
10/12/2011

1

Data Link Layer:
Overview, operations

Chapter 3

10/12/2011 12:56 PM 1 R. Ouni

1. Data Link Layer Functions

2. Data Link Services

3. Framing

4. Error Detection/Correction

5. Flow Control

6. Medium Access

Outlines

10/12/2011 12:56 PM 2 R. Ouni

10/12/2011

2

1. Data Link Layer Functions

 Provides a well-defined service interface to the
network layer.

 Determines how the bits of the physical layer are
grouped into frames (framing).

 Deals with transmission errors (CRC and ARQ).

 Flow control: regulates the flow of frames.

 Performs general link layer management. (seq #,
protocols, address etc)

10/12/2011 12:56 PM 3 R. Ouni

1. Data Link Layer Functions

2. Data Link Services

3. Framing

4. Error Detection/Correction

5. Flow Control

6. Medium Access

Outlines

10/12/2011 12:56 PM 4 R. Ouni

10/12/2011

3

2. Data Link Services

 Network layer has bits,

 Says to data link layer:

• “send these to this other network layer”,

 Data link layer sends bits to other data link layer,

 Other data link layer passes them up to network
layer.

Physical
Layer

Data link
Layer

A B

Packets Packets

Frames

Network Layer

Physical
Layer

Data link
Layer

10/12/2011 12:56 PM 5 R. Ouni

2.1. Types of Services

 Acknowledged/Unacknowledged
• Receiver returns acknowledgement (ACK) for each

transmitted frame.

 Connection oriented/Connectionless
• Setup a logical connection before transmitting frames.

10/12/2011 12:56 PM 6 R. Ouni

10/12/2011

4

1. Data Link Layer Functions

2. Data Link Services

3. Framing

4. Error Detection/Correction

5. Flow Control

6. Medium Access

Outlines

10/12/2011 12:56 PM 7 R. Ouni

3. Framing

 Data link breaks physical layer stream of bits into frames

 ...010110100101001101010010...

 The data unit at the data link layer is the “frame”,

 Issues:

1. Frame creation

2. Frame delineation
How does receiver detect boundaries?

10/12/2011 12:56 PM 8 R. Ouni

10/12/2011

5

Network Layer

Data Link Layer

one-to-one mapping

control information

Data link layer data unit: Frame

frame boundaries

3.1. Frame Creation

network layer data unit: Packet

10/12/2011 12:56 PM 9 R. Ouni

Network Layer

Data Link Layer

3.1. Frame Creation (cont’d)

10/12/2011 12:56 PM 10 R. Ouni

10/12/2011

6

 How to tell when a new frame starts:

• Character count

• Frame tags with character stuffing

• Frame tags with bit stuffing

3.2. Frame Delineation

10/12/2011 12:56 PM 11 R. Ouni

Delineation by character count

 Character count lists the number of
characters in the data field of the frame

 Problem: corrupted control fields

Control Field containing character count

3.2. Frame Delineation

10/12/2011 12:56 PM 12 R. Ouni

10/12/2011

7

Frame tagging with character stuffing

 Use starting and ending characters (tags) to mark
boundaries of frame.

 Problem: What if tag character occurs in the data
or control portions of the frame?

Frame tags

3.2. Frame Delineation

10/12/2011 12:56 PM 13 R. Ouni

Character stuffing

 Insert extra escape characters when a tag
appears in data field

STX DLE

ETX DLE

DLE DLE

Start Tag

End Tag

Character Stuffed DLE code

3.2. Frame Delineation

10/12/2011 12:56 PM 14 R. Ouni

10/12/2011

8

Character Stuffing Example

DLE I am a jerk trying to DLE crash your network! ETX STX DLE DLE DLE ETX DLE

DLE I am a jerk trying to DLE crash your network! ETX

DLE I am a jerk trying to DLE crash your network! ETX

Character Stuffing

Character Unstuffing

3.2. Frame Delineation

10/12/2011 12:56 PM 15 R. Ouni

Frame tagging with bit stuffing

 Bit strings may be used instead of character sequences
to delineate frames

 More efficient

3.2. Frame Delineation

10/12/2011 12:56 PM 16 R. Ouni

10/12/2011

9

Bit stuffing

 Each frame begins with a start and end bit sequence,
e.g., 01111110

 When sender’s data link layer sees five 1’s in a row, it
stuffs a zero bit

 The receiver “unstuffs” a zero after five consecutive
1’s.

