Engineering Probability \& Statistics (AGE 1150)

Chapter 4: Mathematical Expectation
Part 1

Dr. Feras Fraige

Mean of a Random Variable

- Definition:

Let X be a random variable with a probability distribution $f(x)$. The mean (or expected value) of X is denoted by $\mu_{\mathrm{x}}(\operatorname{or} \mathrm{E}(\mathrm{X})$) and is defined by:

$$
\mathrm{E}(\mathrm{X})=\mu_{\mathrm{X}}=\left\{\begin{array}{l}
\sum_{\text {all } x} x f(x) ; \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} x f(x) d x ; \text { if } X \text { is continuous }
\end{array}\right.
$$

Example: A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample. Sol.:

- Let X represent the number of good components in the sample. The probability distribution of X is

$$
f(x)=\frac{\binom{4}{x}\binom{3}{3-x}}{\binom{7}{3}}, \quad x=0,1,2,3
$$

- Simple calculations yield $f(0)=1 / 35, f(1)=12 / 35, f(2)=18 / 35$, and $f(3)=4 / 35$.
- It is a discrete, therefore

$$
\mu=E(X)=(0)\left(\frac{1}{35}\right)+(1)\left(\frac{12}{35}\right)+(2)\left(\frac{18}{35}\right)+(3)\left(\frac{4}{35}\right)=\frac{12}{7}=1.7
$$

Thus, if a sample of size 3 is selected at random over and over again from a lot of 4 good components and 3 defective components, it will contain, on average, 1.7 good components.

Example: (Return to example in Ch 3)
A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective and 5 are non-defective. If a school makes a random purchase of 2 of these computers, find the expected number of defective computers purchased
Sol. :
Let $\mathrm{X}=$ the number of defective computers purchased.
We found previously (in Ch 3) that the probability distribution of X is:

x	0	1	2
$\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})$	$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$

$$
f(x)=P(X=x)=\left\{\begin{array}{l}
\binom{3}{x} \times\binom{ 5}{2-x} \\
\binom{8}{2}
\end{array} x=0,1,2\right.
$$

$$
\begin{aligned}
\mathrm{E}(\mathrm{X}) & =\mu_{\mathrm{X}}=\sum_{x=0}^{2} x f(x) \\
& =(0) \mathrm{f}(0)+(1) \mathrm{f}(1)+(2) \mathrm{f}(2) \\
= & (0) \frac{10}{28}+(1) \frac{15}{28}+(2) \frac{3}{28} \\
= & \frac{15}{28}+\frac{6}{28}=\frac{21}{28}=0.75 \text { (computers) }
\end{aligned}
$$

Thus, if a sample of size 2 is selected at random over and over again from a lot of 3 defective computers and 5 nondefective computers, it will contain, on average, 0.75 defective computers.

Example: Let X be a continuous random variable that represents the life (in hours) of a certain electronic device. The pdf of X is given by:

$$
f(x)=\left\{\begin{array}{l}
\frac{20,000}{x^{3}} ; x>100 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

- Find the expected life of this type of devices.

Solution:

$$
\begin{aligned}
\mathrm{E}(\mathrm{X}) & =\mu_{\mathrm{X}}=\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{100}^{\infty} x \frac{20000}{x^{3}} d x \\
& =20000 \int_{100}^{\infty} \frac{1}{x^{2}} d x \\
& =20000\left[-\frac{1}{x} \left\lvert\, \begin{array}{l}
x=\infty \\
x=100
\end{array}\right.\right] \\
& =-20000\left[0-\frac{1}{100}\right]=200
\end{aligned}
$$

(hours)

Therefore, we expect that this type of electronic devices to last, on average, 200 hours.

Theorem

- Let X be a random variable with a probability distribution $f(x)$, and let $g(X)$ be a function of the random variable X. The mean (or expected value) of the random variable $g(X)$ is denoted by $\mu_{g(x)}$ (or $\left.E[g(X)]\right)$ and is defined by:

$$
\mathrm{E}[\mathrm{~g}(\mathrm{X})]=\mu_{\mathrm{g}(\mathrm{X})}=\left\{\begin{array}{l}
\sum_{a l l}^{\operatorname{all}_{x} g(x)} f(x) ; \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} g(x) f(x) d x ; \text { if } X \text { is continuous }
\end{array}\right.
$$

Example: Let X be a discrete random variable with the following probability distribution

Find $\mathrm{E}[\mathrm{g}(\mathrm{X})]$, where $\mathrm{g}(\mathrm{X})=(\mathrm{X}-1)^{2}$.

x	0	1	2
$\mathrm{f}(\mathrm{x})$	$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$

Solution:

$$
\begin{aligned}
\mathrm{g}(\mathrm{X}) & =(\mathrm{X}-1)^{2} \\
\mathrm{E}[\mathrm{~g}(\mathrm{X})] & =\mu_{\mathrm{g}(\mathrm{X})}=\sum_{x=0}^{2} g(x) f(x)=\sum_{x=0}^{2}(x-1)^{2} f(x) \\
& =(0-1)^{2} \mathrm{f}(0)+(1-1)^{2} \mathrm{f}(1)+(2-1)^{2} \mathrm{f}(2) \\
& =(-1)^{2} \frac{10}{28}+(0)^{2} \frac{15}{28}+(1)^{2} \frac{3}{28} \\
& =\frac{10}{28}+0+\frac{3}{28}=\frac{13}{28}
\end{aligned}
$$

