Engineering Probability \& Statistics (AGE 1150)
 Chapter 2: Probability - Part 2

Dr. Feras Fraige

Additive Rules

Theorem 2.10:

- If A and B are any two events, then:
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Corollary 1:

- If A and B are mutually exclusive (disjoint) events (i.e. $P(A \cap B)=0$, then: $P(A \cup B)=P(A)+P(B)$

Corollary 2:

- If $A_{1}, A_{2}, \ldots, A_{n}$ are n mutually exclusive (disjoint) events, then:
$\mathrm{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)+\ldots+\mathrm{P}\left(A_{n}\right)$

Example

John is going to graduate from an industrial engineering department in a university by the end of the semester. After being interviewed at two companies he likes, he assesses that his probability of getting an offer from company A is 0.8 , and his probability of getting an offer from company B is 0.6 . If he believes that the probability that he will get offers from both companies is 0.5 , what is the probability that he will get at least one offer from these two companies?

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.8+0.6-0.5=0.9 .
$$

Example

What is the probability of getting a total of 7 or 11 when a pair of fair dice is tossed?

- Let A be the event that 7 occurs and B the event that 11 comes up. Now, a total of 7 occurs for 6 of the 36 sample points, and a total of 11 occurs for only 2 of the sample points. Since all sample points are equally likely, we have $P(A)=1 / 6$ and $P(B)=1 / 18$.
- The events A and B are mutually exclusive, since a total of 7 and 11 cannot both occur on the same toss. Therefore,

$$
P(A \cup B)=P(A)+P(B)=\frac{1}{6}+\frac{1}{18}=\frac{2}{9}
$$

- This result could also have been obtained by counting the total number of points for the event $A \cup B$, namely 8 , and writing

$$
P(A \cup B)=\frac{n}{N}=\frac{8}{36}=\frac{2}{9}
$$

Two Events Problems

- In Venn diagrams, consider the probability of an event A as the area of the region corresponding to the event A.
- Total area= $\mathrm{P}(\mathrm{S})=1$

Examples:

- $P(A)=P(A \cap B)+P\left(A \cap B^{C}\right)$
- $P(A \cup B)=P(A)+P\left(A^{C} \cap B\right)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- $\mathrm{P}\left(A \cap B^{C}\right)=\mathrm{P}(A)-\mathrm{P}(A \cap B)$
- $\mathrm{P}\left(A^{\mathrm{C}} \cap B^{\mathrm{C}}\right)=1-\mathrm{P}(A \cup B)$

Example

The probability that Paula passes Mathematics is $2 / 3$, and the probability that she passes English is $4 / 9$. If the probability that she passes both courses is $1 / 4$, what is the probability that she will:
(a) pass at least one course?
(b) pass Mathematics and fail English?
(c) fail both courses?

- Solution:
- Define the events: $M=\{$ Paula passes Mathematics $\}, E=\{$ Paula passes English $\}$
- It is given that $\mathrm{P}(M)=2 / 3, \mathrm{P}(E)=4 / 9$, and $\mathrm{P}(M \cap E)=1 / 4$.
- (a) Probability of passing at least one course is:
- $\mathrm{P}(M \cup E)=\mathrm{P}(M)+\mathrm{P}(E)-\mathrm{P}(M \cap E)=\frac{2}{3}+\frac{4}{9}-\frac{1}{4}=\frac{31}{36}$
- (b) Probability of passing Mathematics and failing English is:
- $\mathrm{P}\left(M \cap E^{C}\right)=P(M)-P(M \cap E)$

$$
=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}
$$

-(c) Probability of failing both courses is:

$$
P(M C \cap E C)=1-P(M \cup E) \quad=1-\frac{31}{36}=\frac{5}{36}
$$

- Theorem :

If A and A^{C} are complementary events, then:
$\mathrm{P}(A)+\mathrm{P}\left(A^{\mathrm{C}}\right)=1 \Leftrightarrow \mathrm{P}\left(A^{\mathrm{C}}\right)=1-\mathrm{P}(A)$

Example

If the probabilities that an automobile mechanic will service $3,4,5,6,7$, or 8 or more cars on any given workday are, respectively, $0.12,0.19,0.28,0.24,0.10$, and 0.07 ,' what is the probability that he will service at least 5 cars on his next day at work?