At the sender: 1 1 1 1 1 1 1 1 1 1 1 0 1

 1 1 1 1 1 0 1 1 1 1 1 0 0

3.2. Frame Delineation

10/12/2011 12:56 PM 17 R. Ouni

Bit Stuffing Example

 Bit Stuffing

 Bit Unstuffing

00110010111111100010100

0111111000110010111110110001010001111110

00110010111111100010100

3.2. Frame Delineation

10/12/2011 12:56 PM 18 R. Ouni

10/12/2011

10

1. Data Link Layer Functions

2. Data Link Services

3. Framing

4. Error Detection/Correction

5. Flow Control

6. Medium Access

Outlines

10/12/2011 12:56 PM 19 R. Ouni

4. Error Detection/Correction

 No physical link is perfect

 Bits will be corrupted

 We can either:

• detect errors and request retransmission
• or correct errors without retransmission

10/12/2011 12:56 PM 20 R. Ouni

10/12/2011

11

10/12/2011 12:56 PM R. Ouni 21

4. Error Detection/Correction

1. Original data (k bits)

2. Sender: apply error control technique

 Insertion/field addition (n bits)

3. Receiver: receives message

 recalculates

4. Comparison: received and recalculated

4.1. Error Detection

 Append a single parity bit to a sequence of bits.

 If using “odd” parity, the parity bit is chosen to make the total
number of 1’s in the bit sequence odd.

 If “even” parity, the parity bit makes the total number of 1’s in
the bit sequence even.

Example:

Parity bit technique

00010101 even

01111 even

11111111 odd

10011 odd

Transmitted Sequence Parity Parity Bit

1

0

1

0

10/12/2011 12:56 PM 22 R. Ouni

10/12/2011

12

Polynomial Codes

 Can detect errors on large chunks of data,

 Has low overhead,

 More robust than parity bit,

 Requires the use of a “code polynomial”,

• Example: x2 + 1

3.2. Error Control

10/12/2011 12:56 PM 23 R. Ouni

Cyclic Redundancy Check

 CRC: Example of a polynomial code

 Procedure (at the sender):

1. Let r be the degree of the code polynomial C(x).
(Both sender and receiver know the code polynomial)
Append r zero bits to the end of the message bit string.
Call the entire bit string S(x).

2. Divide S(x) by the code polynomial C(x) using modulo
2 division.

3. Subtract the remainder from S(x) using modulo 2
subtraction. (call resulting polynomial t(x).)

4. Transmit the checksummed message t(x).

3.2. Error Control

10/12/2011 12:56 PM 24 R. Ouni

10/12/2011

13

 S(x) = f(x)C(x) + remainder

 S(x) - remainder = f(x)C(x) = t(x)

• sender transmits t(x)

• note that t(x) is divisible by C(x)

• if the received sequence at the receiver is not divisible
by C(x), error has occurred

Background

3.2. Error Control

10/12/2011 12:56 PM 25 R. Ouni

Generating a CRC : Example

Message: 1011 1 x x3 + 0 x x2 + 1 x x1 + 1 x x0

 = x3 + x + 1
 MSB LSB
Most Significant Bit Low Significant Bit

Code Polynomial C(x): x2 + 1 (101)

Step 1: Compute S(x)

r = 2

S(x) = 101100 (x5 + x3 + x2)

3.2. Error Control

10/12/2011 12:56 PM 26 R. Ouni

10/12/2011

14

Generating a CRC Example (cont’d)

Step 2: Modulo 2 divide

3.2. Error Control

101100 S(x) C(x) 101

 101

 001
 000

 010
 000

 100
 101
 01

 1001

Remainder

10/12/2011 12:56 PM 27 R. Ouni

Generating a CRC Example(cont’d)

Step 3: Modulo 2 subtract the remainder from S(x)

101100
- 01

101101

Checksummed Message t(x)

3.2. Error Control

10/12/2011 12:56 PM 28 R. Ouni

10/12/2011

15

 Procedure (at the receiver)

• Divide the received message by the code
polynomial C(x) using modulo 2 division. If the
remainder is zero, there is no error detected.

