Thermodynamics: An Engineering Approach 8th Edition Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015

CHAPTER 14 GAS-VAPOR MIXTURES AND AIR-CONDITIONING

Lecture slides by Mehmet Kanoglu

Copyright © The McGraw-Hill Education. Permission required for reproduction or display.

DRY AND ATMOSPHERIC AIR

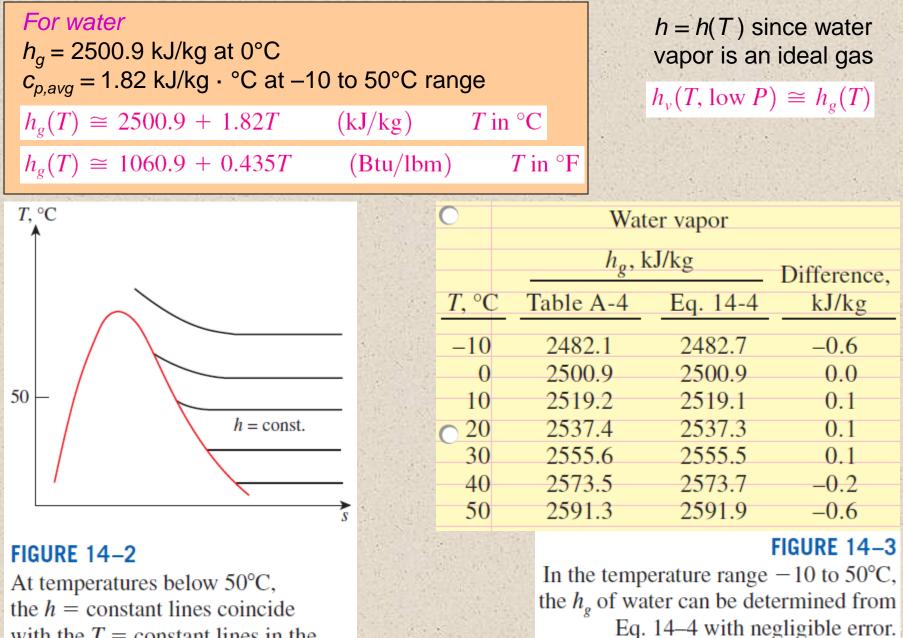
Atmospheric air: Air in the atmosphere containing some water vapor (or *moisture*).
Dry air: Air that contains no water vapor.
Water vapor in the air plays a major role in human comfort. Therefore, it is an important consideration in air-conditioning applications.

 $h_{\rm dry \, air} = c_p T = (1.005 \text{ kJ/kg} \cdot ^{\circ}\text{C})T \qquad (\text{kJ/kg})$

$$\Delta h_{\rm dry \, air} = c_p \Delta T = (1.005 \text{ kJ/kg} \cdot ^{\circ}\text{C}) \Delta T \qquad (\text{kJ/kg})$$

Water vapor in air behaves as if it existed alone and obeys the ideal-gas relation Pv = RT. Then the atmospheric air can be treated as an ideal-gas mixture:

 $P = P_a + P_v \qquad \text{(kPa)}$


P_a Partial pressure of dry air

 P_v Partial pressure of vapor (vapor pressure)

	Dry air	
	<i>T</i> , °C	<i>c_p</i> , kJ/kg·°C
	-10	1.0038
	0	1.0041
	10	1.0045
	20	1.0049
	30	1.0054
-+1	40	1.0059
	50	1.0065

FIGURE 14-1

The c_p of air can be assumed to be constant at 1.005 kJ/kg·°C in the temperature range -10 to 50°C with an error under 0.2 percent.

with the T = constant lines coincidesuperheated vapor region of water.

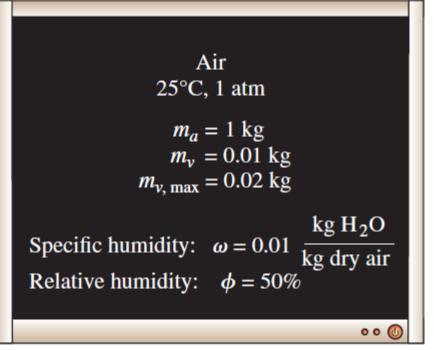
SPECIFIC AND RELATIVE HUMIDITY OF AIR

Absolute or specific humidity (humidity ratio): The mass of water vapor present in a unit mass of dry air.

$$\omega = \frac{m_v}{m_a} \qquad (\text{kg water vapor/kg dry air})$$
$$\omega = \frac{m_v}{m_a} = \frac{P_v V/R_v T}{P_a V/R_a T} = \frac{P_v /R_v}{P_a /R_a} = 0.622 \frac{P_v}{P_a}$$
$$\omega = \frac{0.622 P_v}{P_a - P_v} \qquad (\text{kg water vapor/kg dry air})$$

Saturated air: The air saturated with moisture.

