Chapter 12

Simple Linear Regression
12.2:

Fitting a straight line to a set of data yields the prediction line

$$
\widehat{Y}_{1}=7+2 X_{i}
$$

The values of X used to find the prediction line range from 1 to 25
a) Should this model be used to predict the mean value of Y when $\mathrm{X}=3$?
b) Should this model be used to predict the mean value of Y when $X=-3$?
c) Should this model be used to predict the mean value of Y when $X=0$?
d) Should this model be used to predict the mean value of Y when $X=24$?

Solution:

a) Yes
b) No
c) No
d) Yes

Zimmer's posts restaurant ratings for various locations in the United States. A sample of 100 restaurants in New York city was selected.
a) Develop a regression model to predict the cost per person?

$$
\mathrm{b}_{0}=-46.7718 \quad \mathrm{~b}_{1}=1.4963
$$

$$
\widehat{\mathrm{Y}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{\mathrm{i}}
$$

$$
\widehat{Y}=-46.7718+1.4963 X_{i}
$$

b) Predict the mean cost per person for a restaurant when $X_{i}=50$

$$
\widehat{Y}=-46.7718+1.4963(50)=28.0432
$$

a) Compute the coefficient of determination, r^{2}, and interpret its meaning.

Solution:
$\mathrm{r}^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{9740.062}{17844.75}=0.5458$
54.58% of the variation in the cost of a restaurant meal can be explained by the variation in the rating.
b) Determine the standard error of the estimate

$$
S S E=17844.75-9740.062=8104.6871
$$

*The standard error of the estimate

$$
S_{X Y}=\sqrt{\frac{S S E}{n-2}}=\sqrt{\frac{8104.6871}{100-2}}=9.0940
$$

c) How useful do you think this regression model is for predicting the cost of a restaurant meal

Based on (a) the model is only moderately useful for predicting the cost of a restaurant meal.
12.43: based on 12.5

$$
b_{1}=1.4963 \text { and } S_{b_{1}}=0.1379
$$

a) At the 0.05 level of significance. is there evidence of a linear relationship between rating of a restaurant and the cost of a meal?
Solution:
Step 1:
$H_{0}: \beta_{1}=0$ (There is no linear relationship between X and Y , the slope is zero)
$H_{1}: \beta_{1} \neq 0$ (There is linear relationship between X and Y , the slope is not zero)

Step 2 :

$$
t_{\text {stat }}=\frac{b_{1}-\beta_{1}}{S_{b_{1}}}=\frac{b_{1}-0}{S_{b_{1}}}=\frac{b_{1}}{S_{b_{1}}}=\frac{1.4963}{0.1379}=10.8506
$$

Step 3 :
At the $\alpha=0.05$ level of significance

$$
t_{\frac{\alpha}{2}, n-2}=t_{\frac{0.05}{2}, 100-2}=t_{0.025,98}= \pm 1.9845
$$

Step 4: decision
Since the $t_{\text {stat }}=10.8506$ is greater than the upper critical value $t_{\frac{\alpha}{2}, n-2}=1.9845$, reject the null hypothesis. There is evidence of a linear relationship between the cost of a meal and the rating.
b) Construct a 95% confidence interval estimate of the population slope, $\beta 1$.

$$
\beta 1=b_{1} \pm t_{\frac{\alpha}{2}, n-2} S_{b_{1}}
$$

$=1.4963 \pm 1.9845(0.1379)$
$=1.4963 \pm 0.2737$
$1.2206<\beta 1<1.7700$

12.51:

The table below contains the calories and fat, in grams, of seven different types of coffee drinks

Coffee	Calories (X)	Fat(Y)
1	238	7.9
2	259	3.4
3	346	22.2
4	347	19.8
5	419	16.3
6	505	21.5
7	527	18.5

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.697973
R Square	0.487166
Adjusted R	0.384599
Standard E	5.666141
Observatic	7

ANOVA

	$d f$	$S S$	$M S$	F
Regression	1	152.491373	152.491373	4.749747443
Residual	5	160.5257699	32.10515397	
Total	6	313.0171429		

	Coefficient Standard Error		t Stat	P-value	Lower 95\%	Upper 95\% Lower 95.0\%	Upper 95.0\%
Intercept	-1.2703	8.056900953	-0.157668478	0.880887605	-21.98124255	19.440604-21.9812425	19.44060393
XVariable 1	0.04487	0.020586676	2.17939153	0.081175276	-0,008053308	$0.0977862 \cdot 0.00805331$	0.097786163

a) At the 0.05 level of significance, is there a significant linear relationship between calories and fat? (Using t Test)

Solution:
Step 1:
$H_{0}: \beta_{1}=0$ (There is no linear relationship between X and Y , the slope is zero)
$H_{1}: \beta_{1} \neq 0$ (There is linear relationship between X and Y , the slope is not zero)
step 2 :

$$
t_{\text {stat }}=\frac{b_{1}-\beta_{1}}{S_{b_{1}}}=\frac{b_{1}-0}{S_{b_{1}}}=\frac{b_{1}}{S_{b_{1}}}=\frac{0.04487}{0.0205}=2.1887
$$

Step 3:

$$
\begin{aligned}
& t_{\frac{\alpha}{2}, n-2}=t_{\frac{0.05}{2}, 7-2}=t_{0.025,5}= \pm 2.5706 \\
& -t_{\frac{\alpha}{2}, n-2}<t_{\text {stat }}<+t_{\frac{\alpha}{2}, n-2}
\end{aligned}
$$

Step 4:
Decision: Do not reject H_{0}. There is no significant linear relationship between calories and fat
b) At the 0.05 level of significance, is there a significant linear relationship between calories and fat? (Using F Test)

$$
F_{\text {stat }}=\frac{M S R}{M S E}
$$

$$
M S R=\frac{S S R}{C-1}
$$

$$
\mathrm{SSR}=152.49137
$$

$$
\mathrm{SSE}=160.5257699
$$

$$
\begin{aligned}
& \mathrm{MSR}=\frac{S S R}{C-1}=\frac{152.49137}{2-1}=152.49137 \\
& \mathrm{MSE}=\frac{S S E}{n-c}=\frac{160.5257699}{7-2}=32.10515
\end{aligned}
$$

$$
F_{\text {stat }}=\frac{M S R}{M S E}=\frac{152.49137}{32.10515}=4.7497
$$

$$
* * * * F_{\alpha,(C-1),(n-c)}
$$

$$
F_{0.05,1,5}=6.61
$$

$$
F_{S T A T}<F_{\alpha}
$$

Decision: Do not reject H_{0}. There is no significant linear relationship between calories and fat

