Engineering Probability \& Statistics (AGE 1150)

Chapter 5: Some Discrete Probability Distributions - Part 2

Dr. Feras Fraige

Hypergeometric Distribution

- Suppose there is a population with 2 types of elements:

1-st Type = success
2-nd Type = failure

- $N=$ population size
- $\mathrm{K}=$ number of elements of the 1-st type
- $\mathrm{N}-\mathrm{K}=$ number of elements of the 2-nd type
- We select a sample of n elements at random from the population
- Let X = number of elements of 1-st type (number of successes) in the sample
- We need to find the probability distribution of X.

Population $=\mathrm{N}$

- There are to two methods of selection:

1. selection with replacement
2. selection without replacement

- (1) If we select the elements of the sample at random and with replacement, then

X ~ Binomial $(n, p) ;$ where $p=K / N$

- (2) Now, suppose we select the elements of the sample at random and without replacement. When the selection is made without replacement, the random variable X has a hypergeometric distribution with parameters N, n, and K. and we write $\mathbf{X \sim h}(\mathbf{x} ; \mathbf{N}, \mathbf{n}, \boldsymbol{K})$.
- The probability distribution of X is given by:

$$
\begin{aligned}
& f(x)=P(X=x)=h(x ; N, n, K) \\
&=\left\{\begin{array}{l}
\binom{K}{x} \times\binom{ N-K}{n-x} \\
\binom{N}{n}
\end{array} x=0,1,2, \cdots, n\right. \\
& 0 ; \text { otherwise }
\end{aligned} \text {. } \begin{aligned}
& \text { oth }
\end{aligned}
$$

Note that the values of X must satisfy:

$$
0 \leq \mathrm{x} \leq K \text { and } n-N+K \leq \mathrm{x} \leq n
$$

Example: Lots of 40 components each are called acceptable if they contain no more than 3 defectives. The procedure for sampling the lot is to select 5 components at random (without replacement) and to reject the lot if a defective is found. What is the probability that exactly one defective is found in the sample if there are 3 defectives in the entire lot.

- Let $X=$ number of defectives in the sample
- $N=40, K=3$, and $n=5$
- X has a hypergeometric distribution with parameters $N=40, n=5$, and $K=3$.
- $\mathrm{X} \sim \mathrm{h}(\mathrm{x} ; \mathrm{N}, \mathrm{n}, \mathrm{K})=\mathrm{h}(\mathrm{x} ; 40,5,3)$.
- The probability distribution of X
is given by:

$$
f(x)=P(X=x)=h(x ; 40,5,3)=\left\{\begin{array}{l}
\frac{\binom{3}{x} \times\binom{ 37}{5-x}}{\binom{40}{5}} ; x=0,1,2, \cdots, 5 \\
0 ; \text { otherwise }
\end{array}\right.
$$

But the values of X must satisfy:

$$
0 \leq \mathrm{x} \leq K \text { and } n-N+K \leq \mathrm{x} \leq n \Leftrightarrow 0 \leq \mathrm{x} \leq 3 \text { and }-32 \leq \mathrm{x} \leq 5
$$

Therefore, the probability distribution of X is given by:
$f(x)=P(X=x)=h(x ; 40,5,3)=\left\{\begin{array}{l}\binom{3}{x} \times\binom{ 37}{5-x} \\ \binom{40}{5}\end{array} x=0,1,2,3\right.$

Now, the probability that exactly one defective is found in the sample is
$f(1)=P(X=1)=h(1 ; 40,5,3)=\frac{\binom{3}{1} \times\binom{ 37}{5-1}}{\binom{40}{5}}=\frac{\binom{3}{1} \times\binom{ 37}{4}}{\binom{40}{5}}=0.3011$

Theorem 5.3:

- The mean and the variance of the hypergeometric distribution $\mathrm{h}(\mathrm{x} ; \mathrm{N}, \mathrm{n}, \mathrm{K})$ are:

$$
\begin{gathered}
\mu=n \frac{K}{N} \\
\sigma^{2}=n \frac{K}{N}\left(1-\frac{K}{N}\right) \frac{N-n}{N-1}
\end{gathered}
$$

- In previous Example, find the expected value (mean) and the variance of the number of defectives in the sample.
Solution:
- $X=$ number of defectives in the sample
- We need to find $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma 2$
- We found that $\mathrm{X} \sim \mathrm{h}(\mathrm{x} ; 40,5,3)$
- $N=40, n=5$, and $K=3$
- The expected number of defective items is

$$
\mathrm{E}(\mathrm{X})=\mu=n \frac{K}{N}=5 \times \frac{3}{40}=0.375
$$

The variance of the number of defective items is

$$
\operatorname{Var}(\mathrm{X})=\sigma^{2}=n \frac{K}{N}\left(1-\frac{K}{N}\right) \frac{N-n}{N-1}=5 \times \frac{3}{40}\left(1-\frac{3}{40}\right) \frac{40-5}{40-1}=0.311298
$$