3.2. Error Control

10/12/2011 12:56 PM 29 R. Ouni

Decoding a CRC Example

101101 Checksummed message

1011 Original message (if there are no errors)

101101 101
101

 001
 000

 010
 000

 101
 101
 00

 1001

Remainder = 0
(No error detected)

Received message C(x)

10/12/2011 12:56 PM 30 R. Ouni

10/12/2011

16

1. Data Link Layer Functions

2. Data Link Services

3. Framing

4. Error Detection/Correction

5. Flow Control

6. Medium Access

Outlines

10/12/2011 12:56 PM 31 R. Ouni

If A sends at a faster rate than B can receive, bits
will be lost

We need flow control!

5. Flow Control

A B

10/12/2011 12:56 PM 32 R. Ouni

10/12/2011

17

Some Flow Control Algorithms

 Simplex protocols : Stop and Wait

• Data only flows in one direction

• Acknowledgement stream may flow in the other direction

 Full duplex protocols

• Sliding window with Go Back N

• Sliding window with Selective Repeat

10/12/2011 12:56 PM 33 R. Ouni

5.1. Stop-and-Wait

A sends data

 B sends ACK

A sends more data

• The receiver sends an acknowledgement frame telling

the sender to transmit the next data frame.

• The sender waits for the ACK, and if the ACK comes, it
transmits the next data frame.

A B

10/12/2011 12:56 PM 34 R. Ouni

10/12/2011

18

 What if the frame will be lost?

• The sender waits the acknowledgement within a
“timeout” delay and then retransmits again the same
frame.

 What if the ACK will be lost?

• The sender waits the acknowledgement within a
“timeout” delay and then retransmits again the same
frame.

• The receiver discard the duplicated frame (seq nb) and
send again the same ACK.

5.1. Stop-and-Wait

10/12/2011 12:56 PM 35 R. Ouni

5.2. Windowed Flow Control

A sends packets 1, 2, 3

 B sends ACK for 1, 2

A sends packets 4, 5

 B sends ACK for 3, 4, 5

A B

10/12/2011 12:56 PM 36 R. Ouni

10/12/2011

19

5.2. Full Duplex Flow Control Protocols

Data frames are transmitted in both directions

Sliding Window

Flow Control Protocols

10/12/2011 12:56 PM 37 R. Ouni

5.2.1. Sliding Window Protocols: Definitions

Sequence Number: Each frame is assigned a sequence
number that is incremented as each frame is transmitted

Sender’s Window: Keeps sequence numbers of frames that
have been sent but not yet acknowledged

Sender Window size: The number of frames the sender may
transmit before receiving ACKs

Receiver’s Window: Keeps sequence numbers of frames that
the receiver is allowed to accept

Receiver Window size: The maximum number of frames the
receiver may receive out of order

10/12/2011 12:56 PM 38 R. Ouni

10/12/2011

20

5.2.1. Sliding Window Protocols:

General Remarks

• The sending and receiving windows do not have to

be the same size

• Any frame which falls outside the receiving window

is discarded at the receiver

• Unlike the sender’s window, the receiver’s window

always remains at its initial size

10/12/2011 12:56 PM 39 R. Ouni

5.2.2. Simple Sliding Window (Window Size = 2)

A sliding window with a maximum window size of 2 frames

Sender Receiver

Window for a 3-bit sequence number (000=0, 001=1,010= 2 … 7)

0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7

Received frames

Expected frames

Acknowledged frame

Transmitted frame

10/12/2011 12:56 PM 40 R. Ouni

10/12/2011

21

Sliding Window example (w=1)

Sender window

0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7

0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7

Receiver window

(a) (b) (c) (d)

(a) Initial state, no frames transmitted

(b) Sender transmits frame 0

(c) Receiver receives frame 0 and ACKs

(d) Sender receives ACK

This protocol behaves identically to stop and wait.

10/12/2011 12:56 PM 41 R. Ouni

Sliding Window with Window Size W

With a window size of 1, the sender waits for an ACK
before sending another frame.

With a window size of W, the sender can transmit up
to W frames before “being blocked”.

