Introduction to Systems of Linear Equations

Linear Equations

define a *linear equation* in the n variables x_1, x_2, \ldots, x_n to be one that can be expressed in the form

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b \tag{1}$$

where a_1, a_2, \ldots, a_n and b are constants, and the a's are not all zero.

In the special case where b = 0, Equation (1) has the form

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0 \tag{4}$$

which is called a *homogeneous linear equation* in the variables x_1, x_2, \ldots, x_n .

The following are linear equations:

$$x + 3y = 7$$
 $x_1 - 2x_2 - 3x_3 + x_4 = 0$
 $\frac{1}{2}x - y + 3z = -1$ $x_1 + x_2 + \dots + x_n = 1$

The following are not linear equations:

$$x + 3y^2 = 4$$
 $3x + 2y - xy = 5$
 $\sin x + y = 0$ $\sqrt{x_1} + 2x_2 + x_3 = 1$

A finite set of linear equations is called a system of linear equations

For example:

$$5x + y = 3$$
 $4x_1 - x_2 + 3x_3 = -1$ $2x - y = 4$ $3x_1 + x_2 + 9x_3 = -4$ (5-6)

A general linear system of m equations in the n unknowns x_1, x_2, \ldots, x_n can be written as

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$
(7)

A **solution** of a linear system in n unknowns x_1, x_2, \ldots, x_n is a sequence of n numbers s_1, s_2, \ldots, s_n for which the substitution

$$x_1 = s_1, \quad x_2 = s_2, \dots, \quad x_n = s_n$$

the system in (6) has the solution

$$x_1 = 1$$
, $x_2 = 2$, $x_3 = -1$

solutions can be written more succinctly as

$$(1, 2, -1)$$

Remark:

$$(s_1, s_2, \ldots, s_n)$$

is called an ordered n-tuple.

Remark:

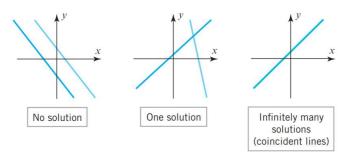
Linear systems in two unknowns arise in connection with intersections of lines. For example, consider the linear system

$$a_1x + b_1y = c_1$$

$$a_2x + b_2y = c_2$$

in which the graphs of the equations are lines in the xy-plane.

......



Result:

Every system of linear equations has zero, one, or infinitely many solutions. There are no other possibilities.

EXAMPLE 2 A Linear System with One Solution

Solve the linear system

$$x - y = 1$$

$$2x + y = 6$$

Solution We can eliminate x from the second equation by adding -2 times the first equation to the second. This yields the simplified system

$$x - y = 1$$

$$3y = 4$$

From the second equation we obtain $y = \frac{4}{3}$, and on substituting this value in the first equation we obtain $x = 1 + y = \frac{7}{3}$. Thus, the system has the unique solution

$$x = \frac{7}{3}, \quad y = \frac{4}{3}$$

► EXAMPLE 3 A Linear System with No Solutions

Solve the linear system

$$x + y = 4$$
$$3x + 3y = 6$$

Solution We can eliminate x from the second equation by adding -3 times the first equation to the second equation. This yields the simplified system

$$x + y = 4$$
$$0 = -6$$

► EXAMPLE 4 A Linear System with Infinitely Many Solutions

Solve the linear system

$$4x - 2y = 1$$
$$16x - 8y = 4$$

Solution We can eliminate x from the second equation by adding -4 times the first equation to the second. This yields the simplified system

$$4x - 2y = 1$$
$$0 = 0$$

The second equation does not impose any restrictions on x and y and hence can be omitted. Thus, the solutions of the system are those values of x and y that satisfy the single equation

$$4x - 2y = 1 \tag{8}$$

Geometrically, this means the lines corresponding to the two equations in the original system coincide. One way to describe the solution set is to solve this equation for x in terms of y to obtain $x = \frac{1}{4} + \frac{1}{2}y$ and then assign an arbitrary value t (called a *parameter*)

