solutions of the system are those values of x and y that satisfy the

single equation

4x —2y =1 (8)
Geometrically, this means the lines corresponding to the two equations in the original
system coincide. One way to describe the solution set is to solve this equation for x in
terms of y to obtainx = % + % y and then assign an arbitrary value f (called a parameter)

Augmented Matrices and
Elementary Row Operations

B e T R,

anx; + apxy +---+ apx, = by

Xy + anxy +---+ awxs = by

Am1 X1 + maX2 +- - -+ AupXy = bm

we can abbreviate the system by writing only the rectangular array of numbers
an  ap -+ an, b
ay  an» - Gy b

\\am 1 Gm2 - Qmn bm J

This is called the augmented matrix for the system. For example, the augmented matrix
for the system of equations



X1 + X2 + 2X3 =9 1 1 2 9
2x1 +4x, —3x3=1 is 2 4 =3 1
311 =+ 6)Cg = 5X3 =0 3 6 -5 0

elementary row operations

The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.
2. Interchange two equations.

3. Add a constant times one equation to another.

x+ y+2z=9 1 1 2 9
2x +4y —3z=1 2 4 -3 1
3x+ 6y —5z= 3 6 -5 0

Add —2 times the first equation to the second ~ Add —2 times the first row to the second to

to obtain obtain

x+ y+2z= 9 1 | 2 9
2y —Tz=-17 0 2 -7 17
3x+6y—52= 0 3 6 -5 0

Matrices and Matrix Operations

| DEFINITION 1 A matrix is a rectangular array of numbers. The numbers in the array

are called the entries in the matrix.
L

P EXAMPLE 1 Examples of Matrices

Some examples of matrices are

1 2 e T —+/2
; 1
3@l 2 1 ¢ =35 |8 % 1 . 4] «
2 3
-1 4 0 0 0

The size of a matrix is described in terms of the number of rows (horizontal lines)
and columns (vertical lines) it contains. For example, the first matrix in Example | has
three rows and two columns, so its size is 3 by 2 (written 3 x 2). In a size description,
the first number always denotes the number of rows, and the second denotes the number
of columns. The remaining matrices in Example 1 have sizes | x 4, 3 x 3,2 x I, and
1 x 1, respectively.



A matrix with only one row, such as the second in Example 1, is called a roew vector
(or a row matrix), and a matrix with only one column, such as the fourth in that example,
is called a column vector (or a column matrix). The fifth matrix in that example is both
a row vector and a column vector.

The entry that occurs in row i and column j of a matrix A will be denoted by a;;.
Thus a general 3 x 4 matrix might be written as

ayy ap a3 dag
A=|ay an axn ay
as] ax 4y axy

and a general m x n matrix as

ap  dp o di
as axp -y

A=| : . (D
Q| Ap2 -+ Gpp

When a compact notation is desired, the preceding matrix can be written as

[ar'j]mxn or [aij]

A matrix A with n rows and n columns is called a square matrix of order n, and the

shaded entries @, a», . . ., a,, in (2) are said to be on the main diagonal of A.
aiy di2 -+ dinp
ayy axp - dy
. 0 . (2
apl  dp2 -+ dpp

Operations on Matrices

DEFINITION 2 Two matrices are defined to be equal if they have the same size and
their corresponding entries are equal.

P EXAMPLE 2 Equality of Matrices

Consider the matrices

A_21 B_ZIC_ZIO
13 =) 135 T340

If x =5, then A = B, but for all other values of x the matrices A and B are not equal,
since not all of their corresponding entries are equal. There is no value of x for which
A = C since A and C have different sizes.



Example:1. Write down the system of equation, if matrices A and B are equal

A=l:x—2 y—3} Bz{l 3+z}
x+y z+3 z y

Solution: A and B are of the same size, hence

A=B=
x-2=1
y—3=3+z
X+y=2z
z+3=y
System of equations are
X =3
y—-z=6
x+y—-z=0
-y+z=-3

DEFINITION 3 If A and B are matrices of the same size, then the sum A + B is the
matrix obtained by adding the entries of B to the corresponding entries of A, and
the difference A — B is the matrix obtained by subtracting the entries of B from the
corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if A = [a;;] and B = [b;;] have the same size, then

