Engineering Probability \& Statistics (AGE 1150)

Chapter 7: Fundamental Sampling Distributions and Data Descriptions

Dr. Feras Fraige

Random Sampling

- Definition 1:

A population consists of the totality of the observations with which we are concerned. (Population=Probability Distribution)

- Definition 2:

A sample is a subset of a population.

- Each observation in a population is a value of a random variable X having some probability distribution $f(x)$.
- - To eliminate bias in the sampling procedure, we select a random sample in the sense that the observations are made independently and at random.
- - The random sample of size n is:
- $X_{1}, X_{2}, \ldots, X_{n}$
- It consists of n observations selected independently and randomly from the population.
- Definition 4:
- Any function of the random sample $X_{1}, X_{2}, \ldots, X_{n}$ is called a statistic.

Central Tendency and Variability in the Sample:

- Definition:
- If $X_{1}, X_{2}, \ldots, X_{n}$ represents a random sample of size n, then the sample mean is defined to be the statistic:

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

- Variability in the Sample:
- Definition:
- If $X_{1}, X_{2}, \ldots, X_{n}$ represents a random sample of size n, then the sample variance is defined to be the statistic:

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}=\frac{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}+\cdots+\left(X_{n}-\bar{X}\right)^{2}}{n-1}
$$

- Definition:
- The sample standard deviation is defined to be the statistic:

$$
S=\sqrt{S^{2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}
$$

Sampling Distribution of Means

- If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n taken from a normal distribution with mean μ and variance σ^{2}, i.e. $\mathrm{N}(\mu, \sigma)$, then the sample mean has a normal distribution with mean

$$
E(\bar{X})=\mu_{\bar{X}}=\mu
$$

- And variance

$$
\operatorname{Var}(\bar{X})=\sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n}
$$

- If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ is a random sample of size n from $\mathrm{N}(\mu, \sigma)$, then $\bar{X} \sim \mathrm{~N}\left(\mu_{\bar{X}}, \sigma_{\bar{X}}\right)$ or $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

- $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \Leftrightarrow Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)$

Theorem 8.2: (Central Limit Theorem)
If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample of size n from any distribution (population) with mean μ and finite variance σ^{2}, then, if the sample size n is large, the random variable

$$
Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

is approximately standard normal random variable, i.e., $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)$ approximately.

- $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1) \Leftrightarrow \bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
- We consider n large when $n \geq 30$.

Example:

An electric firm manufactures light bulbs that have a length of life that is approximately normally distributed with mean equal to 800 hours and a standard deviation of 40 hours. Find the probability that a random sample of 16 bulbs will have an average life of less than 775 hours.
$\mathrm{X}=$ the length of life
$\mu=800, \sigma=40$
$\mathrm{X} \sim \mathrm{N}(800,40)$
$n=16$
$\mu_{\bar{X}}=\mu=800$
$\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=\frac{40}{\sqrt{16}}=10$

$$
\begin{aligned}
\Leftrightarrow Z= & \frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=Z=\frac{\bar{X}-800}{10} \sim \mathrm{~N}(0,1) \\
P(\bar{X}<775) & =P\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<\frac{775-\mu}{\sigma / \sqrt{n}}\right) \\
& =P\left(\frac{\bar{X}-800}{10}<\frac{775-800}{10}\right) \\
& =P\left(Z<\frac{775-800}{10}\right) \\
& =P(Z<-2.50) \\
& =0.0062
\end{aligned}
$$

Sampling Distribution of the Difference between Two Means:

2-nd Population 2-nd Sample

Suppose that we have two populations:

- 1-st population with mean μ_{1} and variance $\sigma_{1}{ }^{2}$
- 2-nd population with mean μ_{2} and variance $\sigma_{2}{ }^{2}$
- We are interested in comparing μ_{1} and μ_{2}, or equivalently, making inferences about $\mu_{1}-\mu_{2}$.
- We independently select a random sample of size n_{1} from the 1 -st population and another random sample of size n_{2} from the 2-nd population:
- Let \bar{X}_{1} be the sample mean of the 1-st sample.
- Let \bar{X}_{2} be the sample mean of the 2 -nd sample.
- The sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is used to make inferences about $\mu_{1}-\mu_{2}$.

Theorem 8.3:

If n_{1} and n_{2} are large, then the sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is approximately normal with mean

$$
E\left(\bar{X}_{1}-\bar{X}_{2}\right)=\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}
$$

and variance

$$
\operatorname{Var}\left(\bar{X}_{1}-\bar{X}_{2}\right)=\sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}
$$

that is:

$$
\begin{aligned}
& \bar{X}_{1}-\bar{X}_{2} \sim \mathrm{~N}\left(\mu_{1}-\mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right) \\
& Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim \mathrm{~N}(0,1)
\end{aligned}
$$

Note:

$$
\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \neq \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}}+\sqrt{\frac{\sigma_{2}^{2}}{n_{2}}}=\frac{\sigma_{1}}{\sqrt{n_{1}}}+\frac{\sigma_{2}}{\sqrt{n_{2}}}
$$

Example:

The television picture tubes of manufacturer A have a mean lifetime of 6.5 years and standard deviation of 0.9 year, while those of manufacturer B have a mean lifetime of 6 years and standard deviation of 0.8 year. What is the probability that a random sample of 36 tubes from manufacturer A will have a mean lifetime that is at least 1 year more than the mean lifetime of a random sample of 49 tubes from manufacturer B ?