Augmented Matrices and Elementary Row Operations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

we can abbreviate the system by writing only the rectangular array of numbers

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

This is called the *augmented matrix* for the system. For example, the augmented matrix for the system of equations

$$x_1 + x_2 + 2x_3 = 9$$

$$2x_1 + 4x_2 - 3x_3 = 1$$
 is
$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{bmatrix}$$

elementary row operations

The basic method for solving a linear system is to perform algebraic operations on the system that do not alter the solution set and that produce a succession of increasingly simpler systems, until a point is reached where it can be ascertained whether the system is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

- 1. Multiply an equation through by a nonzero constant.
- 2. Interchange two equations.
- 3. Add a constant times one equation to another.

$$x + y + 2z = 9$$

$$2x + 4y - 3z = 1$$

$$3x + 6y - 5z = 0$$

$$\begin{bmatrix} 1 & 1 & 2 & 9 \\ 2 & 4 & -3 & 1 \\ 3 & 6 & -5 & 0 \end{bmatrix}$$

Add -2 times the first equation to the second to obtain

Add -2 times the first row to the second to obtain

Matrices and Matrix Operations

DEFINITION 1 A *matrix* is a rectangular array of numbers. The numbers in the array are called the *entries* in the matrix.

► EXAMPLE 1 Examples of Matrices

Some examples of matrices are

$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}, [2 \quad 1 \quad 0 \quad -3], \begin{bmatrix} e & \pi & -\sqrt{2} \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}, [4] \blacktriangleleft$$

The *size* of a matrix is described in terms of the number of rows (horizontal lines) and columns (vertical lines) it contains. For example, the first matrix in Example 1 has three rows and two columns, so its size is 3 by 2 (written 3×2). In a size description, the first number always denotes the number of rows, and the second denotes the number of columns. The remaining matrices in Example 1 have sizes 1×4 , 3×3 , 2×1 , and 1×1 , respectively.

A matrix with only one row, such as the second in Example 1, is called a *row vector* (or a *row matrix*), and a matrix with only one column, such as the fourth in that example, is called a *column vector* (or a *column matrix*). The fifth matrix in that example is both a row vector and a column vector.

The entry that occurs in row i and column j of a matrix A will be denoted by a_{ij} . Thus a general 3×4 matrix might be written as

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

and a general $m \times n$ matrix as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 (1)

When a compact notation is desired, the preceding matrix can be written as

$$[a_{ij}]_{m \times n}$$
 or $[a_{ij}]$

A matrix A with n rows and n columns is called a *square matrix of order n*, and the shaded entries $a_{11}, a_{22}, \ldots, a_{nn}$ in (2) are said to be on the *main diagonal* of A.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 (2)

Operations on Matrices

DEFINITION 2 Two matrices are defined to be *equal* if they have the same size and their corresponding entries are equal.

EXAMPLE 2 Equality of Matrices

Consider the matrices

$$A = \begin{bmatrix} 2 & 1 \\ 3 & x \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$

If x = 5, then A = B, but for all other values of x the matrices A and B are not equal, since not all of their corresponding entries are equal. There is no value of x for which A = C since A and C have different sizes.

Example:1. Write down the system of equation, if matrices A and B are equal

$$A = \begin{bmatrix} x-2 & y-3 \\ x+y & z+3 \end{bmatrix}, B = \begin{bmatrix} 1 & 3+z \\ z & y \end{bmatrix}$$

Solution: A and B are of the same size, hence

$$A = B \Rightarrow$$

$$x - 2 = 1$$

$$y - 3 = 3 + z$$

$$x + y = z$$

$$z + 3 = y$$

System of equations are

$$x = 3$$

$$y-z=6$$

$$x+y-z=0$$

$$-y+z=-3$$

DEFINITION 3 If A and B are matrices of the same size, then the sum A + B is the matrix obtained by adding the entries of B to the corresponding entries of A, and the difference A - B is the matrix obtained by subtracting the entries of B from the corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if $A = [a_{ii}]$ and $B = [b_{ii}]$ have the same size, then

$$(A + B)_{ij} = (A)_{ij} + (B)_{ij} = a_{ij} + b_{ij}$$
 and $(A - B)_{ij} = (A)_{ij} - (B)_{ij} = a_{ij} - b_{ij}$