Example (See expected life of electronic

 device example): Find $\mathrm{E}\left(\frac{1}{\mathrm{x}}\right)$. $\left\{\right.$ note: $\mathrm{g}(\mathrm{X})=\frac{1}{\mathrm{x}}$ \}Solution:

$$
\begin{aligned}
f(x) & =\left\{\begin{array}{l}
\frac{20,000}{x^{3}} ; x>100 \\
0 ; \text { elsewhere }
\end{array}\right. \\
\mathrm{g}(\mathrm{X}) & =\frac{1}{\mathrm{X}} \\
\mathrm{E}\left(\frac{1}{\mathrm{X}}\right) & =\mathrm{E}[\mathrm{~g}(\mathrm{X})]=\mu_{\mathrm{g}(\mathrm{X})}=\int_{-\infty}^{\infty} g(x) f(x) d x=\int_{-\infty}^{\infty} \frac{1}{x} f(x) d x \\
& =\int_{100}^{\infty} \frac{1}{x} \frac{20000}{x^{3}} d x=20000 \int_{100}^{\infty} \frac{1}{x^{4}} d x=\frac{20000}{-3}\left[\frac{1}{x^{3}} \left\lvert\, \begin{array}{l}
x=\infty \\
x=100
\end{array}\right.\right] \\
& =\frac{-20000}{3}\left[0-\frac{1}{1000000}\right]=0.0067
\end{aligned}
$$

Variance (of a Random Variable):

- The most important measure of variability of a random variable X is called the variance of X and is denoted by $\operatorname{Var}(X)$ or .

- Definition:

Let X be a random variable with a probability distribu $\sigma_{X}^{2} f(x)$ and mean μ. The variance of X is defined by:

$$
\operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{X}}^{2}=\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right]=\left\{\begin{array}{l}
\sum_{\text {all } x}(x-\mu)^{2} f(x) ; \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x ; \text { if } X \text { is continuous }
\end{array}\right.
$$

- Definition:
- The positive square root of the variance of $X, \sigma_{X}=\sqrt{\sigma_{X}^{2}}$, is called the standard deviation of X.

Note:

$\operatorname{Var}(X)=E[g(X)]$, where $g(X)=(X-\mu)^{2}$

- Theorem:

The variance of the random variable X is given by:

$$
\operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{X}}^{2}=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mu^{2}
$$

where $\mathrm{E}\left(\mathrm{X}^{2}\right)=\left\{\begin{array}{l}\sum_{\text {all } x} x^{2} f(x) \text {; if } X \text { is discrete } \\ \int_{-\infty}^{\infty} x^{2} f(x) d x ; \text { if } X \text { is continuous }\end{array}\right.$

- Example:
- Let X be a discrete random variable with the following probability distribution. Find $\operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{X}}^{2}$

x	0	1	2	3
$\mathrm{f}(\mathrm{x})$	0.51	0.38	0.10	0.01

Solution:

$$
\begin{aligned}
\mu=\sum_{x=0}^{3} x f(x) & =(0) \mathrm{f}(0)+(1) \mathrm{f}(1)+(2) \mathrm{f}(2)+(3) \mathrm{f}(3) \\
& =(0)(0.51)+(1)(0.38)+(2)(0.10)+(3)(0.01) \\
& =0.61
\end{aligned}
$$

1. First method:

$$
\begin{aligned}
& \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{X}}^{2}=\sum_{x=0}^{3}(x-\mu)^{2} f(x) \\
& \quad=\sum_{x=0}^{3}(x-0.61)^{2} f(x) \\
& =(0-0.61)^{2} \mathrm{f}(0)+(1-0.61)^{2} \mathrm{f}(1)+(2-0.61)^{2} \mathrm{f}(2)+(3-0.61)^{2} \mathrm{f}(3) \\
& \quad=(-0.61)^{2}(0.51)+(0.39)^{2}(0.38)+(1.39)^{2}(0.10)+(2.39)^{2}(0.01) \\
& =0.4979
\end{aligned}
$$

2. Second method:

$$
\begin{aligned}
& \operatorname{Var}(X)=\sigma_{X}^{2}=E\left(X^{2}\right)-\mu^{2} \\
& \begin{aligned}
& E\left(X^{2}\right)=\sum_{x=0}^{3} x^{2} f(x)=\left(0^{2}\right) f(0)+\left(1^{2}\right) f(1)+\left(2^{2}\right) f(2)+\left(3^{2}\right) f(3) \\
&=(0)(0.51)+(1)(0.38)+(4)(0.10)+(9)(0.01) \\
&=0.87
\end{aligned}
\end{aligned}
$$

$\operatorname{Var}(X)=\sigma_{X}^{2}=E\left(X^{2}\right)-\mu^{2}=0.87-(0.61)^{2}=0.4979$

- Example: Let X be a continuous random variable with the following pdf , Find the mean and the variance of X.

$$
f(x)=\left\{\begin{array}{l}
2(x-1) ; 1<x<2 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

Solution:

$$
\begin{aligned}
& \mu=\mathrm{E}(\mathrm{X})=\int_{-\infty}^{\infty} x f(x) d x=\int_{1}^{2} x[2(x-1)] d x=2 \int_{1}^{2} x(x-1) d x=5 / 3 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{1}^{2} x^{2}[2(x-1)] d x=2 \int_{1}^{2} x^{2}(x-1) d x=17 / 6 \\
& \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{X}}^{2}=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mu^{2}=17 / 6-(5 / 3)^{2}=1 / 18
\end{aligned}
$$

