Engineering Probability \& Statistics (AGE 1150)
 Chapter 2: Probability - Part 1

Dr. Feras Fraige

Sample Space (S)

- Experiment: is some procedure (or process) that we do and it results in an outcome.

Definition 2.1:

- The set of all possible outcomes of a statistical experiment is called the sample space and is denoted by S.
- Each outcome (element or member) of the sample space S is called a sample point.
- Example: the sample space S , of possible outcomes when a coin is flipped, may be written

$$
\begin{aligned}
& S=\{H, T\}, \\
& \text { where } H \text { and } T \text { correspond to heads and tails, respectively }
\end{aligned}
$$

Events

Definition 2.2:
An event A is a subset of the sample space S. That is $A \subseteq S$.

- We say that an event A occurs if the outcome (the result) of the experiment is an element of A.
- $\phi \subseteq S$ is an event (ϕ is called the impossible event)
- $S \subseteq S$ is an event (S is called the sure event)

Example

- Experiment: Tossing a die, or Selecting a ball from a box containing 6 balls numbered 1,2,3,4,5 and 6.
- This experiment has 6 possible outcomes
- The sample space is $S=\{1,2,3,4,5,6\}$.
- Consider the following events:
- $E_{1}=$ getting an even number $=\{2,4,6\} \subseteq S$
- $E_{2}=$ getting a number less than $4=\{1,2,3\} \subseteq S$
- $E_{3}=$ getting 1 or $3=\{1,3\} \subseteq S$
- $E_{4}=$ getting an odd number $=\{1,3,5\} \subseteq S$
- $E_{5}=$ getting a negative number $=\{ \}=\varphi \subseteq S$
- $E_{6}=$ getting a number less than $10=\{1,2,3,4,5,6\}=S \subseteq S$
- $n(S)=$ no. of outcomes (elements) in S. in the above example $=6$
- $n(E)=n o$. of outcomes (elements) in the event E. for $E_{1}=3, E_{5}=0$, and $E_{3}=2$,

Example

- Experiment: Selecting 3 items from manufacturing process; each item is inspected and classified as defective (D) or non-defective (N).
- Draw tree diagram of the possible outcomes as
- This experiment has 8 possible outcomes $S=\{$ DDD, DDN,DND,DNN,NDD,NDN,NND,NNN $\}$
- Consider the following events:
- $\mathrm{A}=\{$ at least 2 defectives $\}=\{\mathrm{DDD}, \mathrm{DDN}, \mathrm{DND}, \mathrm{NDD}\} \subseteq \mathrm{S}$
- $\mathrm{B}=\{$ at most one defective $\}=\{\mathrm{DNN}, \mathrm{NDN}, \mathrm{NND}, \mathrm{NNN}\} \subseteq \mathrm{S}$
- $\mathrm{C}=\{3$ defectives $\}=\{\mathrm{DDD}\} \subseteq S$

Some Operations on Events 1

- Let A and B be two events defined on the sample space S. Definition 2.3: Complement of The Event A :
- A^{c} or A^{\prime} or \bar{A}
- $A^{c}=\{x \in S: x \notin A\}$
- A^{c} consists of all points of S that are not in A.
- A^{c} occurs if A does not.

Some Operations on Events 2

- Definition 2.4: Intersection:
- $A \cap B=A B=\{x \in S: x \in A$ and $x \in B\}$
- $A \cap B$ Consists of all points in both A and B.
- $A \cap B$ Occurs if both A and B occur together.

Some Operations on Events 3

- Definition 2.5: Mutually Exclusive (Disjoint) Events:

- Two events A and B are mutually exclusive (or disjoint) if and only if $A \cap B=\phi$; that is, A and B have no common elements (they do not occur together).

A and B are mutually exclusive (disjoint)

A and B are not mutually exclusive

Some Operations on Events 4

- Definition 2.6: Union:
- $A \cup B=\{x \in S: x \in A$ or $x \in B\}$
- $A \cup B$ Consists of all outcomes in A or in B or in both A and B.
- $A \cup B$ Occurs if A occurs, or B occurs, or both A and B occur.
- That is $A \cup B$ Occurs if at least one of A and B occurs.

Counting Sample Points

- There are many counting techniques which can be used to count the number points in the sample space (or in some events) without listing each element.
- In many cases, we can compute the probability of an event by using the counting techniques.
- multiplication rule: If an operation can be performed in $n 1$ ways, and if for each of these ways a second operation can be performed in $n 2$ ways, then the two operations can be performed together in $n 1 n 2$ ways.

Counting Sample Points

Example: How many sample points are there in the sample space when a pair of dice is thrown once?

- Solution : The first die can land face-up in any one of $n 1=6$ ways. For each of these 6 ways, the second die can also land face-up in $n 2=6$ ways. Therefore, the pair of dice can land in $n 1 n 2=(6)(6)=36$ possible ways.

If an operation can be performed in $n 1$ ways, and if for each of these a second operation can be performed in $n 2$ ways, and for each of the first two a third operation can be performed in $n 3$ ways, and so forth, then the sequence of k operations can be performed in $\underline{n 1 n 2 \cdots n k}$ ways.