Poisson Distribution

- Poisson experiment is an experiment yielding numerical values of a random variable that count the number of outcomes occurring in a given time interval or a specified region denoted by t .
- $X=$ The number of outcomes occurring in a given time
- interval or a specified region denoted by t .
- Example:

1. X = number of field mice per acre ($t=1$ acre)
2. $X=$ number of typing errors per page ($t=1$ page)
3. $X=$ number of telephone calls received every day ($t=1$ day)
4. $X=$ number of telephone calls received every 5 days ($t=5$ days)

Let λ be the average (mean) number of outcomes per unit time or unit region ($t=1$).

- The average (mean) number of outcomes (mean of X) in the time interval or region t is:
$\mu=\lambda t$
- The random variable X is called a Poisson random variable with parameter $\mu(\mu=\lambda t)$, and we write $X^{\sim} \operatorname{Poisson}(\mu)$, if its probability distribution is given by:

$$
f(x)=P(X=x)=p(x ; \mu)=\left\{\begin{array}{l}
\frac{e^{-\mu} \mu^{x}}{x!} ; \quad x=0,1,2,3, \ldots \\
0 \quad ; \text { otherwise }
\end{array}\right.
$$

Theorem 5.5:

- The mean and the variance of the Poisson distribution Poisson($x ; \mu$) are:

$$
\begin{gathered}
\mu=\lambda t \\
\sigma^{2}=\mu=\lambda t
\end{gathered}
$$

- Note:
- λ is the average (mean) of the distribution in the unit time ($\mathrm{t}=1$).
- If $X=$ The number of calls received in a month (unit time $t=1$ month) and $X \sim \operatorname{Poisson}(\lambda)$, then:
(i) $Y=$ number of calls received in a year.
$Y \sim$ Poisson (μ); $\mu=12 \lambda \quad(t=12)$
(ii) $\mathrm{W}=$ number of calls received in a day.

W ~ Poisson (μ); $\mu=\lambda / 30 \quad(t=1 / 30)$

Example:

Suppose that the number of typing errors per page has a Poisson distribution with average 6 typing errors.
(1) What is the probability that in a given page:
(i) The number of typing errors will be 7 ?
(ii) The number of typing errors will be at least 2 ?
(2) What is the probability that in 2 pages there will be 10 typing errors?
(3) What is the probability that in a half page there will be no typing errors?
(1) $\mathrm{X}=$ number of typing errors per page.

$$
X \sim \text { Poisson (6) } \quad(t=1, \lambda=6, \mu=\lambda t=6)
$$

$$
f(x)=P(X=x)=p(x ; 6)=\frac{e^{-6} 6^{x}}{x!} ; x=0,1,2, \ldots
$$

(i) $\quad f(7)=P(X=7)=p(7 ; 6)=\frac{e^{-6} 6^{7}}{7!}=0.13768$
(ii) $\mathrm{P}(\mathrm{X} \geq 2)=\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+\ldots=\sum_{x=2}^{\infty} P(X=x)$

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} \geq 2) & =1-\mathrm{P}(\mathrm{X}<2)=1-[\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)] \\
& =1-[\mathrm{f}(0)+\mathrm{f}(1)]=1-\left[\frac{e^{-6} 6^{0}}{0!}+\frac{e^{-6} 6^{1}}{1!}\right] \\
& =1-[0.00248+0.01487] \\
& =1-0.01735=0.982650
\end{aligned}
$$

(2) $X=$ number of typing errors in 2 pages

$$
\begin{aligned}
& X \sim \operatorname{Poisson}(12) \quad(t=2, \lambda=6, \mu=\lambda t=12) \\
& f(x)=P(X=x)=p(x ; 12)=\frac{e^{-12} 12^{x}}{x!}: \quad x=0,1,2 \ldots \\
& f(10)=P(X=10)=\frac{e^{-12} 12^{10}}{10!}=0.1048
\end{aligned}
$$

(3) $\mathrm{X}=$ number of typing errors in a half page.

$$
\begin{aligned}
& \mathrm{X} \sim \text { Poisson }(3) \quad(t=1 / 2, \lambda=6, \mu=\lambda t=6 / 2=3) \\
& f(x)=P(X=x)=p(x ; 3)=\frac{e^{-3} 3^{x}}{x!}: \quad x=0,1,2 \ldots \\
& P(X=0)=\frac{e^{-3}(3)^{0}}{0!}=0.0497871
\end{aligned}
$$

