Hubs and Switches

Chapter 6

Repeaters and Hubs

- Repeater
- Simplest connectivity device regenerating signals
- Operates at Physical layer
- Has no means to interpret data
- Limited scope
- One input port, one output port
- Receives and repeats single data stream
- Suitable for bus topology networks
- Extend network inexpensively
- Rarely used on modern networks
- Limitations; other devices decreasing costs

Repeaters and Hubs (cont'd.)

- Hub

A stand-alone hub

- Repeater with more than one output port
- Multiple data ports, uplink port
- Repeats signal in broadcast fashion
- Operates at Physical layer
- Ethernet network hub
- Star or star-based hybrid central connection point
- Connect workstations, print servers, switches, file servers, other devices

Repeaters and Hubs (cont’d)

Hubs in a network design

Interconnecting with hubs

- Backbone hub interconnects LAN segments
- Extends max distance between nodes
- But individual segment collision domains become one large collision domain
- Can't interconnect 10BaseT \& 100BaseT

Switch

- Link layer device
- stores and forwards Ethernet frames
- examines frame header and selectively forwards frame based on MAC dest address
- when frame is to be forwarded on segment, uses CSMA/CD to access segment
- Transparent
- hosts are unaware of presence of switches
- plug-and-play, self-learning
- switches do not need to be configured

Forwarding

- How do determine onto which LAN segment to forward frame?
- Looks like a routing problem...

Self learning

- A switch has a switch table
- entry in switch table:
- (MAC Address, Interface, Time Stamp)
- stale entries in table dropped (TTL can be 60 min)
- switch learns which hosts can be reached through which interfaces
- when frame received, switch "learns" location of sender: incoming LAN segment
- records sender/location pair in switch table

Filtering/Forwarding

```
When switch receives a frame:
index switch table using MAC dest address
if entry found for destination
        then{
            if dest on segment from which frame arrived
            then drop the frame
            else forward the frame on interface indicated
            }
else flood
```


Switch example

Suppose C sends frame to D

Switch receives frame from C

- notes in switch table that C is on interface 1
- because D is not in table, switch forwards frame into interfaces 2 and 3frame received by D

Switch example

Suppose D replies back with frame to C.

address	interface
A	1
B	1
E	2
G	3
C	1
D	2

- notes in switch table that D is on interface 2
- because C is in table, switch forwards frame only to interface 1frame received by C

Switch: traffic isolation

- Switch installation breaks subnet into LAN segments
- Switch filters packets:
- same-LAN-segment frames not usually forwarded onto other LAN segments
- segments become separate collision domains

Switches: dedicated access

- Switch with many interfaces
- Hosts have direct connection to switch
- No collisions; full duplex

Switching: A-to-A' and B-to- B^{\prime} simultaneously, no collisions

More on Switches

- Cut-through switching: frame forwarded from input to output port without first collecting entire frame
- slight reduction in latency
- Combinations of shared/dedicated, 10/100/1000 Mbps interfaces

Installing a Switch

- Follow manufacturer's guidelines
- General steps (assume Cat 5 or better UTP)

1. Verify switch placement
2. Turn on switch
3. Verify lights, self power tests
4. Configure (if necessary)
5. Connect NIC to a switch port (repeat for all nodes)
6. After all nodes connected, turn on nodes
7. Connect switch to larger network (optional)

Installing a Switch (cont'd.)

Institutional network

- both store-and-forward devices
- routers: network layer devices (examine network layer headers)
- switches are link layer devices
- routers maintain routing tables, implement routing algorithms
- switches maintain switch tables, implement filtering, learning algorithms

Summary comparison

	$\underline{\text { hubs }}$	$\underline{\text { routers }}$	$\underline{\text { switches }}$
Traffic isolation	no	yes	yes
plug \& play	yes	no	yes
Optimal routing	no	yes	no
Cut through	yes	no	yes