- Let E be the event that at least 5 cars are serviced. Now, $P(E)=1-P\left(E^{c}\right)$,
where E^{c} is the event that fewer than 5 cars are serviced. Since
- $P\left(E^{c}\right)=0.12+0.19=0.31$,
- it follows from the above Theorem that:
- $P(E)=1-0.31=0.69$.
- You can also find $P(E)=0.28+0.24+0.1+0.07=0.69$

Conditional Probability

- The probability of occurring an event A when it is known that some event B has occurred is called the conditional probability of A given B and is denoted $\mathrm{P}(A \mid B)$.
Definition:
- The conditional probability of the event A given the event B is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad ; P(B)>0
$$

Notes:

1. $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=$ $=\frac{n(A \cap B) / n(S)}{n(B) / n(S)}=\frac{n(A \cap B)}{n(B)}$; for equally likely outcomes case
2. $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$

$$
\text { 3. } P(A \cap B)=P(A) P(B \mid A)
$$

$$
=P(B) P(A \mid B)
$$

(Multiplicative Rule=Theorem 2.13)

Example

- 339 physicians are classified as given in the table below. A physician is to be selected at random.
- (1) Find the probability that:
(a) the selected physician is aged 40-49
(b) the selected physician smokes occasionally
(c) the selected physician is aged 40-49 and smokes occasionally.
- (2) Find the probability that the selected physician is aged 40-49 given that the physician smokes occasionally.

		Smoking Habit			
		Daily $\left(B_{1}\right)$	Occasionally $\left(B_{2}\right)$	Not at all $\left(B_{3}\right)$	Total
$\stackrel{0}{8}$	20-29 (A_{1})	31	9	7	47
	30-39 ($\left.A_{2}\right)$	110	30	49	189
	40-49 ($\left.A_{3}\right)$	29	21	29	79
	$50+\quad\left(A_{4}\right)$	6	0	18	24
	Total	176	60	103	339

- $. n(S)=339$ equally likely outcomes.
- Define the following events:
- $A_{3}=$ the selected physician is aged 40-49
- $B_{2}=$ the selected physician smokes occasionally
- $A_{3} \cap B_{2}=$ the selected physician is aged 40-49 and smokes occasionally
(1) (a) $A_{3}=$ the selected physician is aged $40-49$

$$
P\left(A_{3}\right)=\frac{n\left(A_{3}\right)}{n(S)}=\frac{79}{339}=0.2330
$$

(b) $B_{2}=$ the selected physician smokes occasionally

$$
P\left(B_{2}\right)=\frac{n\left(B_{2}\right)}{n(S)}=\frac{60}{339}=0.1770
$$

(c) $A_{3} \cap B_{2}=$ the selected physician is aged 40-49 and smokes occasionally.

$$
P\left(A_{3} \cap B_{2}\right)=\frac{n\left(A_{3} \cap B_{2}\right)}{n(S)}=\frac{21}{339}=0.06195
$$

(2) $A_{3} \mid B_{2}=$ the selected physician is aged $40-49$ given that the physician smokes occasionally.
(i) $P\left(A_{3} \mid B_{2}\right)=\frac{P\left(A_{3} \cap B_{2}\right)}{P\left(B_{2}\right)}=\frac{0.06195}{0.1770}=0.35$
(ii) $P\left(A_{3} \mid B_{2}\right)=\frac{n\left(A_{3} \cap B_{2}\right)}{n\left(B_{2}\right)}=\frac{21}{60}=0.35$
(iii) We can use the restricted table directly: $P\left(A_{3} \mid B_{2}\right)=\frac{21}{60}=0.35$

Notice that $\mathrm{P}\left(A_{3} \mid B_{2}\right)=0.35>\mathrm{P}\left(A_{3}\right)=0.233$.
The conditional probability does not equal unconditional probability; i.e., $\mathrm{P}\left(A_{3} \mid B_{2}\right) \neq \mathrm{P}\left(A_{3}\right)$! What does this mean?