► EXAMPLE 3 Addition and Subtraction

Consider the matrices

$$A = \begin{bmatrix} 2 & 1 & 0 & 3 \\ -1 & 0 & 2 & 4 \\ 4 & -2 & 7 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} -4 & 3 & 5 & 1 \\ 2 & 2 & 0 & -1 \\ 3 & 2 & -4 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

Then

$$A + B = \begin{bmatrix} -2 & 4 & 5 & 4 \\ 1 & 2 & 2 & 3 \\ 7 & 0 & 3 & 5 \end{bmatrix} \text{ and } A - B = \begin{bmatrix} 6 & -2 & -5 & 2 \\ -3 & -2 & 2 & 5 \\ 1 & -4 & 11 & -5 \end{bmatrix}$$

The expressions A + C, B + C, A - C, and B - C are undefined.

DEFINITION 4 If A is any matrix and c is any scalar, then the **product** cA is the matrix obtained by multiplying each entry of the matrix A by c. The matrix cA is said to be a **scalar multiple** of A.

Example:3. Find the value of x and y in the following matrix equation

$$\begin{bmatrix} 5 & x \\ 3y & 2 \end{bmatrix} + \begin{bmatrix} -3 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 5 & 7 \end{bmatrix}$$

Solution. Using concept of addition of matrices, we simplify left hand side

$$\begin{bmatrix} 5-3 & x+2 \\ 3y-1 & 2+5 \end{bmatrix} = \begin{bmatrix} 2 & x+2 \\ 3y-1 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 5 & 7 \end{bmatrix}$$

Two matrices are equal when their correspoding entries are equal

$$x + 2 = 4$$

$$2y - 1 = 5$$

Solving these equations

$$x = 4 - 2 = 2$$

► EXAMPLE 4 Scalar Multiples

For the matrices

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 3 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 2 & 7 \\ -1 & 3 & -5 \end{bmatrix}, \quad C = \begin{bmatrix} 9 & -6 & 3 \\ 3 & 0 & 12 \end{bmatrix}$$

we have

$$2A = \begin{bmatrix} 4 & 6 & 8 \\ 2 & 6 & 2 \end{bmatrix}, \quad (-1)B = \begin{bmatrix} 0 & -2 & -7 \\ 1 & -3 & 5 \end{bmatrix}, \quad \frac{1}{3}C = \begin{bmatrix} 3 & -2 & 1 \\ 1 & 0 & 4 \end{bmatrix}$$

It is common practice to denote (-1)B by -B.

DEFINITION 5 If A is an $m \times r$ matrix and B is an $r \times n$ matrix, then the **product** AB is the $m \times n$ matrix whose entries are determined as follows: To find the entry in row i and column j of AB, single out row i from the matrix A and column j from the matrix B. Multiply the corresponding entries from the row and column together, and then add up the resulting products.

EXAMPLE 5 Multiplying Matrices

Consider the matrices

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}$$

Since A is a 2×3 matrix and B is a 3×4 matrix, the product AB is a 2×4 matrix. To determine, for example, the entry in row 2 and column 3 of AB, we single out row 2 from A and column 3 from B. Then, as illustrated below, we multiply corresponding entries together and add up these products.

EXAMPLE 5 Multiplying Matrices

Consider the matrices

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}$$

Since A is a 2×3 matrix and B is a 3×4 matrix, the product AB is a 2×4 matrix. To determine, for example, the entry in row 2 and column 3 of AB, we single out row 2 from A and column 3 from B. Then, as illustrated below, we multiply corresponding entries together and add up these products.

