STAT 105

Chapter 1 Some Discrete and Continuous Probability Distributions

Dr. Mona Elwakeel

- Inneno

Dr. Mona Fouad Elwakeel

Discrete Probability Distributions:

Definition:

The set of ordered pairs $(\mathbf{x}, \mathbf{f}(\mathbf{x}))$ is a probability function, probability mass function or probability distribution of the discrete random variable \mathbf{X} if for each possible outcome \mathbf{x} ,

 $1. f(x) \ge 0$

$$2.\sum_{\forall x} f(x) = 1$$

3. P(X=x) = f(x)

Dr. Mona Fouad Elwakeel

The Cumulative distribution Function:

The cumulative distribution function, denoted by $\mathbf{F}(\mathbf{x})$ of a discrete random variable \mathbf{X} with probability distribution $\mathbf{f}(\mathbf{x})$ is given by:

$$F(x) = P(X \le x) = \sum_{X < x} f(x) \qquad for -\infty < x < \infty \quad (1)$$

For example $F(2) = P(x \le 2)$

$$P(a \le X \le b) = F(b) - F(a-1) \tag{2}$$

For example $F(3 \le x \le 7) = F(7) - F(2)$

8

Stat 105

Dr. Mona Fouad Elwakeei

Theorem:

The mean and variance of the discrete distributions are given by:

$$\mu = \frac{\sum_{i=1}^{n} X_{i}}{n} ,$$

$$\sigma^{2} = \frac{\sum_{i=1}^{n} (X - \mu)^{2}}{n} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n\mu^{2}}{n}$$

Stat 10:

Dr. Mona Fouad Elwakeel

Continuous Probability Distributions

The function f(x) is a probability density function for the continuous random variable X defined over the set of real numbers R, if:

1.
$$f(x) \ge 0$$
 for all $x \in R$

$$2.\int_{-\infty}^{\infty} f(x) \ dx = 1$$

3.
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

5

Stat 105

Dr. Mona Fouad Elwakeel

The Cumulative Distribution

The cumulative distribution $\mathbf{F}(\mathbf{x})$ of a continuous random variable \mathbf{X} with density function $\mathbf{f}(\mathbf{x})$ is given by:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)dx \quad for \quad -\infty < x < \infty$$

$$P(a \le X \le b) = P(a < X < b) = F(b) - F(a)$$

Dr. Mona Fouad Elwakeel

Normal Distribution:

The probability density function of the normal random variable X, with mean μ and variance σ² is given by:

$$f(x,\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\Pi}} e^{-\frac{1}{2}(\frac{X-\mu}{\sigma})^2}, \quad -\infty < x < \infty$$

Dr. Mona Fouad Elwakeel

Properties of The Normal Curve:

- The curve is symmetric about a vertical axis through the mean μ .

9

Stat 105

Dr. Mona Fouad Elwakeel

- The normal curve approaches the horizontal axis asymptotically as we proceed in either direction away from the mean.
- The total area under the curve and above the horizontal axis is equal to1.

Dr. Mona Fouad Elwakeel

Standard Normal Distribution:

- The distribution of a normal random variable with mean zero and variance one is called a standard normal distribution denoted by Z≈N(0,1)
- Areas under the Normal Curve:

$$X \approx N(\mu, \sigma)$$

$$Z = \frac{X - \mu}{\sigma} \approx N (0,1)$$

 Using the standard normal tables to find the areas under the curve.

11

Stat 10:

Dr. Mona Fouad Elwakeel

The pdf of $Z\sim N(0,1)$ is given by:

Dr. Mona Fouad Elwakeel

EX (1):

Using the tables of the standard normal distribution, find:

- (a)P(Z < 2.11)
- (b)P(Z > -1.33)
- (c)P(Z=3)
- (d)P(-1.2 < Z < 2.1)

$$(b) P(Z > -1.33) = 1 - 0.0918 = 0.9082$$

Using the standard normal tables, find the area under the curve that lies:

- A. to the right of Z=1.84
- B. to the left of z=2.51
- c. between z=-1.97 and z=0.86
- D. at the point z=-2. 15

17

Solution:

A. to the right of Z=1.84

$$P(Z > 1.84) = 1 - 0.9671 = 0.0329$$

Dr. Mona Fouad Elwakeel

D. at the point z=-2. 15

$$P(Z = -2.15) = 0$$

EX (3):

Find the constant K using the tables such

that:
$$P(Z > K) = 0.3015$$

(b)
$$P(K < Z < -0.18) = 0.4197$$

EX (4):

Dr. Mona Fouad Elwakeel

Given a normal distribution with $\mu=50$, $\sigma=10$. Find the probability that **X** assumes a value between **45** and **62**.