(A + B);j = (A);; + B);j = aij +b;; and (A — B)y = (A)y; — (B)ij = aij — byj

P EXAMPLE 3 Addition and Subtraction

Consider the matrices

2 L 0 3 —4 3 5 i 11
A=|-1 0 2 4|1, B= 2 2 0 —-1|, C= |:2 2:|
4 -2 T 0 3 2 —4 5
Then
-2 4 5 6 -2 =5 2
A+ B = 1 2 2 3 and A—B=|-3 =2 2 5
7 0 3 5 1 -4 11 -5

The expressions A+ C, B+ C, A — C, and B — C are undefined. <«

DEFINITION 4 If A is any matrix and c is any scalar, then the product c A is the matrix
obtained by multiplying each entry of the matrix A by ¢. The matrix cA is said to be
a scalar multiple of A.

Example:3. Find the value of x and y in the following matrix equation



5
3y 27 1=1 3| |5 7
Solution. Using concept of addition of matrices, we simplify left hand side
{5—3 x+2}{ 2 x+2]{2 4}
3y-1 2+5]| |3y-1 7 5 7
Two matrices are equal when their correspoding entries are equal
x+2=4
2y—1=5
Solving these equations
x=4-2=2

P EXAMPLE 4 Scalar Multiples

For the matrices

2 —
1 3 1 -1 3 -5 3 0 12
we have

?A_468 (13_0—2—7 lC_3—:z 1
24=1y ¢ 2l CDB=11 53 5 €T o 4

It is common practice to denote (—1)B by —B. <

DEFINITION 5 If A is an m x r matrix and B is an r X n matrix, then the product }
AB is the m x n matrix whose entries are determined as follows: To find the entry in
row i and column j of AB, single out row i from the matrix A and column j from
the matrix B. Multiply the corresponding entries from the row and column together,
and then add up the resulting products.

P EXAMPLE 5 Multiplying Matrices
Consider the matrices
4 1 4 3
1 2 4
A= 5 6 ol B=|0 -1 3 1
2 7 5 2

Since A isa 2 x 3 matrix and B isa 3 x 4 matrix, the product AB is a 2 x 4 matrix.
To determine, for example, the entry in row 2 and column 3 of AB, we single out row 2
from A and column 3 from B. Then, as illustrated below, we multiply corresponding
entries together and add up these products.



P EXAMPLE 5 Multiplying Matrices

Consider the matrices

4 1 4 3

1 2 4
A=[2 6 O:I, B=|0 -1 3 1
2 7 3 2

Since A isa 2 x 3 matrix and B is a 3 x 4 matrix, the product AB is a 2 x 4 matrix.
To determine, for example, the entry in row 2 and column 3 of AB, we single out row 2
from A and column 3 from B. Then, as illustrated below, we multiply corresponding
entries together and add up these products.

pzqé_ii o O
260/, T, 5 | |O0=EO

2-49+4+(6-3)+(0-5 =26

The entry in row 1 and column 4 of AB is computed as follows:

pzqé_ii |- |O000m
260l T3 LT |O0O0O0

(1-3)+@2-1)+(@4-2)=13

The computations for the remaining entries are

1-499+@2-0+4-2)= 12
a-HD-Q-H)+@-7= 27
1-4H+2-3)+@-5= 30 AB = 12 27 30 13 <
2:4)+6-00+0-2)= 38 18 —4 26 12
Q-H—-6G-D+O0-7)=-4
2:3)+(6-1)+(0-2)= 12
Determining Whether a Product Is Defined
A B AB
m x r EXin= m XN
{ e} ®
Outside

» EXAMPLE 6

Suppose that A, B, and C are matrices with the following sizes:

A B &
Ix4 4 x7 T%3

Then by (3), AB is defined and isa 3 x 7 matrix; BC is defined and isa 4 x 3 matrix; and
CAisdefinedandisa7 x 4 matrix. The products AC, C B, and BA are allundefined. <



THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be
performed, the following rules of matrix arithmetic are valid.