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} = \begin{bmatrix} \boxed{ \boxed{ \boxed{ 26}} } \\ \boxed{ \boxed{ 26} } \end{bmatrix}$$

$$(2 \cdot 4) + (6 \cdot 3) + (0 \cdot 5) = 26$$

The entry in row 1 and column 4 of AB is computed as follows:

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} = \begin{bmatrix} \boxed{ \boxed{13}} \\ \boxed{ \boxed{13}} \\ \boxed{ \boxed{ \boxed{13}} \\ \boxed{ \boxed{ \boxed{13}}} \end{bmatrix}$$

$$(1 \cdot 3) + (2 \cdot 1) + (4 \cdot 2) = 13$$

The computations for the remaining entries are

$$(1 \cdot 4) + (2 \cdot 0) + (4 \cdot 2) = 12$$

$$(1 \cdot 1) - (2 \cdot 1) + (4 \cdot 7) = 27$$

$$(1 \cdot 4) + (2 \cdot 3) + (4 \cdot 5) = 30$$

$$(2 \cdot 4) + (6 \cdot 0) + (0 \cdot 2) = 8$$

$$(2 \cdot 1) - (6 \cdot 1) + (0 \cdot 7) = -4$$

$$(2 \cdot 3) + (6 \cdot 1) + (0 \cdot 2) = 12$$

$$AB = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$$

Determining Whether a Product Is Defined

EXAMPLE 6

Suppose that A, B, and C are matrices with the following sizes:

Then by (3), AB is defined and is a 3×7 matrix; BC is defined and is a 4×3 matrix; and CA is defined and is a 7×4 matrix. The products AC, CB, and BA are all undefined.

THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be performed, the following rules of matrix arithmetic are valid.

(a)
$$A + B = B + A$$

[Commutative law for matrix addition]

(b)
$$A + (B + C) = (A + B) + C$$
 [Associative law for matrix addition]

(c)
$$A(BC) = (AB)C$$

[Associative law for matrix multiplication]

(d)
$$A(B+C) = AB + AC$$

[Left distributive law]

(e)
$$(B+C)A = BA + CA$$

[Right distributive law]

$$(f)$$
 $A(B-C) = AB - AC$

$$(g)$$
 $(B-C)A = BA - CA$

$$(b) \quad a(B+C) = aB + aC$$

$$(i) \quad a(B-C) = aB - aC$$

$$(i) \quad (a+b)C = aC + bC$$

$$(k) \quad (a-b)C = aC - bC$$

$$(l) \quad a(bC) = (ab)C$$

$$(m)$$
 $a(BC) = (aB)C = B(aC)$

EXAMPLE 2 Order Matters in Matrix Multiplication

Consider the matrices

$$A = \begin{bmatrix} -1 & 0 \\ 2 & 3 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$

Multiplying gives

$$AB = \begin{bmatrix} -1 & -2 \\ 11 & 4 \end{bmatrix} \quad \text{and} \quad BA = \begin{bmatrix} 3 & 6 \\ -3 & 0 \end{bmatrix}$$

Thus, $AB \neq BA$.

► EXAMPLE 3 Failure of the Cancellation Law

Consider the matrices

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 5 \\ 3 & 4 \end{bmatrix}$$

We leave it for you to confirm that

$$AB = AC = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$

Although $A \neq 0$, canceling A from both sides of the equation AB = AC would lead to the incorrect conclusion that B = C. Thus, the cancellation law does not hold, in general, for matrix multiplication (though there may be particular cases where it is true).

► EXAMPLE 4 A Zero Product with Nonzero Factors

Here are two matrices for which AB = 0, but $A \neq 0$ and $B \neq 0$:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 7 \\ 0 & 0 \end{bmatrix} \blacktriangleleft$$

Partitioned Matrices

A matrix can be subdivided or *partitioned* into smaller matrices by inserting horizontal and vertical rules between selected rows and columns. For example, the following are three possible partitions of a general 3×4 matrix A—the first is a partition of A into

four *submatrices* A_{11} , A_{12} , A_{21} , and A_{22} ; the second is a partition of A into its row vectors \mathbf{r}_1 , \mathbf{r}_2 , and \mathbf{r}_3 ; and the third is a partition of A into its column vectors \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_3 , and \mathbf{c}_4 :

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = [\mathbf{c}_1 \quad \mathbf{c}_2 \quad \mathbf{c}_3 \quad \mathbf{c}_4]$$

DEFINITION 6 If A_1, A_2, \ldots, A_r are matrices of the same size, and if c_1, c_2, \ldots, c_r are scalars, then an expression of the form

$$c_1A_1 + c_2A_2 + \cdots + c_rA_r$$

is called a *linear combination* of A_1, A_2, \ldots, A_r with *coefficients* c_1, c_2, \ldots, c_r .