Counting Sample Points

Combinations:

- In many problems, we are interested in the number of ways of selecting r objects from n objects without regard to order. These selections are called combinations.
- Notation:
- n factorial is denoted by n ! and is defined by:
$n!=n \times(n-1) \times(n-2) \times \cdots \times(2) \times(1) \quad$ for $n=1,2, \cdots$
$0!=1$

Example: $5!=5 \times 4 \times 3 \times 2 \times 1=120$

Theorem 2.8:

- The number of combinations of n distinct objects taken r at a time is denoted by $\binom{n}{r}$ and is given by:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} ; \quad r=0,1,2, \ldots, n
$$

- And it is read as " n " choose " r ".
- The number of different ways of selecting r objects from n distinct objects.
- The number of different ways of dividing n distinct objects into two subsets; one subset contains r objects and the other contains the rest ($n-r$) objects.

Example

- If we have 10 equal-priority operations and only 4 operating rooms are available, in how many ways can we choose the 4 patients to be operated on first?
$n=10 r=4$
The number of different ways for selecting 4 patients from 10 patients is

$$
\begin{aligned}
&\binom{10}{4}= \frac{10!}{4!(10-4)!}=\frac{10!}{4!\times 6!}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(4 \times 3 \times 2 \times 1) \times(6 \times 5 \times 4 \times 3 \times 2 \times 1)} \\
&=210 \quad(\text { different ways })
\end{aligned}
$$

Probability of an Event

- To every point (outcome) in the sample space of an experiment S, we assign a weight (or probability), ranging from 0 to 1 , such that the sum of all weights (probabilities) equals 1.
- The weight (or probability) of an outcome measures its likelihood (chance) of occurrence.
- To find the probability of an event A, we sum all probabilities of the sample points in A. This sum is called the probability of the event A and is denoted by $\mathrm{P}(A)$.

- Definition 2.8:

- The probability of an event A is the sum of the weights (probabilities) of all sample points in A. Therefore, 1. $0 \leq P(A) \leq 1$

$$
\text { 2. } \quad P(S)=1
$$

$$
\text { 3. } P(\phi)=0
$$

Example

A balanced coin is tossed twice. What is the probability that at least one head occurs?

Solution: $\mathrm{H}=$ Head, $\mathrm{T}=$ Tail.

- $S=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- $A=\{$ at least one head occurs $\}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}\}$
- Since the coin is balanced, the outcomes are equally likely; i.e., all outcomes have the same weight or probability.

Outcome	Weight (Probability)	$\begin{aligned} & 4 \mathrm{w}=1 \Leftrightarrow \mathrm{w}=1 / 4=0.25 \\ & \mathrm{P}(\mathrm{HH})=\mathrm{P}(\mathrm{HT})=\mathrm{P}(\mathrm{TH})=\mathrm{P}(\mathrm{TT})=0.25 \end{aligned}$
HH	$\mathrm{P}(\mathrm{HH})=\mathrm{w}$	The probability that at least one head occurs is:
HT	$\mathrm{P}(\mathrm{HT})=\mathrm{w}$	$\mathrm{P}(A)=\mathrm{P}(\{$ at least one head occurs $\})=\mathrm{P}(\{\mathrm{HH}$,
TH	$\mathrm{P}(\mathrm{TH})=\mathrm{w}$	HT, TH\})
TT	$\mathrm{P}(\mathrm{TT})=\mathrm{w}$	$=\mathrm{P}(\mathrm{HH})+\mathrm{P}(\mathrm{HT})+\mathrm{P}(\mathrm{TH})$
sum	$4 \mathrm{w}=1$	25+0.25+0.25

Theorem 2.9:

- If an experiment has $n(S)=N$ equally likely different outcomes, then the probability of the event A is:

$$
P(A)=\frac{n(A)}{n(S)}=\frac{n(A)}{N}=\frac{n o . \text { of outcomes in } A}{n o . \text { of outcomes in } S}
$$

Example

A mixture of candies consists of 6 mints, 4 toffees, and 3 chocolates. If a person makes a random selection of one of these candies, find the probability of getting:
(a) a mint
(b) a toffee or chocolate.

- Define the following events:
- $M=$ \{getting a mint $\}$
- $T=$ \{getting a toffee $\}$
- $C=$ \{getting a chocolate $\}$
- Experiment: selecting a candy at random from 13 candies, $n(S)=$ no. of outcomes of the experiment of selecting a candy.
$=$ no. of different ways of selecting a candy from 13 candies.
$=\binom{13}{1}=13$

Cont.

- The outcomes of the experiment are equally likely because the selection is made at random.
(a) $M=$ \{getting a mint $\}$
$n(M)=$ no. of different ways of selecting a mint candy from 6 mint candies $=\binom{6}{1}=6$
$\mathrm{P}\left(\mathrm{M}^{\prime}\right)=\mathrm{P}(\{$ getting a mint $\})=\frac{n(M)}{n(S)}=\frac{6}{13}$
(b) $T \cup C=$ \{getting a toffee or chocolate $\}$
$n(T \cup C)=$ no. of different ways of selecting a toffee or a chocolate candy
$=$ no. of different ways of selecting a toffee candy + no. of different ways of selecting a chocolate candy
$=\binom{4}{1}+\binom{3}{1}=4+3=7 \Rightarrow \mathrm{P}(T \cup C)=\mathrm{P}(\{$ getting a toffee or chocolate $\})=\frac{n(T \cup C)}{n(S)}=\frac{7}{13}$

