Engineering Probability & Statistics (AGE 1150) Chapter 2: Probability – Part 2

Dr. Feras Fraige

Additive Rules

Theorem 2.10:

• If A and B are any two events, then: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Corollary 1:

• If A and B are mutually exclusive (disjoint) events (i.e. $P(A \cap B) = 0$, then: $P(A \cup B) = P(A) + P(B)$

Corollary 2:

• If $A_1, A_2, ..., A_n$ are *n* mutually exclusive (disjoint) events, then:

 $P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$

John is going to graduate from an industrial engineering department in a university by the end of the semester. After being interviewed at two companies he likes, he assesses that his probability of getting an offer from company *A* is 0.8, and his probability of getting an offer from company *B* is 0.6. If he believes that the probability that he will get offers from both companies is 0.5, what is the probability that he will get at least one offer from these two companies?

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.8 + 0.6 - 0.5 = 0.9.$$

What is the probability of getting a total of 7 or 11 when a pair of fair dice is tossed?

- Let A be the event that 7 occurs and B the event that 11 comes up. Now, a total of 7 occurs for 6 of the 36 sample points, and a total of 11 occurs for only 2 of the sample points. Since all sample points are equally likely, we have P(A) = 1/6 and P(B) = 1/18.
- The events A and B are mutually exclusive, since a total of 7 and 11 cannot both occur on the same toss. Therefore,

$$P(A \cup B) = P(A) + P(B) = \frac{1}{6} + \frac{1}{18} = \frac{2}{9}$$

• This result could also have been obtained by counting the total number of points for the event A UB, namely 8, and writing

$$P(A \cup B) = \frac{n}{N} = \frac{8}{36} = \frac{2}{9}$$

Two Events Problems

- In Venn diagrams, consider the probability of an event A as the area of the region corresponding to the event A.
- Total area= P(S) = 1

Examples:

- $P(A) = P(A \cap B) + P(A \cap B^{C})$
- $P(A \cup B) = P(A) + P(A^{C} \cap B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cap B^C) = P(A) P(A \cap B)$
- $P(A^{C} \cap B^{C}) = 1 P(A \cup B)$

The probability that Paula passes Mathematics is 2/3, and the probability that she passes English is 4/9. If the probability that she passes both courses is 1/4, what is the probability that she will:

(a) pass at least one course?

(b) pass Mathematics and fail English?

(c) fail both courses?

- Solution:
- Define the events: *M* = {Paula passes Mathematics} , *E* = {Paula passes English}
- It is given that P(M)=2/3, P(E)=4/9, and $P(M \cap E)=1/4$.
- (a) Probability of passing at least one course is:
- $P(M \cup E) = P(M) + P(E) P(M \cap E) = \frac{2}{3} + \frac{4}{9} \frac{1}{4} = \frac{31}{36}$
- (b) Probability of passing Mathematics and failing English is:
- $P(M \cap E^{C}) = P(M) P(M \cap E)$

$$=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}$$

• (c) Probability of failing both courses is: $P(MC \cap EC) = 1 - P(M \cup E)$

$$= 1 - \frac{31}{36} = \frac{5}{36}$$

• Theorem :

If *A* and *A*^C are complementary events, then:

 $P(A) + P(A^{C}) = 1 \Leftrightarrow P(A^{C}) = 1 - P(A)$

Example

If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7, or 8 or more cars on any given workday are, respectively, 0.12, 0.19, 0.28, 0.24, 0.10, and 0.07, what is the probability that he will service at least 5 cars on his next day at work?

• Let *E* be the event that at least 5 cars are serviced. Now, $P(E) = 1 - P(E^c)$,

where *E*^{*c*} is the event that fewer than 5 cars are serviced. Since

- $P(E^c) = 0.12 + 0.19 = 0.31$,
- it follows from the above Theorem that:
- P(E) = 1 0.31 = 0.69.
- You can also find P(E) = 0.28+0.24+0.1+0.07 = 0.69

Conditional Probability

 The probability of occurring an event A when it is known that some event B has occurred is called the conditional probability of A given B and is denoted P(A | B).

Definition:

• The conditional probability of the event *A* given the event *B* is defined by

$$P(A | B) = \frac{P(A \cap B)}{P(B)} \qquad ; P(B) > 0$$

Notes: 1. $P(A \mid B) = \frac{P(A \cap B)}{P(B)} =$ $=\frac{n(A \cap B)/n(S)}{n(B)/n(S)} = \frac{n(A \cap B)}{n(B)}; \text{ for equally likely outcomes case}$ 2. $P(B|A) = \frac{P(A \cap B)}{P(A)}$ 3. $P(A \cap B) = P(A) P(B|A)$ = P(B) P(A|B) (Multiplicative Rule=Theorem 2.13)

- 339 physicians are classified as given in the table below. A physician is to be selected at random.
- (1) Find the probability that:
 - (a) the selected physician is aged 40 49

(b) the selected physician smokes occasionally

(c) the selected physician is aged 40 – 49 and smokes occasionally.

 (2) Find the probability that the selected physician is aged 40 – 49 given that the physician smokes occasionally.

