
Chapter 8 
 

8.1 One Way ANOVA 

Suppose in an industrial experiment that an engineer is interested in how the mean 

absorption of moisture in concrete varies among 5 different concrete aggregates. The 

samples are exposed to moisture for 48 hours. It is decided that 6 samples are to be tested 

for each aggregate, requiring a total of 30 samples to be tested. The data are recorded in 

Table 13.1. 

The model for this situation may be set up as follows. There are 6 observations taken from 

each of 5 populations with means μ1, μ2, . . . , μ5, respectively. We may wish to test 

H0: μ1 = μ2 = · · · = μ5, 

H1: At least two of the means are not equal. 

Table 13.1: Absorption of Moisture in Concrete Aggregates 

Aggregate 1 2 3 4 5 
 

 
551 595 639 417 563 

 

 
457 580 615 449 631 

 

 
450 508 511 517 522 

 

 
731 583 573 438 613 

 

 
499 633 648 415 656 

 

 
632 517 677 555 679 

 

Total 3320 3416 3663 2791 3664 16854 

Mean 553.33 569.33 610.5 465.17 610.67 561.8 

 

Two Sources of Variability in the Data 

In the analysis-of-variance procedure, it is assumed that whatever variation exists among 

the aggregate averages is attributed to (1) variation in absorption among observations 

within aggregate types and (2) variation among aggregate types, that is, due to differences 

in the chemical composition of the aggregates. The within aggregate variation is, of 

course, brought about by various causes. Perhaps humidity and temperature conditions 

were not kept entirely constant throughout the experiment. It is possible that there was a 

certain amount of heterogeneity in the batches of raw materials that were used. At any rate, 

we shall consider the within-sample variation to be chance or random variation. Part of 

the goal of the analysis of variance is to determine if the differences among the 5 sample 

means are what we would expect due to random variation alone or, rather, due to variation 

beyond merely random effects, i.e., differences in the chemical composition of the 

aggregates. 

 

One-Way Analysis of Variance: 

Completely Randomized Design (One-Way ANOVA) 

 

Random samples of size n are selected from each of k populations. The k different 

populations are classified on the basis of a single criterion such as different treatments or 

groups. Today the term treatment is used generally to refer to the various classifications, 



whether they be different aggregates, different analysts, different fertilizers, or different 

regions of the country. 

 

Assumptions and Hypotheses in One-Way ANOVA 

It is assumed that the k populations are independent and normally distributed with means 

μ1, μ2, . . . , μk and common variance σ2.  

We wish to derive appropriate methods for testing the hypothesis 

H0: μ1 = μ2 = · · · = μk, 

H1: At least two of the means are not equal. 

Let yij denote the jth observation from the ith treatment and arrange the data as in Table 

13.2. Here, Yi. is the total of all observations in the sample from the ith treatment, 𝑦𝑖.̅̅ ̅ is the 

mean of all observations in the sample from the ith treatment, Y.. is the total of all nk 

observations, and 𝑦. .̅̅̅̅  is the mean of all nk observations. 

 

 

 
Model for One-Way ANOVA 

Each observation may be written in the form 

Yij = μi + εij , 

where εij measures the deviation of the jth observation of the ith sample from the 

corresponding treatment mean. The εij -term represents random error and plays the same 

role as the error terms in the regression models.  

 

Theorem: Sum-of-Squares Identity 

 
It will be convenient in what follows to identify the terms of the sum-of-squares identity 

by the following notation: 

 



The sum-of-squares identity can then be represented symbolically by the equation 

SST = SSA + SSE. 

The identity above expresses how between-treatment and within-treatment variation add 

to the total sum of squares. 

 

Analysis of Variance for the One-Way ANOVA

 

 
 
F-Ratio for Testing Equality of Means 

When H0 is true, the ratio f = s1
2/s2 is a value of the random variable F having the F-

distribution with k−1 and k(n−1) degrees of freedom.  

The null hypothesis H0 is rejected at the α-level of significance when f > fα[k − 1, k(n − 

1)]. 

 

Example:  

Test the hypothesis μ1 = μ2 = · · · = μ5 at the 0.05 level of significance for the data of Table 

13.1 on absorption of moisture by various types of cement aggregates. 

 

Solution : The hypotheses are 

H0: μ1 = μ2 = · · · = μ5, 

H1: At least two of the means are not equal. 

α = 0.05. 

Critical region: f > 2.76 with v1 = 4 and v2 = 25 degrees of freedom. The sum-of-squares 

computations give 

SST = 209,377, SSA= 85,356, 

SSE = 209,377 − 85,356 = 124,021. the ratio f = s1
2/s2 =4.30 These results and the 

remaining computations are exhibited in the next figure in the SAS ANOVA procedure. 

 



Decision: Reject H0 and conclude that the aggregates do not have the same mean 

absorption. The P-value for f = 4.30 is 0.0088, which is smaller than 0.05. 

  

Figure: Box plots for the absorption of moisture in concrete aggregates. 