Relative humidity: The ratio of the amount of moisture the air holds (m_v) to the maximum amount of moisture the air can hold at the same temperature (m_g) .


$$\phi = \frac{m_v}{m_g} = \frac{P_v V/R_v T}{P_g V/R_v T} = \frac{P_v}{P_g} \qquad P_g = P_{\text{sat } @ T}$$

Air 25° C, 100 kPa $(P_{\text{sat},\text{H}_2\text{O} @ 25^{\circ}\text{C}} = 3.1698 \text{ kPa})$ $P_v = 0 \rightarrow \text{dry air}$ $P_v < 3.1698 \text{ kPa} \rightarrow \text{unsaturated air}$ $P_v = 3.1698 \text{ kPa} \rightarrow \text{saturated air}$

FIGURE 14-4

4

For saturated air, the vapor pressure is equal to the saturation pressure of water.

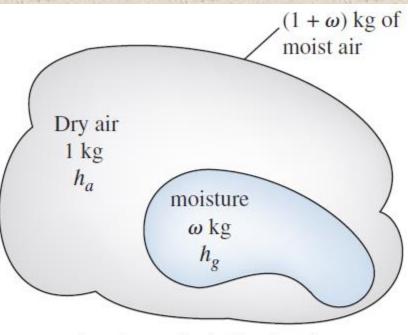
FIGURE 14-5

Specific humidity is the actual amount of water vapor in 1 kg of dry air, whereas relative humidity is the ratio of the actual amount of moisture in the air at a given temperature to the maximum amount of moisture air can hold at the same temperature. $\phi = \frac{\omega P}{(0.622 + \omega)P_g} \quad \text{and} \quad \omega = \frac{0.622\phi P_g}{P - \phi P_g}$

What is the relative humidity of dry air and saturated air?

In most practical applications, the amount of dry air in the air– water-vapor mixture remains constant, but the amount of water vapor changes.

Therefore, the enthalpy of atmospheric air is expressed *per unit mass of dry air.*


$$H = H_a + H_v = m_a h_a + m_v h_v$$

$$h = \frac{H}{m_a} = h_a + \frac{m_v}{m_a}h_v = h_a + \omega h_v$$

 $h_v \cong h_g$

 $h = h_a + \omega h_o$

Dry-bulb temperature: The ordinary temperature of atmospheric air.

 $h = h_a + \omega h_g$, kJ/kg dry air

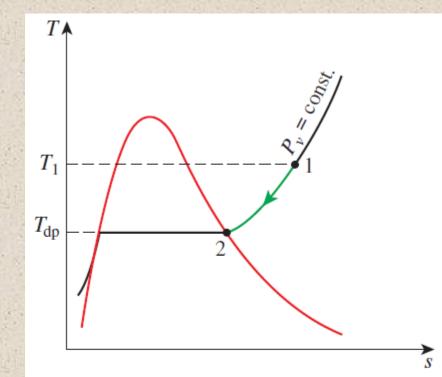
FIGURE 14-6

The enthalpy of moist (atmospheric) air is expressed per unit mass of dry air, not per unit mass of moist air.

DEW-POINT TEMPERATURE

Dew-point temperature T_{dp} :

The temperature at which condensation begins when the air is cooled at constant pressure (i.e., the saturation temperature of water corresponding to the vapor


pressure.)

 $T_{\rm dp} = T_{\rm sat @ P_v}$

Moist air

Liquid water droplets (dew)

FIGURE 14–8

Constant-presssure cooling of moist air and the dew-point temperature on the *T*-*s* diagram of water.

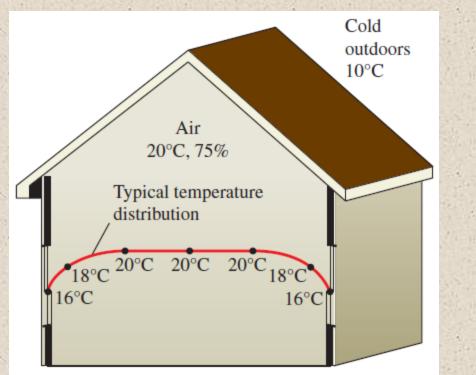

7

FIGURE 14-9

When the temperature of a cold drink is below the dew-point temperature of the surrounding air, it "sweats."