		Smoking Habit			
		Daily	Occasionally	Not at all	
h		(B_1)	(B_2)	(B_3)	Total
Age	20 - 29 (A_1)	31	9	7	47
	30 - 39 (<i>A</i> ₂)	110	30	49	189
	40 - 49 (<i>A</i> ₃)	29	21	29	79
	50+ (A ₄)	6	0	18	24
	Total	176	60	103	339

- .n(S) = 339 equally likely outcomes.
- Define the following events:
- A_3 = the selected physician is aged 40 49
- B_2 = the selected physician smokes occasionally
- $A_3 \cap B_2$ = the selected physician is aged 40 49 and smokes occasionally

(1) (a) A_3 = the selected physician is aged 40 – 49

$$P(A_3) = \frac{n(A_3)}{n(S)} = \frac{79}{339} = 0.2330$$

(b) B_2 = the selected physician smokes occasionally $P(B_2) = \frac{n(B_2)}{n(S)} = \frac{60}{339} = 0.1770$ (c) $A_3 \cap B_2$ = the selected physician is aged 40 – 49 and smokes occasionally.

$$P(A_3 \cap B_2) = \frac{n(A_3 \cap B_2)}{n(S)} = \frac{21}{339} = 0.06195$$

(2) $A_3 \mid B_2$ = the selected physician is aged 40 – 49 given that the physician smokes occasionally.

(i)
$$P(A_3 | B_2) = \frac{P(A_3 \cap B_2)}{P(B_2)} = \frac{0.06195}{0.1770} = 0.35$$

(ii) $P(A_3 | B_2) = \frac{n(A_3 \cap B_2)}{n(B_2)} = \frac{21}{60} = 0.35$

(iii) We can use the restricted table directly: $P(A_3 | B_2) = \frac{21}{60} = 0.35$

Notice that $P(A_3|B_2)=0.35 > P(A_3)=0.233$.

The conditional probability does not equal unconditional probability; i.e., $P(A_3|B_2) \neq P(A_3)$! What does this mean?

Note:

- P(A|B) = P(A) means that knowing *B* has no effect on the probability of occurrence of *A*. In this case *A* is independent of *B*.
- P(A|B)>P(A) means that knowing *B* increases the probability of occurrence of *A*.
- P(A|B) < P(A) means that knowing *B* decreases the probability of occurrence of *A*.

Independent Events:

Definition

Two events A and B are independent if and only if P(A|B)=P(A) and P(B|A)=P(B). Otherwise A and B are dependent.

In the previous example, we found that $P(A_3|B_2) \neq P(A_3)$. Therefore, the events A_3 and B_2 are dependent, i.e., they are not independent. Also, we can verify that $P(B_2|A_3) \neq P(B_2)$.

Multiplicative (or Product) Rule

Theorem:

• If $P(A) \neq 0$ and $P(B) \neq 0$, then:

 $\mathsf{P}(A \cap B) = \mathsf{P}(A) \; \mathsf{P}(B \mid A)$

= P(B) P(A | B)

Suppose we have a fuse box containing 20 fuses of which 5 are defective (D) and 15 are nondefective (N). If 2 fuses are selected at random and removed from the box in succession without replacing the first, what is the probability that both fuses are defective?

Solution:

- Define the following events:
- A = {the first fuse is defective}
- *B* = {the second fuse is defective}
- $A \cap B$ ={the first fuse is defective and the second fuse is defective}
 - = {both fuses are defective}

We need to calculate $P(A \cap B)$.

• Theorem:

- Two events A and B are independent if and only if
- $P(A \cap B) = P(A) P(B)$

*(Multiplicative Rule for independent events)

- Note:
- Two events A and B are independent if one of the following conditions is satisfied:
- (i) P(A | B) = P(A)
- \Leftrightarrow (ii) P(B|A)=P(B)

 $\Leftrightarrow \text{(iii)} \mathsf{P}(A \cap B) = \mathsf{P}(A) \mathsf{P}(B)$

- **Theorem:** (*k*=3)
- If A_1 , A_2 , A_3 are 3 events, then:

 $P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 \cap A_2)$

- If A_1 , A_2 , A_3 are 3 independent events, then:
- $P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2) P(A_3)$

Three cards are drawn in succession, without replacement, from an ordinary deck of playing cards (Number of cards = 52).

Find $P(A_1 \cap A_2 \cap A_3)$, where the events A_1 , A_2 , and A_3 are defined as follows:

- A_1 = {the 1-st card is a red ace}
- *A*₂ = {the 2-nd card is a 10 or a jack}
- $A_3 = \{$ the 3-rd card is a number greater than 3 but less than 7 $\}$

$$P(A_{1}) = 2/52$$

$$P(A_{2} | A_{1}) = 8/51$$

$$P(A_{3} | A_{1} \cap A_{2}) = 12/50$$

$$P(A_{1} \cap A_{2} \cap A_{3})$$

$$= P(A_{1}) P(A_{2} | A_{1}) P(A_{3} | A_{1} \cap A_{2})$$

$$= \frac{2}{52} \times \frac{8}{51} \times \frac{12}{50}$$

$$= \frac{192}{132600}$$

$$= 0.0014479$$