Solution:

$$
\begin{aligned}
& \text { Population A } \\
& \mu_{1}=6.5 \\
& \sigma_{1}=0.9 \\
& n_{1}=36\left(n_{1}>30\right)
\end{aligned}
$$

Population B

$$
\begin{aligned}
& \mu_{2}=6.0 \\
& \sigma_{2}=0.8 \\
& n_{2}=49\left(n_{2}>30\right)
\end{aligned}
$$

- We need to find the probability that the mean lifetime of manufacturer A is at least 1 year more than the mean lifetime of manufacturer B which is $\mathrm{P}\left(\bar{X}_{1} \geq \bar{X}_{2}+1\right)$.
- The sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is

$$
\bar{X}_{1}-\bar{X}_{2} \sim \mathrm{~N}\left(\mu_{1}-\mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right)
$$

- $E\left(\bar{X}_{1}-\bar{X}_{2}\right)=\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}=6.5-6.0=0.5$
- $\operatorname{Var}\left(\bar{X}_{1}-\bar{X}_{2}\right)=\sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}=\frac{(0.9)^{2}}{36}+\frac{(0.8)^{2}}{49}=0.03556$
- $\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}=\sqrt{0.03556}=0.189$
- $\bar{X}_{1}-\bar{X}_{2} \sim \mathrm{~N}(0.5,0.189)$
- Recall $Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim \mathrm{~N}(0,1)$

$$
\mathrm{P}\left(\bar{X}_{1} \geq \bar{X}_{2}+1\right)=\mathrm{P}\left(\bar{X}_{1}-\bar{X}_{2} \geq 1\right)
$$

$$
=P\left(\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \geq \frac{1-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\right)
$$

$$
\begin{aligned}
& =P\left(Z \geq \frac{1-0.5}{0.189}\right) \\
& =\mathrm{P}(\mathrm{Z} \geq 2.65) \\
& =1-\mathrm{P}(\mathrm{Z}<2.65) \\
& =1-0.9960 \\
& =0.0040
\end{aligned}
$$

t-Distribution

- Recall that, if $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ is a random sample of size n from a normal distribution with mean μ and variance σ^{2}, i.e. $N(\mu, \sigma)$, then

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)
$$

- We can apply this result only when σ^{2} is known!
- If σ^{2} is unknown, we replace the population variance σ^{2}

$$
\sum^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

with the sample variance $S^{2}=\frac{i=1}{n-1}$ to have the following statistic

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

Result:

If $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ is a random sample of size n from a normal distribution with mean μ and variance σ^{2}, i.e. $\mathrm{N}(\mu, \sigma)$, then the statistic

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

has a t-distribution with $v=n-1$ degrees of freedom (df), and we write $\mathrm{T} \sim \mathfrak{t}(v)$ or $\mathrm{T} \sim \mathrm{t}(n-1)$.

Note:

- t -distribution is a continuous distribution.
- The shape of t-distribution is similar to the shape of the standard normal distribution.

Notation:

- $\mathrm{t}_{\alpha}=$ The t -value above which we find an area equal to α, that is $\mathrm{P}\left(\mathrm{T}>\mathrm{t}_{\alpha}\right)=\alpha$
- Since the curve of the pdf of $T \sim t(v)$ is symmetric about 0 , we have

$$
\mathrm{t}_{1-\alpha}=-\mathrm{t}_{\alpha}
$$

- Values of t_{α} are tabulated in Table A-4

Example:

Find the t-value with $v=14$ (df) that leaves an area of:
(a) 0.95 to the left.
(b) 0.95 to the right.

Solution:

$$
v=14 \text { (df); } \mathrm{T} \sim \mathrm{t}(14)
$$

(a) The t-value that leaves an area of 0.95 to the left is

$$
\mathrm{t}_{0.05}=1.761
$$

$$
\text { Table of } t \text { - Distribution }
$$

$\mathrm{t}_{0.05}=1.761$
(b) The t-value that leaves an area of 0.95 to the right is

$$
\mathrm{t}_{0.95}=-\mathrm{t}_{1-0.95}=-\mathrm{t}_{0.05}=-1.761
$$

Table of t - Distribution

Example:

For $v=10$ degrees of freedom (df), find $\mathrm{t}_{0.10}$ and $\mathrm{t}_{0.85}$.
Solution:

$$
\begin{aligned}
& \mathrm{t}_{0.10}=1.372 \\
& \mathrm{t}_{0.85}=-\mathrm{t}_{1-0.85}=-\mathrm{t}_{0.15}=-1.093 \quad\left(\mathrm{t}_{0.15}=1.093\right)
\end{aligned}
$$