10/12/2011 12:56 PM 42 R. Ouni

10/12/2011

22

Sender-Side Window (window Size W=2)

0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7

0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) Initial window state

(b) Send frame 0

(c) Send frame 1

(d) ACK for frame 0 arrives

(e) Send frame 2

(f) ACK for frame 1 arrives

(g) ACK for frame 2 arrives, send frame 3

(h) ACK for frame 3 arrives

10/12/2011 12:56 PM 43 R. Ouni

Receiver-Side Window (Window Size W=2)

0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7

0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7 0

1

2

3 4

5

6

7

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) Initial window state

(b) Nothing happens

(c) Frame 0 arrives, ACK frame 0

(d) Nothing happens

(e) Frame 1 arrives, ACK frame 1

(f) Frame 2 arrives, ACK frame 2

(g) Nothing happens

(h) Frame 3 arrives, ACK frame 3

10/12/2011 12:56 PM 44 R. Ouni

10/12/2011

23

What about Errors?

What if a data or acknowledgement frame is lost when
using a sliding window protocol?

Two Solutions:

 Go Back N

 Selective Repeat

10/12/2011 12:56 PM 45 R. Ouni

What about Errors? Cont’d

 One very important note about
acknowledgement

• Ack for frame n = I am expecting frame n+1 (not
“I received fame n”)

10/12/2011 12:56 PM 46 R. Ouni

10/12/2011

24

Sliding Window with Go Back N

 When the receiver notices a missing or erroneous
frame, it simply discards all frames with greater
sequence numbers and sends no ACK

 The sender will eventually time out and retransmit all
the frames in its sending window

10/12/2011 12:56 PM 47 R. Ouni

5.3. Go Back N

10

0 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 E D D D D D D

discarded by

receiver

frame with

error

timeout interval

Time

sender

receiver

10/12/2011 12:56 PM 48 R. Ouni

10/12/2011

25

5.3. Go Back N (cont’d)

Go Back N can recover from erroneous or missing
packets

But…

It is wasteful. If there are a lot of errors, the sender
will spend most of its time retransmitting useless

information

10/12/2011 12:56 PM 49 R. Ouni

5.4. Sliding Window with Selective Repeat

The sender retransmits only the frame with errors

 The receiver stores all the correct frames that arrive
following the bad one. (Note that this requires a
significant amount of buffer space at the receiver.)

 When the sender notices that something is wrong,
it just retransmits the one bad frame, not all its
successors.

10/12/2011 12:56 PM 50 R. Ouni

10/12/2011

26

5.4. Selective Repeat

14

0 1 2 3 4 5 6 7 8 2 9 10 11 12 13 14

0 1 2 9 10 11 12 13 E 3 4 5 6 7 8

frame with

error

timeout interval

Time

sender

receiver

10/12/2011 12:56 PM 51 R. Ouni

5.4. Selective Repeat: a variant

sender

receiver

0 1 2 3 4 5 6 7 8 2 9 10 11 12 13 14

0 1 2 9 10 11 12 13 14 E 3 4 5 6 7 8

frame with

error

Time

timeout interval

10/12/2011 12:56 PM 52 R. Ouni

10/12/2011

27

5.4. Selective Repeat: cont’d

 In this scheme, every time a receiver receives
a frame, it sends an acknowledgement which
contains the sequence number of the next
frame expected

10/12/2011 12:56 PM 53 R. Ouni

1. Data Link Layer Functions

2. Data Link Services

3. Framing

4. Error Detection/Correction

5. Flow Control

6. Medium Access

Outlines

10/12/2011 12:56 PM 54 R. Ouni

10/12/2011

28

Many users typically share a single link or a
single medium

How do you give them all access?