(@ A+B=B+A [Commutative law for matrix addition]
() A+ (B+C)=(A+ B) + C [Associative law for matrix addition]

(C) A(BC) = (AB)C | Associative law for matrix multiplication]
(d) A(B+C)=AB+ AC | Left distributive law]

() (B+C)A=BA+CA [Right distributive law]

(f) A(B—C)=AB— AC
(g) (B—C)A=BA—-CA

(h) a(B+C)=aB+aC

(i) a(B—C)=aB —aC

(j) (@+b)C =aC +bC

(k) (a—b)C =aC —bC

(/) aC)=(ab)C

(m) a(BC)= (aB)C = B(aC)

P EXAMPLE 2 Order Matters in Matrix Multiplication

Consider the matrices
-1 0 1 2
A= and B =
2 3 3 0
—1

AB = d BA > 8
|-— - 'n —
i 4| ® -3 0

Multiplying gives
Thus, AB # BA. <

P EXAMPLE 3 Failure of the Cancellation Law

Consider the matrices
[ 1 2 5
— o C —
3 4 3 4

0 1
A= !
0 2
3 4
AB = AC =
6 8

We leave it for you to confirm that

Although A # 0, canceling A from both sides of the equation AB = AC would lead
to the incorrect conclusion that B = C. Thus, the cancellation law does not hold, in
general, for matrix multiplication (though there may be particular cases where it is true).



P EXAMPLE 4 A Zero Product with Nonzero Factors
Here are two matrices for which AB = 0, but A # 0 and B # 0:

A_01 e
| -

3 i
0 0

<«

Partitioned Matrices A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal
and vertical rules between selected rows and columns. For example, the following are

three possible partitions of a general 3 x 4 matrix A—the first is a partition of A into

four submatrices A1, A1, Ay, and A»p; the second is a partition of A into its row vectors
ri, r2, and r3; and the third is a partition of A into its column vectors ¢;, ¢, €3, and c¢4:

ay dp ap | dig =
A Ap
A=lay apn ap|ay|=
| Ay Ax
a1 an  axn | as
app dp Az dpg r
A=lay an apn ay|=|n
| as1 an as as | |
ap [ dapx | az | dig
A= lay [an |ax |ay|=[er e e ¢4
| d31 | d32 | d33 | O34

DEFINITION 6 If Ay, A,, ..., A, are matrices of the same size, and if ¢, ¢, . ..
are scalars, then an expression of the form

» Cr

A+ A+ -+ A,

is called a linear combination of A\, A,, ..., A, with coefficients ¢, c2, . .., c,.

To see how matrix products can be viewed as linear combinations, let A beanm x n
matrix and x an n x 1 column vector, say

ay dap dip X1
dy  d» Ay A2
A= ; and x =
Aml  Am2 Umn Xn J]
Then
anxy + apxa +---+ aiuxa ai ai g
axxiy + apxy; +---+ awxy, a) an a
Ax = 5 3 P =X i + x2 & + ot xy "
A1 X T A2 X2 W AmnXn Am1 amz_ Amp

THEOREM 1.3.1 If A isanm X n matrix, and if X is an n x 1 column vector, then the
product Ax can be expressed as a linear combination of the column vectors of A in which
the coefficients are the entries of x.



P> EXAMPLE 8 Matrix Products as Linear Combinations

The matrix product

-1 3 2 2 1
1 2 =3(|-1]=]-9
2 1 -2 3 —3
can be written as the following linear combination of column vectors:
-1 3 2 1
2] 1 —=-1|2({4+3|-3|=|-9
2 1 -2 -3

Column-Row Expansion  Partitioning provides yet another way to view matrix multiplication. Specifically, sup-

pose that an m x r matrix A is partitioned into its » column vectors ¢, ¢1, . .
of size m x 1) and an r X n matrix B is partitioned into its r row vectors ry, r»

(each of size 1 x n). Each term in the sum

cr +ery+---+cr,

., ¢ (each

has size m x n so the sum itself is an m x n matrix. We leave it as an exercise for you to
verify that the entry in row i and column j of the sum is given by the expression on the

right side of Formula (5), from which it follows that

AB =cirp + ey + - 41,

P EXAMPLE 10 Column-Row Expansion

Find the column-row expansion of the product

1 3 2 0 4
AB =
|:2 —l:| |:—3 5 1]

Solution The column vectors of A and the row vectors of B are, respectively,
1 3
a=[,| e=|_| n=[2 0 4], n=[-3 5 1]
Thus, it follows from (11) that the column-row expansion of AB is
AB 1[204]+ 3[351]
N F -1
2 0 4 -9 15 3
= -+
4 0 8 3 -5 -1

As a check, we leave it for you to confirm that the product in (12) and the sum in (13)

both yield
-7 15 7
AB = <
7 -5 7

(13)

Remark:

(11)



