Chapter 10: Estimation and Hypothesis Testing for Two Population Parameters

Multiple Choice

This activity contains 10 questions.

1. Calculate the standard error of $\bar{x}_{1}-\bar{x}_{2}$ when
[Hint] $\sigma_{1}^{2}=8.7 \quad \sigma_{2}^{2}=13.3$
$n_{1}=45 \quad n_{2}=67$

- 0.392

ค 0.559
ค 0.626
ค 0.638
2. Develop a 95% confidence interval to estimate the difference in SAT math scores from students in Delaware and New jersey. A sample of 45
[Hint] students from Delaware had an average score of 560 with a standard deviation of 110 while a sample of 40 New Jersey students had an average score of 530 with a standard deviation of 115.
c -9.20 to 69.20
(-29.78 to 89.78

- 9.42 to 50.58
- -17.98 to 77.98

3. Calculate the z-test statistic to test the difference in SAT math scores from students in Delaware and New jersey. A sample of 45 students
[Hint] from Delaware had an average score of 560 with a standard deviation of 110 while a sample of 40 New Jersey students had an average score of 530 with a standard deviation of 115 .
```
            0.56
            ( }0.8
C -1.56
(1.23
```

4. When $\boldsymbol{\sigma}^{\mathbf{2}}$ i and $\boldsymbol{\sigma}^{\mathbf{2}} \mathbf{2}^{2}$ are not known, they can be replaced with $\mathbf{s}^{\mathbf{2}}{ }_{1}$ and $\mathbf{s}^{\mathbf{2}} \mathbf{2}$ if what condition is met?
[Hint]
(Equal variances
(Large samples (i.e. greater than 30)

- Normal populations
- Ordinal data

5. When the population standard deviation is unknown and the sample sizes are small, which of the following is not one of the assumptions
[Hint] made for estimating the difference between population means?
(The populations are normally distributed.
(The populations have equal variances.
C The samples are independent.
(The samples are the same size.
6. Two samples were obtained with the following standard deviations:
[Hint] $s_{1}=3.75$ and $s_{2}=6.25$; which of the following is a possible value for the pooled standard deviation?
C 3.0
(3.75
C 4.0
(10.0
7. A company tracks satisfaction scores based on customer feedback from individual stores on a scale of 0-100. The following data represents the [Hint] customer scores from Store \#1 and \#2.

$$
\begin{array}{ll}
\bar{x}_{1}=88.3 & \bar{x}_{2}=82.4 \\
s_{1}=7.30 & s_{2}=6.74 \\
\mathrm{n}_{1}=11 & \mathrm{n}_{2}=10
\end{array}
$$

Calculate the pooled standard deviation. Assume normal populations and equal population variances.
(3.22
(14.84
(10.69
(7.04
8. A company tracks satisfaction scores based on customer feedback from individual stores on a scale of 0-100. The following data represents the
[Hint] customer scores from Store \#1 and \#2.
$\bar{X}_{1}=88.3 \quad \bar{X}_{2}=82.4$
$s_{1}=7.30 \quad s_{2}=6.74$
$\mathrm{n}_{1}=11 \quad \mathrm{n}_{2}=10$

Calculate the t-test statistic with a hypothesized population difference equal to zero. Assume normal populations and equal population variances.

- 1.92
(1.64
(2.33
(2.57

9. A set of paired samples is given below. Find the Sample Standard Deviation for Paired Differences rounded to 2 decimal places.
[Hint]

	Trial 1	Trial 2
1	157	143
2	91	98
3	177	183
4	216	190
5	188	163
6	157	151
7	138	140
8	229	199
9	207	231
10	148	157
0	16.232	
0	17.024	
0	17.944	
0	19.033	

10. A set of paired samples is given below. Find the 95% confidence interval for the difference of means.
[Hint]
Trial 1 Trial 2
$1157 \quad 143$
29198

3	177

$4 \quad 216 \quad 190$
$\begin{array}{lll}5 & 188 & 163\end{array}$
$\begin{array}{lll}6 & 157 & 151\end{array}$
$\begin{array}{lll}7 & 138 & 140\end{array}$
$8 \quad 229 \quad 199$
$9 \quad 207 \quad 231$
$\begin{array}{lll}10 & 148 & 157\end{array}$

- -13.166 to 23.766
(-7.537 to 18.137
C -1.845 to 12.445
- 3.816 to 6.784