  



8.2 Two-Factor Analysis of Variance 

To present general formulas for the analysis of variance of a two-factor experiment using 

repeated observations in a completely randomized design, we shall consider the case of n 

replications of the treatment combinations determined by a levels of factor A and b levels 

of factor B. The observations may be classified by means of a rectangular array where the 

rows represent the levels of factor A and the columns represent the levels of factor B. Each 

treatment combination defines a cell in our array. Thus, we have ab cells, each cell 

containing n observations. Denoting the kth observation taken at the ith level of factor A 

and the jth level of factor B by yijk, The following table shows the abn observations. 

 

 

The observations in the (ij)th cell constitute a random sample of size n from a population 

that is assumed to be normally distributed with mean μij and variance σ2. All ab 

populations are assumed to have the same variance σ2. Let us define the following useful 

symbols: 

 

Yij. = sum of the observations in the (ij)th cell, 

Yi.. = sum of the observations for the ith level of factor A, 

Y.j. = sum of the observations for the jth level of factor B, 

Y... = sum of all abn observations, 

𝑦𝑖𝑗.̅̅ ̅̅̅= mean of the observations in the (ij)th cell, 

𝑦𝑖. .̅̅ ̅̅̅= mean of the observations for the ith level of factor A, 

𝑦. 𝑗.̅̅ ̅̅ ̅= mean of the observations for the jth level of factor B, 

𝑦. . .̅̅ ̅̅ ̅= mean of all abn observations. 

 

Unlike in the one-factor situation covered at length in Chapter 13, here we are assuming 

that the populations, where n independent identically distributed observations are taken, 

are combinations of factors. Also we will assume throughout that an equal number (n) of 

observations are taken at each factor combination.  

 

Model and Hypotheses for the Two-Factor Problem 

Each observation in Table 14.1 may be written in the form 

yijk = μij + ɛijk, 



where _ijk measures the deviations of the observed yijk values in the (ij)th cell from the 

population mean μij . If we let (αβ)ij denote the interaction effect of the ith level of factor 

A and the jth level of factor B, αi the effect of the ith level of factor A, βj the effect of the 

jth level of factor B, and μ the overall mean, we can write 

μij = μ + αi + βj + (αβ)ij , 

and then 

yijk = μ + αi + βj + (αβ)ij + ɛijk, 

 

 

on which we impose the restrictions 
∑ 𝛼𝑖

𝑎
𝑖=1 =0 

∑ 𝛽𝑗𝑏
𝑗=1 =0 

∑ (𝛼𝛽)𝑖𝑗𝑎
𝑖=1 =0 

 ∑ (𝛼𝛽)𝑖𝑗 𝑏
𝑗=1 =0 

 

The three hypotheses to be tested are as follows: 

1. 𝐻0
′ : α1 = α2 = · · · = αa = 0, 

𝐻1
′ : At least one of the αi is not equal to zero. 

2. 𝐻0
′′ : β1 = β2 = · · · = βb = 0, 

𝐻1
′′ : At least one of the βj is not equal to zero. 

3. 𝐻0
′′′: (αβ)11 = (αβ)12 = · · · = (αβ)ab = 0, 

𝐻1
′′′: At least one of the (αβ)ij is not equal to zero. 

 

We warned the reader about the problem of masking of main effects when interaction is a 

heavy contributor in the model. It is recommended that the interaction test result be 

considered first. The interpretation of the main effect test follows, and the nature of the 

scientific conclusion depends on whether interaction is found. 

If interaction is ruled out, then hypotheses 1 and 2 above can be tested and the interpretation 

is quite simple. However, if interaction is found to be present the interpretation can be more 

complicated, as we have seen from the discussion of the drying time and temperature in 

the previous section. In what follows, the structure of the tests of hypotheses 1, 2, and 3 

will be discussed. Interpretation of results will be incorporated in the discussion of the 

analysis in Example 14.1. The tests of the hypotheses above will be based on a comparison 

of independent estimates of σ2 provided by splitting the total sum of squares of our data 

into four components by means of the following identity. 

 

Partitioning of Variability in the Two-Factor Case 

 

Theorem: 



 
Symbolically, we write the sum-of-squares identity as 

SST = SSA + SSB + SS(AB) + SSE, 

where SSA and SSB are called the sums of squares for the main effects A and B, 

respectively, SS(AB) is called the interaction sum of squares for A and B, and SSE is the 

error sum of squares. The degrees of freedom are partitioned according to the identity 

abn − 1 = (a − 1) + (b − 1) + (a − 1)(b − 1) + ab(n − 1). 

Formation of Mean Squares 

If we divide each of the sums of squares on the right side of the sum-of-squares identity by 

its corresponding number of degrees of freedom, we obtain the four statistics 

 
All of these variance estimates are independent estimates of σ2 under the condition that 

there are no effects αi, βj , and, of course, (αβ)ij . If we interpret the sums of squares as 

functions of the independent random variables y111, y112, . . . , yabn, it is not difficult to 

verify that 

 
from which we immediately observe that all four estimates of σ2 are unbiased when 

𝐻0
′ , 𝐻0

′′ 𝑎𝑛𝑑 𝐻0
′′′ are true. 

