Chapter 7
 Simple linear regression and Correlation

11.53 The following data represent the chemistry grades for a random sample of 12 freshmen at a certain college along with their scores on an intelligence test administered while they were still seniors in high school.

Student	Test Score, \boldsymbol{x}	Chemistry Grade, \boldsymbol{y}
1	65	85
2	50	74
3	55	76
4	65	90
5	55	85
6	70	87
7	65	94
8	70	98
9	55	81
10	70	91
11	50	76
12	55	74

(a) Compute and interpret the sample correlation coefficient.
a) $r=\frac{S_{X Y}}{\sqrt{S_{X X} S_{Y Y}}}=\frac{\sum x_{i} y_{i}-n \bar{X} \bar{Y}}{\sqrt{\left(\sum x_{i}^{2}-n \bar{X}^{2}\right)\left(\sum y_{i}^{2}-n \bar{Y}^{2}\right)}}$

$$
\bar{X}=60.4167, \bar{Y}=84.25 ; \sum x_{i}^{2}=44475 ; \sum y_{i}^{2}=85905 ; \sum x_{i} y_{i}=61685
$$

Thus, $r=\frac{61685-(12)(60.4167)(84.25)}{\sqrt{\left(44475-(12)(60.4167)^{2}\right)\left(85905-(12)(84.25)^{2}\right)}}=0.862$
Strong positive correlation

We can use the calculator to find the Correlation

11.9 A study was made by a retail merchant to determine the relation between weekly advertising expenditures and sales.

ma sales. Advertising Costs (\$)	Sales (\$)
40	385
20	400
25	395
20	365
30	475
50	440
40	490
20	420
50	560
40	525
25	480
50	510

(a) Find the equation of the regression line to predict weekly sales from advertising expenditures. (b) Estimate the weekly sales when advertising costs are $\$ 35$.
a)

$$
\widehat{\mathbf{Y}}_{1}=\mathbf{b}_{0}+\mathbf{b}_{1} \mathbf{x}, \quad \mathbf{b}_{1}=\frac{\sum \mathrm{x}_{\mathrm{i}} \mathbf{y}_{\mathrm{i}}-\mathbf{n} \overline{\mathbf{X}} \overline{\mathbf{Y}}}{\sum \mathrm{x}_{\mathrm{i}}^{2}-\mathbf{n} \bar{X}^{2}}, \quad \mathbf{b}_{0}=\overline{\mathbf{Y}}-\mathbf{b}_{1} \overline{\mathbf{X}}
$$

$\bar{X}=\frac{\sum x}{n}=34.1667, \quad \bar{Y}=\frac{\sum y}{n}=453.75$.
$\sum x_{i} y_{i}=191325 ; \sum x_{i}^{2}=15650$
Thus, $\quad b_{1}=\frac{191325-(12)(34.1667)(453.75)}{15650-(12)(34.1667)^{2}}=3.22$

$$
b_{0}=453.75-(3.22)(34.1667)=343.7
$$

The equation of regression line is:

$$
\widehat{Y}_{1}=343.7+3.22 x_{i}
$$

b) Point Estimation of weekly sales when advertising costs are \$35

$$
x_{k}=35, \widehat{Y_{k}}=343.7+3.22(35)=456.434
$$

We can use the calculator to find the Equation of Linear Regression

$$
\hat{Y}=b_{0}+b_{1} x
$$

11.21 Test the hypothesis that $\beta 1=6$ in (Exercise 11.9 on page 399) against the alternative that $\beta 1<6$. Use a 0.025 level of significance.

The hypotheses:

$$
H_{0}: \beta_{1}=6 \quad \text { vs } H_{1}: \beta_{1}<6
$$

Test statistics:

$$
t=\frac{b_{1}-\beta_{1}}{\widehat{\sigma} / \sqrt{S_{x x}}}=\frac{3.22-6}{50.266 / \sqrt{1641.64}}=-2.24
$$

degrees of freedom $=n-2=12-2=10$
R.R\&A.R of H_{0} :

Decision:
If $t<-t_{\alpha}$, we reject H_{0}
$\rightarrow t=-2.24<-2.228, \quad$ we Reject $H 0$ and conclude $\beta_{1}<6$

We can also use the p-value to get the decision
$p-$ value $=0.02<\alpha=0.025$, , Reject H_{0} and conclude $\beta_{1}<6$

$$
\begin{aligned}
& S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum \mathrm{x}_{\mathrm{i}}^{2}-\mathrm{n} \bar{x}^{2}=1641.64 \\
& \widehat{\sigma}^{2}=\frac{S S E}{n-2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}\right)^{2}}{n-2}=\frac{25226.22}{12-2}=2522.66
\end{aligned}
$$

y	x	$\hat{y}=343.7+3.33 x$	$\left(y_{i}-\hat{y}_{i}\right)^{2}$	
385	40	472.5	7656.25	
400	20	408.1	65.61	
395	25	424.2	852.64	
365	20	408.1	1857.61	
475	30	440.3	1204.09	
440	50	504.7	4186.09	
490	40	472.5	306.25	
420	20	408.1	141.61	
560	50	504.7	3058.09	
525	40	472.5	2756.25	
480	25	424.2	3113.64	
510	50	504.7	28.09	

x	$\left(x_{i}-\bar{x}\right)$
40	
40	34.024
20	200.7
25	84.034
20	200.7
30	17.364
50	250.68
40	34.024
20	200.7
50	250.68
40	34.024
25	84.034
50	250.68
	1641.7

11.21 With reference to Exercise 11.9

a) Construct a 99% confidence interval for β_{1}.
b) Find and interpret the Coefficient of Determination R^{2}.
a) $\mathbf{a} 99 \%$ C.I of β_{1} :

$$
\begin{gathered}
\mathrm{b}_{1}+{ }_{-}^{+} \mathrm{t}_{\frac{\alpha}{2}, \mathrm{n}-2} \frac{\hat{\sigma}}{\sqrt{\mathrm{~S}_{\mathrm{xx}}}} \\
3.22_{-}^{+}(3.169)\left(\frac{50.266}{\sqrt{1641.64}}\right) \\
\beta_{1} \in(-0.71, \quad 7.15)
\end{gathered}
$$

b) $R^{2}=1-\frac{S S E}{S S T}=1-\frac{25226.22}{42256.25}=0.4030$

This means that the 40.30% of change in the mean sales for retail merchant is by advertising expenditures.

x	y	$\hat{\mathbf{y}}=343.7+3.22 \mathrm{x}$	$(\mathrm{y}-\hat{\mathbf{y}})^{2}$	$(\mathrm{y}-\overline{\mathrm{y}})^{2}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$	
40	385	472.5	7656.25	4726.5625	34.02778	
20	400	408.1	65.61	2889.0625	200.6944	
25	395	424.2	852.64	3451.5625	84.02778	
20	365	408.1	1857.61	7876.5625	200.6944	
30	475	440.3	1204.09	451.5625	17.36111	
50	440	504.7	4186.09	189.0625	250.6944	
40	490	472.5	306.25	1314.0625	34.02778	
20	420	408.1	141.61	1139.0625	200.6944	
50	560	504.7	3058.09	11289.0625	250.6944	
40	525	472.5	2756.25	5076.5625	34.02778	
25	480	424.2	3113.64	689.0625	84.02778	
50	510	504.7	28.09	3164.0625	250.6944	
			25226.22	42256.25	1641.667	Total
			SSE	SST		
				$S_{y y}$	XX	
	$\overline{\mathbf{y}}=$	453.75				
	$\overline{\mathrm{x}}=$	34.16666667				