To see how matrix products can be viewed as linear combinations, let A be an $m \times n$ matrix and \mathbf{x} an $n \times 1$ column vector, say

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Then

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

THEOREM 1.3.1 If A is an $m \times n$ matrix, and if \mathbf{x} is an $n \times 1$ column vector, then the product $A\mathbf{x}$ can be expressed as a linear combination of the column vectors of A in which the coefficients are the entries of \mathbf{x} .

► EXAMPLE 8 Matrix Products as Linear Combinations

The matrix product

$$\begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ -3 \end{bmatrix}$$

can be written as the following linear combination of column vectors:

$$2\begin{bmatrix} -1\\1\\2 \end{bmatrix} - 1\begin{bmatrix} 3\\2\\1 \end{bmatrix} + 3\begin{bmatrix} 2\\-3\\-2 \end{bmatrix} = \begin{bmatrix} 1\\-9\\-3 \end{bmatrix}$$

Column-Row Expansion

Partitioning provides yet another way to view matrix multiplication. Specifically, suppose that an $m \times r$ matrix A is partitioned into its r column vectors $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_r$ (each of size $m \times 1$) and an $r \times n$ matrix B is partitioned into its r row vectors $\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_r$ (each of size $1 \times n$). Each term in the sum

$$\mathbf{c}_1\mathbf{r}_1 + \mathbf{c}_2\mathbf{r}_2 + \cdots + \mathbf{c}_r\mathbf{r}_r$$

has size $m \times n$ so the sum itself is an $m \times n$ matrix. We leave it as an exercise for you to verify that the entry in row i and column j of the sum is given by the expression on the right side of Formula (5), from which it follows that

$$AB = \mathbf{c}_1 \mathbf{r}_1 + \mathbf{c}_2 \mathbf{r}_2 + \dots + \mathbf{c}_r \mathbf{r}_r \tag{11}$$

EXAMPLE 10 Column-Row Expansion

Find the column-row expansion of the product

$$AB = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 4 \\ -3 & 5 & 1 \end{bmatrix}$$

Solution The column vectors of A and the row vectors of B are, respectively,

$$\mathbf{c}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}; \quad \mathbf{r}_1 = \begin{bmatrix} 2 & 0 & 4 \end{bmatrix}, \quad \mathbf{r}_2 = \begin{bmatrix} -3 & 5 & 1 \end{bmatrix}$$

Thus, it follows from (11) that the column-row expansion of AB is

$$AB = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 4 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix} \begin{bmatrix} -3 & 5 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 4 \\ 4 & 0 & 8 \end{bmatrix} + \begin{bmatrix} -9 & 15 & 3 \\ 3 & -5 & -1 \end{bmatrix}$$
(13)

As a check, we leave it for you to confirm that the product in (12) and the sum in (13) both yield

$$AB = \begin{bmatrix} -7 & 15 & 7 \\ 7 & -5 & 7 \end{bmatrix} \blacktriangleleft$$

Remark:

Matrix multiplication has an important application to systems of linear equations. Consider a system of m linear equations in n unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

Is equivalent to

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

If we designate these matrices by A, \mathbf{x} , and \mathbf{b} , respectively, then we can replace the original system of m equations in n unknowns by the single matrix equation

$$A\mathbf{x} = \mathbf{b}$$

The matrix A in this equation is called the *coefficient matrix* of the system. The augmented matrix for the system is obtained by adjoining \mathbf{b} to A as the last column; thus the augmented matrix is

$$[A \mid \mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Transpose of a Matrix

DEFINITION 7 If A is any $m \times n$ matrix, then the *transpose of A*, denoted by A^T , is defined to be the $n \times m$ matrix that results by interchanging the rows and columns of A; that is, the first column of A^T is the first row of A, the second column of A^T is the second row of A, and so forth.

