1 Discrete random variable

Definition 1 The set of ordered pairs $(x, f(x))$ is a probability function, probability mass function, or probability distribution of the discrete random variable X if, for each possible outcome x,

1. $f(x) \geq 0$,
2. $\sum_{x} f(x)=1$,
3. $P(X=x)=f(x)$.

Definition 2 The cumulative distribution function $F(x)$ of a discrete random variable X with probability distribution $f(x)$ is

$$
F(x)=P(X \leq x)=\sum_{t \leq x} f(t), \text { for }-\infty<x<\infty
$$

Definition 3 (Mean of a Random Variable) Let X be a random variable with probability distribution $f(x)$. The mean, or expected value, of X is

$$
\mu=E(X)=\sum_{x} x f(x)
$$

Example 4 A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Example 5 Let X represent the number of good components in the sample. The probability distribution of X is $f(x)=\frac{\binom{4}{x}\binom{3}{3-x}}{\binom{N}{n}}, x=0,1,2,3$.
Simple calculations yield $f(0)=1 / 35, f(1)=12 / 35$, $f(2)=18 / 35$, and $f(3)=4 / 35$. Therefore,

$$
\mu=E(X)=(0) \frac{1}{35}+(1) \frac{12}{35}+(2) \frac{18}{35}+(3) \frac{4}{35}=12 / 7=1.7
$$

Thus, if a sample of size 3 is selected at random over and over again from a lot of 4 good components and 3 defective components, it will contain, on average, 1.7 good components.

Theorem 6 Let X be a random variable with probability distribution $f(x)$. The expected value of the random variable $g(X)$ is

$$
\mu_{g(X)}=E[g(X)]=\sum_{x} g(x) f(x)
$$

Example 7 Suppose that the number of cars X that pass through a car wash between 4:00 P.M. and 5:00 P.M. on any sunny Friday has the following probability distribution:

$$
\begin{array}{ccccccc}
x & 4 & 5 & 6 & 7 & 8 & 9 \\
f(x) & \frac{1}{12} & \frac{1}{12} & \frac{1}{4} & \frac{1}{4} & \frac{1}{6} & \frac{1}{6}
\end{array}
$$

Let $g(X)=2 X-1$ represent the amount of money, in dollars, paid to the attendant by the manager. Find the attendant's expected earnings for this particular time period.

Theorem 8 (Variance of Random Variable) Let X be a random variable with probability distribution $f(x)$ and mean μ. The variance of X is

$$
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} f(x)
$$

The positive square root of the variance, $\mathbf{\square}$, is called the standard deviation of X.

Definition 9 (Bernouilli Process) Strictly speaking, the Bernoulli process must possess the following properties:

1. The experiment consists of repeated trials.
2. Each trial results in an outcome that may be classified as a success or a failure.
3. The probability of success, denoted by p, remains constant from trial to trial.
4. The repeated trials are independent.

Definition 10 (Binomial Distribution) A Bernoulli trial

 can result in a success with probability p and a failure withprobability $q=1-p$. Then the probability distribution of the binomial random variable X, the number of successes in n independent trials, is$$
\operatorname{Pr}(X=x)=\binom{n}{x} p^{x} q^{n-x}, x=0,1,2, \ldots, n
$$

Theorem 11 The mean and variance of the binomial distribution $B(n, p)$ are

$$
\mu=n p \text { and } \sigma^{2}=n p q
$$

Definition 12 (HypergeometricDistribution) The probability distribution of the hypergeometric random variable X, the numberof successes in a random sample of size n selected from N items of which K are labeled success and $N-K$ labeled failure, is

$$
\operatorname{Pr}(X=x)=\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}
$$

Theorem 13 The mean and variance of the hypergeometric distribution $h(N, K, n)$ are

$$
\mu=n \frac{K}{N} \text { and } \sigma^{2}=\frac{N-n}{N-1} \cdot \frac{n K}{N}\left(1-\frac{n K}{N}\right)
$$

Theorem 14 (Approximation) If n is small compared to N, then a binomial distribution $B(n, p=K / N)$ can be used to approximate the hypergeometric distribution $h(N, K, n)$.

Definition 15 Let X the number of outcomes occurring during a given time interval. X is called a Poisson random variable when its probability distribution is given by

$$
\operatorname{Pr}(X=x)=e^{-\lambda \frac{\lambda^{x}}{x!}}, x=0,1,2, \ldots
$$

where $■$ is the average number of outcomes.

Theorem 16 Both the mean and the variance of the Poisson distribution $P(\lambda)$ are λ.

Theorem 17 (Approximation) Let X be a binomial random variable with probability distribution $B(n, p)$. When n is large $(n \rightarrow \infty)$, and p small $(p \rightarrow 0)$, then the poisson distribution can be used to approximate the binomial distribtion $B(n, p)$ by taking $\lambda=n p$.