Note:

- $\mathrm{P}(A \mid B)=\mathrm{P}(A)$ means that knowing B has no effect on the probability of occurrence of A. In this case A is independent of B.
$\cdot \mathrm{P}(A \mid B)>\mathrm{P}(A)$ means that knowing B increases the probability of occurrence of A.
$\cdot \mathrm{P}(A \mid B)<\mathrm{P}(A)$ means that knowing B decreases the probability of occurrence of A.

Independent Events:

- Definition

Two events A and B are independent if and only if $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$. Otherwise A and B are dependent.

In the previous example, we found that $\mathrm{P}\left(A_{3} \mid B_{2}\right) \neq \mathrm{P}\left(A_{3}\right)$. Therefore, the events A_{3} and B_{2} are dependent, i.e., they are not independent. Also, we can verify that $\mathrm{P}\left(B_{2} \mid A_{3}\right) \neq \mathrm{P}\left(B_{2}\right)$.

Multiplicative (or Product) Rule

Theorem:

- If $\mathrm{P}(A) \neq 0$ and $\mathrm{P}(B) \neq 0$, then:

$$
\begin{aligned}
\mathrm{P}(A \cap B) & =\mathrm{P}(A) \mathrm{P}(B \mid A) \\
& =\mathrm{P}(B) \mathrm{P}(A \mid B)
\end{aligned}
$$

Example

Suppose we have a fuse box containing 20 fuses of which 5 are defective (D) and 15 are nondefective (N). If 2 fuses are selected at random and removed from the box in succession without replacing the first, what is the probability that both fuses are defective?

Solution:

- Define the following events:
- $A=\{$ the first fuse is defective $\}$
- $B=\{$ the second fuse is defective $\}$
- $A \cap B=\{$ the first fuse is defective and the second fuse is defective $\}$
$=\{b o t h$ fuses are defective $\}$
We need to calculate $P(A \cap B)$.

$$
\begin{aligned}
& \mathrm{P}(A)=\frac{5}{20} \\
& \mathrm{P}(B \mid A)=\frac{4}{19} \\
& \mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A) \\
& \quad=\frac{5}{20} \times \frac{4}{19}=0.052632
\end{aligned}
$$

First Selection

II
D N
$4 \quad 15$
19
Second Selection: given that the first is defective (D)

- Theorem:
- Two events A and B are independent if and only if
- $P(A \cap B)=P(A) P(B)$
*(Multiplicative Rule for independent events)
- Note:
- Two events A and B are independent if one of the following conditions is satisfied:
(i) $P(A \mid B)=P(A)$
\Leftrightarrow (ii) $P(B \mid A)=P(B)$
\Leftrightarrow (iii) $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
- Theorem: $(k=3)$
- If A_{1}, A_{2}, A_{3} are 3 events, then:
$\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2} \mid A_{1}\right) \mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}\right)$
- If A_{1}, A_{2}, A_{3} are 3 independent events, then:
- $\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right)$

Example

Three cards are drawn in succession, without replacement, from an ordinary deck of playing cards (Number of cards $=52$).
Find $\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)$, where the events A_{1}, A_{2}, and A_{3} are defined as follows:

- $A_{1}=\{$ the 1 -st card is a red ace $\}$
- $A_{2}=\{$ the 2 -nd card is a 10 or a jack $\}$
- $A_{3}=\{$ the 3 -rd card is a number greater than 3 but less than 7$\}$

$$
\begin{align*}
& \mathrm{P}\left(A_{1}\right)=2 / 52 \\
& \mathrm{P}\left(A_{2} \mid A_{1}\right)=8 / 51 \\
& \mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}\right)=12 / 50 \\
& \begin{aligned}
& \mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right) \\
& \quad=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2} \mid A_{1}\right) \mathrm{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \\
& \quad= \frac{2}{52} \times \frac{8}{51} \times \frac{12}{50} \\
& \quad=\frac{192}{132600} \\
& \quad=0.0014479
\end{aligned}
\end{align*}
$$

(1)	2	50
r.a.	others	

52

$\frac{|$| 8 | 43 |
| :---: | :---: |
| $10 / j a c k$ | others |}{51}

(3) $\begin{gathered}\text { (} \begin{array}{cc}12 & 38 \\ 3<\#<7 & \text { others }\end{array} \\ 50\end{gathered}$