► EXAMPLE 11 SomeTransposes

The following are some examples of matrices and their transposes.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 5 & 6 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}, \quad D = \begin{bmatrix} 4 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \\ a_{14} & a_{24} & a_{34} \end{bmatrix}, \quad B^{T} = \begin{bmatrix} 2 & 1 & 5 \\ 3 & 4 & 6 \end{bmatrix}, \quad C^{T} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}, \quad D^{T} = \begin{bmatrix} 4 \end{bmatrix}$$

Trace of a Matrix

DEFINITION 8 If A is a square matrix, then the *trace of* A, denoted by tr(A), is defined to be the sum of the entries on the main diagonal of A. The trace of A is undefined if A is not a square matrix.

EXAMPLE 12 Trace

The following are examples of matrices and their traces.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + a_{33}$$
 $tr(B) = -1 + 5 + 7 + 0 = 11$

Working with Proofs

35. Prove: If A and B are $n \times n$ matrices, then

$$tr(A+B) = tr(A) + tr(B)$$

- **36.** (a) Prove: If *AB* and *BA* are both defined, then *AB* and *BA* are square matrices.
 - (b) Prove: If A is an $m \times n$ matrix and A(BA) is defined, then B is an $n \times m$ matrix.

Types of matrices:

2. Square Matrix: If n = m that is number rows and columns are equal, then the matrix is square matrix.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, 2x2 is a square matrix

If number of rows and columns are not equal ($n \neq m$) then matrix is called **Rectangular** matrix.

$$B = \begin{bmatrix} 2 & 3 & 1 & 0 \\ 3 & 1 & 0 & 7 \\ 1 & 1 & -1 & 5 \end{bmatrix}$$
 is $3x \ 4$ matrix

3. Row Matrix: Matrix with only one row and can contain any number of columns

$$B = [1 \ 2 \ 4 \ 3], \ 1 \times 4 \text{ is a row matrix}$$

4. Column Matrix: Matrix with only one column and can contain any number of rows

$$C = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, 4x1 \text{ is a column matrix}$$

5. Zero Matrix: A zero matrix is a matrix of nay order whose all entries are zero.

$$O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, is a zero matrix.

THEOREM 1.4.2 Properties of Zero Matrices

If c is a scalar, and if the sizes of the matrices are such that the operations can be performed, then:

(a)
$$A + 0 = 0 + A = A$$

(b)
$$A - \theta = A$$

(c)
$$A - A = A + (-A) = 0$$

(*d*)
$$0A = 0$$

(e) If
$$cA = 0$$
, then $c = 0$ or $A = 0$.

6. Diagonal Matrix: A square matrix with all its non-diagonal entries are zero.

Examples.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$B = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}$$

7. Unit Matrix: A diagonal matrix with all diagonal entries are one '1'

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

REMARK:

$$AI_3 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = A$$

and multiplying on the left by the 2×2 identity matrix yields

$$I_2 A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = A$$

Properties of the Transpose of a matrix

$$(A^t)^t = A$$

2.
$$(AB)^{t} = B^{t}A^{t}$$

3.
$$(kA)^{t} = kA^{t}$$
, where k is a scalar.
4. $(A+B)^{t} = A^{t} + B^{t}$

$$\mathbf{4} \qquad (\mathbf{A} + \mathbf{R})^{\mathsf{t}} = \mathbf{A}^{\mathsf{t}} + \mathbf{R}$$

2. Symmetric Matrix:

A square matrix is symmetric if $A^t = A$.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}, \quad A^{t} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}, \quad A^{t} = A$$

3. Skew – symmetric Matrix :
A square matrix is skew symmetric if A^t = - A.

$$A = \begin{bmatrix} 0 & -2 & -3 \\ 2 & 0 & -4 \\ 3 & 4 & 0 \end{bmatrix}, \quad A^{t} = \begin{bmatrix} 0 & 2 & 3 \\ -2 & 0 & 4 \\ -3 & -4 & 0 \end{bmatrix}, \quad A^{t} = -A.$$