Bayes’ Rule
Total Probability

Theorem of the total probability (rule of elimination)

If the events $B_1, B_2, \ldots, B_k$ constitute a partition of the sample space $S$ such that $P(B_i) \neq 0$ for $i = 1, 2, \ldots, k$, then for any event $A$ of $S$,

$$P(A) = \sum_{i=1}^{k} P(B_i \cap A) = \sum_{i=1}^{k} P(B_i)P(A|B_i).$$
Example:
Suppose that our sample space $S$ is the population of adults in a small town who have completed the requirements for a college degree. We shall categorize them according to gender and employment status. The data are given in Table below

<table>
<thead>
<tr>
<th></th>
<th>Employed</th>
<th>Unemployed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>460</td>
<td>40</td>
<td>500</td>
</tr>
<tr>
<td>Female</td>
<td>140</td>
<td>260</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>600</td>
<td>300</td>
<td>900</td>
</tr>
</tbody>
</table>
Suppose that we are now given the additional information that 36 of those employed and 12 of those unemployed are members of the Rotary Club. We wish to find the probability of the event $A$ that the individual selected is a member of the Rotary Club.

$$P(A) = P[(E \cap A) \cup (E' \cap A)] = P(E \cap A) + P(E' \cap A)$$

$$P(E) = \frac{600}{900} = \frac{2}{3}, \quad P(A|E) = \frac{36}{600} = \frac{3}{50},$$

and

$$P(E') = \frac{1}{3}, \quad P(A|E') = \frac{12}{300} = \frac{1}{25}.$$

$$P(A) = \left(\frac{2}{3}\right) \left(\frac{3}{50}\right) + \left(\frac{1}{3}\right) \left(\frac{1}{25}\right) = \frac{4}{75}.$$
Example 2.41: In a certain assembly plant, three machines, $B_1$, $B_2$, and $B_3$, make 30%, 45%, and 25%, respectively, of the products. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

Solution: Consider the following events:

$A$: the product is defective,

$B_1$: the product is made by machine $B_1$,

$B_2$: the product is made by machine $B_2$,

$B_3$: the product is made by machine $B_3$.

Applying the rule of elimination, we can write

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3).$$
\[ P(B_1)P(A|B_1) = (0.3)(0.02) = 0.006, \]
\[ P(B_2)P(A|B_2) = (0.45)(0.03) = 0.0135, \]
\[ P(B_3)P(A|B_3) = (0.25)(0.02) = 0.005, \]

and hence

\[ P(A) = 0.006 + 0.0135 + 0.005 = 0.0245. \]
\[ P(B_1) = 0.3 \quad B_1 \quad P(A | B_1) = 0.02 \quad A \]

\[ P(B_2) = 0.45 \quad B_2 \quad P(A | B_2) = 0.03 \quad A \]

\[ P(B_3) = 0.25 \quad B_3 \quad P(A | B_3) = 0.02 \]
Bayes’ Rule

• Instead of asking for P(A) in the above example, by the rule of elimination, suppose that we now consider the problem of finding the conditional probability P(Bi|A). In other words, suppose that a product was randomly selected and it is defective. What is the probability that this product was made by machine Bi? Questions of this type can be answered by using the following theorem, called Bayes’ rule.
Theorem:

(Bayes’ Rule) If the events $B_1, B_2, \ldots, B_k$ constitute a partition of the sample space $S$ such that $P(B_i) \neq 0$ for $i = 1, 2, \ldots, k$, then for any event $A$ in $S$ such that $P(A) \neq 0$,

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^{k} P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^{k} P(B_i)P(A|B_i)}$$

for $r = 1, 2, \ldots, k$. 
Example 2.42: With reference to Example 2.41, if a product was chosen randomly and found to be defective, what is the probability that it was made by machine $B_3$?

Solution: Using Bayes’ rule to write

$$P(B_3|A) = \frac{P(B_3)P(A|B_3)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)},$$

and then substituting the probabilities calculated in Example 2.41, we have

$$P(B_3|A) = \frac{0.005}{0.006 + 0.0135 + 0.005} = \frac{0.005}{0.0245} = \frac{10}{49}.$$ 

In view of the fact that a defective product was selected, this result suggests that it probably was not made by machine $B_3$. 

\[\square\]
Example 2.43: A manufacturing firm employs three analytical plans for the design and development of a particular product. For cost reasons, all three are used at varying times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products, respectively. The defect rate is different for the three procedures as follows:

\[ P(D|P_1) = 0.01, \quad P(D|P_2) = 0.03, \quad P(D|P_3) = 0.02, \]

where \( P(D|P_j) \) is the probability of a defective product, given plan \( j \). If a random product was observed and found to be defective, which plan was most likely used and thus responsible?

**Solution:** From the statement of the problem

\[ P(P_1) = 0.30, \quad P(P_2) = 0.20, \quad \text{and} \quad P(P_3) = 0.50, \]

we must find \( P(P_j|D) \) for \( j = 1, 2, 3 \). Bayes' rule (Theorem 2.14) shows
\[ P(P_1|D) = \frac{P(P_1)P(D|P_1)}{P(P_1)P(D|P_1) + P(P_2)P(D|P_2) + P(P_3)P(D|P_3)} \]
\[ = \frac{(0.30)(0.01)}{(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02)} = \frac{0.003}{0.019} = 0.158. \]

Similarly,
\[ P(P_2|D) = \frac{(0.03)(0.20)}{0.019} = 0.316 \text{ and } P(P_3|D) = \frac{(0.02)(0.50)}{0.019} = 0.526. \]

The conditional probability of a defect given plan 3 is the largest of the three; thus a defective for a random product is most likely the result of the use of plan 3.