Matrix multiplication has an important application to systems of linear equations. Con-
sider a system of m linear equations in n unknowns:

Is equivalent to

anx; + apxy +---+ apx, = b

anx; + anx: +---+ ayx, = b

A1 X1 + AmaX2 + -+ QuaXn = bm

m

Am?2

din X1 b 1
an | | x2 by
Amn Xn b

If we designate these matrices by A, x, and b, respectively, then we can replace the original
system of m equations in n unknowns by the single matrix equation

Ax=b

The matrix A in this equation is called the coefficient matrix of the system. The aug-
mented matrix for the system is obtained by adjoining b to A as the last column; thus

the augmented matrix is

ap

R =l

ami

Transpose of a Matrix

apn
an

am?

ayp

(M

amn

DEFINITION 7 If A is any m x n matrix, then the transpose of A, denoted by A7 | is
defined to be the n x m matrix that results by interchanging the rows and columns
of A: that is, the first column of A7 is the first row of A, the second column of A7 is
the second row of A, and so forth.

P EXAMPLE 11 SomeTransposes

The following are some examples of matrices and their transposes.

ap
A= an
asy

ap
apn

ags

ayg

Trace of a Matrix

aps
as

ass

as,
asa
asg

azg4

a4
ax |,

dazg

)

B=|1 4|, c=01 3 5. D=[4]
5 6

215 :

- , CT=|3|, DT=[4] «

L)



DEFINITION 8 If A is a square matrix, then the trace of A, denoted by tr(A), is defined
to be the sum of the entries on the main diagonal of A. The trace of A is undefined
if A is not a square matrix.

» EXAMPLE 12 Trace

The following are examples of matrices and their traces.

tr(A) = an +axn +as tr((B)=—-1+5+7+0=11 <«

Working with Proofs
35. Prove: If A and B are n x n matrices, then
tr(A + B) = tr(A) + tr(B)

36. (a) Prove: If AB and BA are both defined, then AB and BA
are square matrices.

(b) Prove: If Aisanm x n matrix and A(BA) is defined, then
B is ann x m matrix.



Types of matrices:

2. Square Matrix: If n=m that is number rows and columns are equal, then the
matrix is square matrix.

1 2
A= L 4} , 2x2 1s a square matrix

If number of rows and columns are not equal ( n # m ) then matrix is called Rectangular

matrix.
2 3 1 0
B=[3 1 0 7]is 3x4 matrix
1 1 -1 5

3. Row Matrix: Matrix with only one row and can contain any number of columns
B= [1 2 4 3], 1 x4 is a row matrix

4. Column Matrix: Matrix with only one column and can contain any number of rows

|
2 ) g
30’ 4x1 1s a column matrix
4

5. Zero Matrix: A zero matrix is a matrix of nay order whose all entries are zero.
0 0| . :
0= , 1S a zero matrix.
0 0

THEOREM 1.4.2 Properties of Zero Matrices

If ¢ is a scalar, and if the sizes of the matrices are such that the operations can be
perfomed, then:

@ A+0=04+A=A4A

) A—0=A
() A—A=A+(—A) =0
(d) 0A=0

(e) IfcA=0,thenc=0o0rA=0.



6. Diagonal Matrix: A square matrix with all its non- diagonal entries are zero.

Examples. A=

oS o =
S N O
- o O

7. Unit Matrix: A diagonal matrix with all diagonal entries are one ‘1’

1 0 0
I=|8% 1 0
0 0 1
REMARK:
1 0 0
1 2 112
A13:|:(“ ap 013] 01 0 :[011 ap 6113}:14
az dazy; ax az az ax
0 0 1

and multiplying on the left by the 2 x 2 identity matrix yields

1 O)|lan apn ap ay  dap  ap
LA = - = - 1l=A
0 1|lan axn axn ax a» an

Properties of the Transpose of a matrix

1. {AY =4

2 (AB)'=B'A'

3. (kA) =kA', where k is a scalar.
4, (A+B)'=A'+B'

2. Symmetric Matrix:
A square matrix is symmetric if A'=A.

'
Il
W N -

2 3
4 5| A'=[2 4 5|,A'=A
56

(U8 ]
(9]
N



3. Skew — symmetric Matrix :
A square matrix is skew symmetric if A'=- A.

i =7 ~3 0 2 3
A=|2 0 -4| 4'=|-2 0 4| A'=-4
3 4 0] =3 4 ol



