1 Continuous random variable

Definition 1 The function $f(x)$ is a probability density function (pdf) for the continuous random variable X, defined over the set of real numbers, if

1. $f(x) \geq 0$, for all $x \in R$.
2. $\int_{-\infty}^{\infty} f(x) d x=1$.
3. $\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$.

Example 2 Suppose that the error in the reaction temperature, in ${ }^{\circ} \mathrm{C}$, for a controlled laboratory experiment is a continuous random variable X having the probability density function

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}}{3}, & -1<x<2 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(a) Verify that $f(x)$ is a density function.
(b) Find $\operatorname{Pr}(0<X \leq 1)$.

Definition 3 The cumulative distribution function $F(x)$ of a continuous random variable X with density function $f(x)$ is

$$
F(x)=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} f(t) d t, \text { for }-\infty<x<\infty
$$

Example 4 For the density function of Example 2, find $F(x)$, and use it to evaluate $\operatorname{Pr}(0<X \leq 1)$.

Definition 5 (Mean of a Random Variable) Let X be a random variable with probability distribution $f(x)$. The mean, or expected value, of X is

$$
\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

Example 6 For the density function of Example 2, find $E(X)$.

Theorem 7 Let X be a random variable with probability distribution $f(x)$. The expected value of the random variable $g(X)$ is

$$
\mu_{g(X)}=E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Example 8 Calculate the variance of $g(X)=2 X+3$, where X is a random variable with probability distribution

x	0	1	2	3
$f(x)$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{8}$

Theorem 9 (Variance of Random Variable) Let X be a random variable with probability distribution $f(x)$ and mean μ. The variance of X is

$$
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x)
$$

Theorem 10 Let X a random variable. The variance of a random variable X is

$$
\sigma^{2}=E\left(X^{2}\right)-E(X)^{2} .
$$

Theorem 11 Let X a random variable. If a and b are constants, then $E(a X+b)=a E(X)+b$.

Theorem 12 The expected value of the sum or difference of two or more functions of a random variable X is the sum or difference of the expected values of the functions. That is,

$$
E[g(X) \pm h(X)]=E[g(X)] \pm E[h(X)] .
$$

Example 13 Let X be a random variable with probability distribution as follows:

$$
\begin{array}{ccccc}
x & 0 & 1 & 2 & 3 \\
f(x) & \frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{6}
\end{array}
$$

Find the expected value of $Y=(X-1)^{2}$.

Definition 14 (Discrete Uniform Random Variable)

A random variable X is called discrete uniform if it has a finite number of possible values, say $x_{1}, x_{2}, \ldots, x_{n}$, and $\operatorname{Pr}\left(X=x_{i}\right)=1 / n$ for all i.

Definition 15 (Normal Distribution) The density of the normal random variable X, with mean μ and variance σ^{2}, is

$$
\operatorname{Pr}(X=x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{\frac{-1}{2 \sigma^{2}}(x-\mu)^{2}}, \quad-\infty<x<\infty,
$$

where $\pi=3.14159$. . and $e=2.71828$. . . .

Theorem 16 The mean and variance of $N(\mu, \sigma)$ are μ and σ^{2}, respectively. Hence, the standard deviation is σ.

Definition 17 The distribution of a normal random variable with mean 0 and variance 1 is called a standard normal distribution Z.

The exponential random variable is used when we are interested in the time of the first arrival or the time between arrival.

Definition 18 The continuous random variable X has an exponential distribution, with parameter λ, if its density function is given by $f(x)= \begin{cases}\lambda e^{-\lambda x}, & x>0 \\ 0 & \text { elsewhere }\end{cases}$ where $\lambda>0$.

Theorem 19 The mean and variance of the exponential distribution are $\mu=1 / \lambda$ and $\sigma^{2}=1 / \lambda^{2}$.

If X is the time of arrival of the first customer and if the average time is 30 minutes, then $\lambda=1 / 30$.

Example 20 Suppose that a system contains a certain type of component whose time, in years, to failure is given by T. The random variable T is modeled nicely by the exponential distribution with mean time to failure is 5 .

1- If one component is installed, what is the probability that it is still functioning at the end of 8 years? 2- If 5 of these components are installed in different systems, what is the probability that at least 2 are still functioning at the end of 8 years? (Hint: use the binomial distribution)