 

To test the hypothesis 𝐻0
′ , that the effects of factors A are all equal to zero, we compute the 

following ratio: 

F-Test for Factor A  

f1 =𝑠1
2 /𝑠 

2 , 

which is a value of the random variable F1 having the F-distribution with a−1 and ab(n−1) 

degrees of  freedom when 𝐻0
′  is true. The null hypothesis is rejected at the α-level of 

significance when 



f1 > fα[a − 1, ab(n − 1)]. 

 

 

Similarly, to test the hypothesis 𝐻0
′′ that the effects of factor B are all equal to zero, we 

compute the following ratio: 

F-Test for Factor B  

f2 =𝑠2
2 /𝑠 

2 , 

which is a value of the random variable F2 having the F-distribution with b−1and ab(n − 

1) degrees of freedom when 𝐻0
′′ is true. This hypothesis is rejected at the α-level of 

significance when  

f2 > fα[b − 1, ab(n − 1)]. 

 

 

 

Finally, to test the hypothesis 𝐻0
′′′, that the interaction effects are all equal to zero, we 

compute the following ratio: 

 

F-Test for Interaction 

 f3 =𝑠3
2 /𝑠 

2 , 

which is a value of the random variable F3 having the F-distribution with (a − 1)(b − 1) 

and ab(n − 1) degrees of freedom when 𝐻0
′′′ is true. We conclude that, at the α-level of 

significance, interaction is present when 

f3 >fα[(a − 1)(b − 1), ab(n − 1)]. 

 

As indicated before, it is advisable to interpret the test for interaction before attempting to 

draw inferences on the main effects. If interaction is not significant, there is certainly 

evidence that the tests on main effects are interpretable. 

Rejection of hypothesis 1 on implies that the response means at the levels of factor A are 

significantly different, while rejection of hypothesis 2 implies a similar condition for the 

means at levels of factor B. However, a significant interaction could very well imply that 

the data should be analyzed in a somewhat different manner—perhaps observing the 

effect of factor A at fixed levels of factor B, and so forth. 

The computations in an analysis-of-variance problem, for a two-factor experiment with n 

replications, are usually summarized as 

 

 

 

Analysis of Variance for the Two-Factor Experiment with n Replications 



 
In an experiment conducted to determine which of 3 different missile systems is preferable, 

the propellant burning rate for 24 static firings was measured. Four different propellant 

types were used. The experiment yielded duplicate observations of burning rates at each 

combination of the treatments. 

The data, after coding, are given in Table 14.3. Test the following hypotheses: 

(a) 𝐻0
′ : there is no difference in the mean propellant burning rates when different missile 

systems are used,  

(b) 𝐻0
′′:  there is no difference in the mean propellant burning rates of the 4 propellant types,  

(c) 𝐻0
′′′: there is no interaction between the different missile systems and the different 

propellant types. 

 
Solution :  

1. (a) 𝐻0
′ :  α1 = α2 = α3 = 0. 

(b) 𝐻0
′′:  β1 = β2 = β3 = β4 = 0. 

(c) 𝐻0
′′′: (αβ)11 = (αβ)12 = · · · = (αβ)34 = 0. 

2. (a) 𝐻1
′ :  At least one of the αi is not equal to zero. 

(b) 𝐻1
′′: At least one of the βj is not equal to zero. 

(c) 𝐻1
′ ′′: At least one of the (αβ)ij is not equal to zero. 

 

Analysis of Variance for the Data 



 
 

 

 (a) Reject 𝐻0
′  and conclude that different missile systems result in different mean 

propellant burning rates. f1 =𝑠1
2 /𝑠 

2 = 5.84 , 

which is a value of the random variable F1 having the F-distribution with a−1=2 and 

ab(n−1)=12 degrees of  freedom when 𝐻0
′  is true. The null hypothesis is rejected at the α-

level of significance when 

f1 > fα[2, 12]= 3.89 

 

(b) Reject 𝐻0
′′ and conclude that the mean propellant burning rates are not the 

same for the four propellant types. f2 =𝑠2
2 /𝑠 

2 = 10.75 , 

which is a value of the random variable F2 having the F-distribution with b−1=3and ab(n 

− 1)=12 degrees of freedom when 𝐻0
′′ is true. This hypothesis is rejected at the α-level of 

significance when  

f2 > fα[3, 12]=3.49. 

  

(c)  Fail to Reject 𝐻0
′′′, f3 =𝑠3

2 /𝑠 
2 =2.97, 

which is a value of the random variable F3 having the F-distribution with (a − 1)(b − 1) 

=6and ab(n − 1)=12 degrees of freedom when 𝐻0
′′′ is true. We conclude that, at the α-level 

of significance, interaction is present when 

f3 >fα[(6, 12]=3.00. Interaction is barely insignificant at the 0.05 level., 

This would indicate that interaction must be taken seriously. 

 
 

 

 



 
SAS printout of the analysis of the propellant rate data 