Solution:

$$P(45 < X < 62) = P(\frac{45 - 50}{10} < Z < \frac{62 - 50}{10}) = P(-0.5 < Z < 1.2)$$
$$= 0.8849 - 0.3085 = 0.5764$$

Stat 105

Dr. Mona Fouad Elwakeel

EX(5):

Given a normal distribution with $\mu=300$, $\sigma=50$, find the probability that **X** assumes a value greater than **362**.

Solution:

$$P(X > 362) = P(Z > \frac{362 - 300}{50}) = P(Z > 1.24)$$

=1-0.8925=0.1075

Dr. Mona Fouad Elwakeel

t– Distribution:

- *tdistribution has the following properties:
- 1. It has mean of zero.
- 2. It is symmetric about the mean.
- 3. It ranges from -∞ to ∞

- 4. Compared to the normal distribution, the */distribution is less peaked in the center and has higher tails.
- 5. It depends on the degrees of freedom (n-1).
- 6. The t-distribution approaches the normal distribution as (n-1) approaches ∞.

27

EX(6):

Find:

$$(a)t_{0.025}$$
 when $v = 14$

$$(b)t_{0.01} \ when \ v = 10$$

$$(c)t_{0.995}$$
 when $v = 7$

Dr. Mona Fouad Elwakeel

solution

(a)
$$t_{0.025}$$
 at $v = 14 \rightarrow t = -2.1448$

(b)
$$t_{0.01}$$
 at $v = 10 \rightarrow t = -2.764$

$$(c)t_{0.995}$$
 at $v = 7 \rightarrow t = 3.4995$

29

Stat 105

Dr. Mona Fouad Elwakeel

The Chi- Square Distribution

The chi-square distribution is important because it is the basis for a number of procedures in statical inference. The central role played by the chi-square distribution in inference springs from its relationship to normal distribution. We will discuss this distribution in more detail in later chapters.

Dr. Mona Fouad Elwakeel

Let ν be a positive integer. Then a random variable X is said to have a chi-square distribution with parameter ν if the pdf of X is the gamma density with $\alpha = \nu \setminus 2$ and $\beta = 2$. The pdf of a chi-square rv is:

$$f(x;v) = \begin{cases} \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{(\nu/2)-1} e^{-x/2} &, x \ge 0\\ 0 &, otherwise \end{cases}$$

The parameter ν is called the number of degrees of freedom (df) of X. The symbol χ^2 is often used in place of "chi-square"

31

Stat 105

Dr. Mona Fouad Elwakeel

EX(9):

By using table of chi- square distribution, Find:

a)
$$\chi^2_{0.995}$$
 when $\nu = 19$

b)
$$\chi^2_{0.025}$$
 when $\nu = 15$

c)
$$\chi_{0.95}^2$$
 when $\nu = 2$

Dr. Mona Fouad Elwakeel

solution

a)
$$\chi_{19, 0.995}^2 = 38.582$$

b)
$$\chi^2_{15, 0.025} = 6.262$$

c)
$$\chi^2_{2, 0.95} = 5.991$$

33

Note that:

When the degree of freedom (df) not exist in the table of chi square, we have to use the following rule:

$$\chi_{A,df}^2 = \chi_{A,df(L)}^2 + \frac{df - df(L)}{df(H) - df(L)} [\chi_{A,df(H)}^2 - \chi_{A,df(L)}^2]$$

EX(10):

By using table of chi-square distribution, Find:

 $\chi^2_{42,0.975}$

Solu:

$$\chi_{42,0.975}^{2} = \chi_{40,0.975}^{2} + \frac{42-40}{45-40} \left[\chi_{45,0.975}^{2} - \chi_{40,0.975}^{2} \right]$$
$$= 59.342 + \frac{2}{5} \left[65.410 - 59.342 \right] = 61.7692$$

35

Stat 105

Dr. Mona Fouad Elwakeel

F-Distribution:

The F- distribution

For tests involving two variances, it is necessary to have independent samples (of size n_1, n_2) from two normal distributions. Under these conditions, we can get a new random variable has F-distribution with degrees of freedom (n_1-1) , (n_2-1) and denoted by $F_{(n_1-1),(n_2-1)}$ which can be obtained from its tables at a different values of α . Note that a variable with F distribution can only have positive values.

9/4/2012

Stat 105

Dr. Mona Fouad Elwakeel

EX(11):

From the tables of F-distribution ,Find:

- a) $F_{0.995,15,24}$
- b) $F_{0.005,15,24}$
- c) $F_{0.9,10,8}$

37

Stat 105

Dr. Mona Fouad Elwakeel

solution

- a) $F_{0.995,15,24} = 3.25$
- b) $F_{0.005,15,22} = \frac{1}{F_{0.995,24,15}} = \frac{1}{3.79} = 0.2639$
- c) $F_{0.9,10,8} = 2.54$