Theory of statistics 2

Department of Statistics and Operations Research

October 13, 2019

Introduction

Let $f(x ; \theta)$ be a given probability distribution function (pdf) where θ is an unknown parameter which we should estimate or we should estimate a function of $\theta, \tau(\theta)$. We usually initiate by drawing from $f(x ; \theta)$ a random sample X_{1}, \ldots, X_{n}, which is abbreviated by:

$$
X_{1}, \ldots, X_{n} \sim f(x ; \theta)
$$

For the random vector $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$, any function $T(\underline{X})$ is called statistic. Besides, it is well-known likelihood function given as:

$$
L(\underline{X} ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

Examples

1. The exponential distribution

Suppose that $X_{1}, \ldots, X_{n} \sim \exp (\theta)$, i.e.
$f_{\exp (\theta)}(x ; \theta)=\theta e^{-\theta x}, \quad x>0$. Then

$$
T(\underline{X})=\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(n, \theta)
$$

where $f_{\operatorname{Gamma}(n, \theta)}(x ; \theta)=\frac{\theta^{n}}{\Gamma(n)} x^{n-1} e^{-\theta x}, \quad x>0$. Note that
$\Gamma(n)=(n-1)!, \operatorname{Gamma}(1, \theta)=\exp (\theta)$ and $\operatorname{Gamma}(k / 2,1 / 2)=\mathcal{X}_{k}^{2}$.

Examples

2. The normal distribution

Suppose that $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$. Then
If μ is known $T(\underline{X})=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \mathcal{X}_{n}^{2}$.
If μ is unknown $T(\underline{X})=\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2}=\frac{(n-1) S^{2}}{\sigma^{2}} \sim \mathcal{X}_{n-1}^{2}$.

Properties

1. If $Z \sim N(0,1)$ and $U \sim \mathcal{X}_{k}^{2}$, then $T(\underline{X})=\frac{Z}{\sqrt{\frac{U}{k}}} \sim t_{k}$.
2. If $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$, then $T(\underline{X})=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$ and
$T(\underline{X})=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1}$.
3. If $X \sim \operatorname{Gamma}(n, \theta)$, then $T(X)=2 \theta X \sim \mathcal{X}_{2 n}^{2}$.
4. Let X be a random variable. The cumulative function $F_{X} \sim U(0,1)$.
5. If $X \sim U(0,1)$, then $T(X)=-\log (X) \sim \exp (1)$.
6. Let X_{1}, \ldots, X_{n} be n random variables iid. Form P4 and P5, we get $-\log \left(F_{X_{i}}\right) \sim \exp (1)$. Thus, $-\sum_{i=1}^{n} \log \left(F_{X_{i}}\right) \sim \operatorname{Gamma}(n, 1)$ and
consequently $-2 \sum_{i=1}^{n} \log \left(F_{X_{i}}\right) \sim \mathcal{X}_{2 n}^{2}$ (using P3).

Properties

7. If $U \sim \mathcal{X}_{n}^{2}$ and $W \sim \mathcal{X}_{m}^{2}$, then $U / W \sim F(n, m)$.
8. Let X_{1}, \ldots, X_{n} be n random variables iid. The order statistics is given by:

$$
X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(r)} \leq \ldots \leq X_{(n)} .
$$

The order statistics $X_{(r)}$ has the following density function:

$$
f_{r}(x)=\frac{n!}{(r-1)!(n-r)!} F(x)^{r-1} f(x)(1-F(x))^{n-r} .
$$

If $r=1, f_{1}(x)=n f(x)(1-F(x))^{n-1}$.
If $r=n, f_{n}(x)=n F(x)^{n-1} f(x)$.

Some rules

1. Let $X \sim f(x)$ and $Y=h(X)$, where h is a bijective differentiable function. Then the density function g of Y is given by

$$
g(y)=\left|\frac{d h^{-1}(y)}{d y}\right| f\left(h^{-1}(y)\right)
$$

2. Let $\left(X_{1}, X_{2}\right) \sim f\left(x_{1}, x_{2}\right)$. Then

If $Y=X_{1}+X_{2}$, then $g(y)=\int f\left(y-x_{2}, x_{2}\right) d x_{2}$.
If $Y=X_{1}-X_{2}$, then $g(y)=\int f\left(y+x_{2}, x_{2}\right) d x_{2}$.
If $Y=X_{1} \times X_{2}$, then $g(y)=\int f\left(y / x_{2}, x_{2}\right) \frac{1}{x_{2}} d x_{2}$.
If $Y=X_{1} / X_{2}$, then $g(y)=\int f\left(y x_{2}, x_{2}\right) x_{2} d x_{2}$.

Thank you

$$
4 \square>4 \text { 岛 } \downarrow 4 \equiv \stackrel{\equiv}{ }
$$