EXAMPLE 14–2 Fogging of the Windows in a House

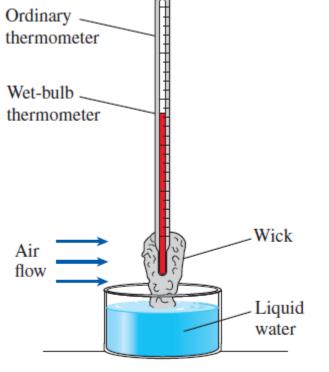

In cold weather, condensation frequently occurs on the inner surfaces of the windows due to the lower air temperatures near the window surface. Consider a house, shown in Fig. 14–10, that contains air at 20°C and 75 percent relative humidity. At what window temperature will the moisture in the air start condensing on the inner surfaces of the windows?

 $P_v = \phi P_{g@20^\circ C} = (0.75)(2.3392 \text{ kPa}) = 1.754 \text{ kPa}$

 $T_{\rm dp} = T_{\rm sat @ 1.754 kPa} = 15.4 \,^{\circ}{\rm C}$

 $T_{\rm dp} = T_{\rm sat @ P_v}$

air can be determined from these equations by


measuring the pressure and temperature of air

at the inlet and the exit of an adiabatic saturator.

FIGURE 14–11

The adiabatic saturation process and its representation on a *T-s* diagram of water. The adiabatic saturation process is not practical. To determine the absolute and relative humidity of air, a more practical approach is to use a thermometer whose bulb is covered with a cotton wick saturated with water and to blow air over the wick.

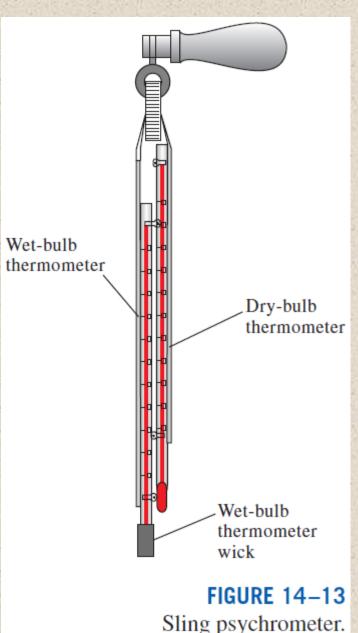
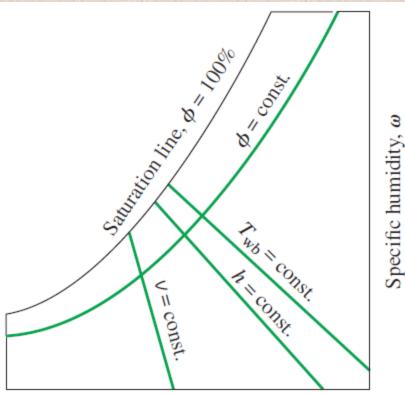
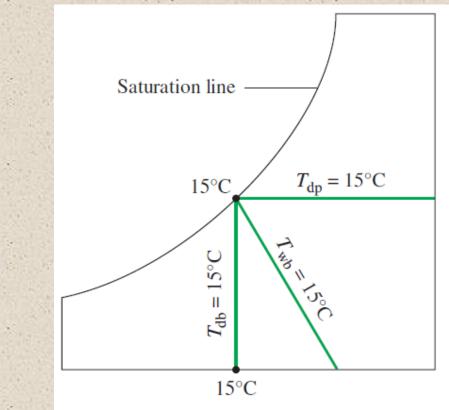

The temperature measured is the wetbulb temperature *T*_{wb} and it is commonly used in A-C applications.

FIGURE 14–12


A simple arrangement to measure the wet-bulb temperature.

For air–water vapor mixtures at atmospheric pressure, T_{wb} is approximately equal to the adiabatic saturation temperature.


THE PSYCHROMETRIC CHART

Psychrometric charts: Present moist air properties in a convenient form. They are used extensively in A-C applications. The psychrometric chart serves as a valuable aid in visualizing the A-C processes such as heating, cooling, and humidification.

Dry-bulb temperature

FIGURE 14–14 Schematic for a psychrometric chart.

FIGURE 14–15

For saturated air, the dry-bulb, wet-bulb, and dew-point temperatures are identical.