9. Medium Access

10/12/2011 12:56 PM 55 R. Ouni

 Broadcast or shared channels

 Point-to-point links

9.1. Possible Media

10/12/2011 12:56 PM 56 R. Ouni

10/12/2011

29

If more than one host sends at the same time,
there is a collision

Need algorithm to share the channel:

Multiple access protocol

distributed algorithm that determines how nodes share channel,
i.e., determine when node can transmit

9.2. Multiple Access Protocols

10/12/2011 12:56 PM 57 R. Ouni

9.2. MAC Protocols: a taxonomy

Three broad classes:

 Channel Partitioning
• divide channel into smaller “pieces” (time slots, frequency, code)

• allocate piece to node for exclusive use

 Random Access
• channel not divided, allow collisions

• “recover” from collisions

 “Taking turns”
• Nodes take turns, but nodes with more to send can take longer

turns

10/12/2011 12:56 PM 58 R. Ouni

10/12/2011

30

Example: Time Division Multiple Access (TDMA)
It allows several users to share the same frequency channel by dividing
the signal into different time slots. The users transmit one after the
other using his own time slot.

Channel capacity is assigned even to users who have nothing to
send

9.2.1. Channel Partitioning MAC protocols
(Fixed Assignment Schemes)

time
1 2 3 4 1 2

host
…

frame (n) frame (n+1)

10/12/2011 12:56 PM 59 R. Ouni

9.2.1. Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

• access to channel in "rounds”,

• each station gets fixed length slot (length = pkt trans time) in
each round,

• unused slots go idle,

• example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle.

• inefficient with low duty cycle users and at light load.

10/12/2011 12:56 PM 60 R. Ouni

10/12/2011

31

9.2.1. Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

• channel spectrum divided into frequency bands

• each station assigned fixed frequency band

• unused transmission time in frequency bands go idle

• example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

10/12/2011 12:56 PM 61 R. Ouni

fr
e

q
u

e
n

cy
 b

an
d

s 1

2

3

4

5

6

9.2.2. Random Access Protocols

 When node has packet to send
• transmit at full channel data rate R.

• no a priori coordination among nodes

 two or more transmitting nodes ➜ “collision”,

 Random Access MAC protocol specifies:
• how to detect collisions

• how to recover from collisions (e.g., via delayed retransmissions)

 Examples of random access MAC protocols:
• slotted ALOHA

• ALOHA

• CSMA, CSMA/CD, CSMA/CA

10/12/2011 12:56 PM 62 R. Ouni

10/12/2011

32

Slotted ALOHA

Assumptions

• all frames same size

• time is divided into equal size
slots, time to transmit 1 frame

• nodes start to transmit frames
only at beginning of slots

• nodes are synchronized

• if 2 or more nodes transmit in
slot, all nodes detect collision

Operation

• when node obtains fresh frame,
it transmits in next slot

• no collision, node can send new
frame in next slot

• if collision, node retransmits
frame in each subsequent slot
with prob. p until success

10/12/2011 12:56 PM 63 R. Ouni

Slotted ALOHA

Pros

• single active node can
continuously transmit at full
rate of channel

• highly decentralized: only
slots in nodes need to be in
sync

• simple

Cons

• collisions, wasting slots

• idle slots

• nodes may be able to detect
collision in less than time to
transmit packet

• clock synchronization

10/12/2011 12:56 PM 64 R. Ouni

10/12/2011

33

CSMA (Carrier Sense Multiple Access)

CSMA: listen before transmit:

If channel sensed idle: transmit entire frame

• If channel sensed busy, defer transmission

• Human analogy: don’t interrupt others!

10/12/2011 12:56 PM 65 R. Ouni

Send when you have a packet to send. If collision, retransmit

Example: Ethernet

1 2 3 4

Listen before transmission
 if busy, wait
 if idle, transmit

Listen during transmission
 if collision, abort
 and retransmit

CSMA/CD (Collision Detection)

10/12/2011 12:56 PM 66 R. Ouni

10/12/2011

34

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

• collisions detected within short time

• colliding transmissions aborted, reducing channel wastage

 Collision Detection:

• easy in wired LANs: measure signal strengths, compare
transmitted, received signals

• difficult in wireless LANs: receiver shut off while transmitting

 human analogy: the polite conversationalist

10/12/2011 12:56 PM 67 R. Ouni

9.2.3. “Taking Turns” MAC protocols

Polling:

 master node “invites”
slave nodes to transmit
in turn

 concerns:
• polling overhead

• latency

• single point of failure
(master)

Token passing:

 control token passed from one
node to next sequentially.

 token message

 concerns:
• token overhead

• latency

• single point of failure (token)

10/12/2011 12:56 PM 68 R. Ouni

