Chapter 4 problems without solutions:

Problem 1: Prove that

If W_1, W_2, \ldots, W_r are subspaces of a vector space V, then the intersection of these subspaces is also a subspace of V.

Problem 2:

Prove that The solution set of a homogeneous linear system $A\mathbf{x} = \mathbf{0}$ of m equations in n unknowns is a subspace of R^n .

Problem 3:

11. In each part, determine whether the vectors span R^3 .

(a) $\mathbf{v}_1 = (2, 2, 2), \ \mathbf{v}_2 = (0, 0, 3), \ \mathbf{v}_3 = (0, 1, 1)$

- (b) $\mathbf{v}_1 = (2, -1, 3), \ \mathbf{v}_2 = (4, 1, 2), \ \mathbf{v}_3 = (8, -1, 8)$
- 12. Suppose that $\mathbf{v}_1 = (2, 1, 0, 3)$, $\mathbf{v}_2 = (3, -1, 5, 2)$, and $\mathbf{v}_3 = (-1, 0, 2, 1)$. Which of the following vectors are in span{ $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ }?

(a) $(2, 3, -7, 3)$	(b) $(0, 0, 0, 0)$
(c) $(1, 1, 1, 1)$	(d) $(-4, 6, -13, 4)$

13. Determine whether the following polynomials span P_2 .

$$\mathbf{p}_1 = 1 - x + 2x^2, \quad \mathbf{p}_2 = 3 + x, \\ \mathbf{p}_3 = 5 - x + 4x^2, \quad \mathbf{p}_4 = -2 - 2x + 2x^2$$

14. Let $\mathbf{f} = \cos^2 x$ and $\mathbf{g} = \sin^2 x$. Which of the following lie in the space spanned by \mathbf{f} and \mathbf{g} ?

(a)
$$\cos 2x$$
 (b) $3 + x^2$ (c) 1 (d) $\sin x$ (e) 0

Question 3 : [9pts]

- 1. Let $E = \{(x, y, z) \in \mathbb{R}^3; ax + y + 2z = b^2 4\}$. Find $a, b \in \mathbb{R}$ such that E is a sub-space of \mathbb{R}^3 .
- 2. Let F be the subspace of \mathbb{R}^3 generated by the vectors $v_1 = (1, -1, 2)$, $v_2 = (0, 1, -1), v_3 = (1, 0, 1), \text{ and } v_4 = (1, 1, 0).$ Is the vector v = (1, 1, 1) in F? (Justify your answer.)
- 3. Let $W = \{(x, y, z, t) \in \mathbb{R}^4; x 2z = 0, y + z = 0\}.$
 - (a) Find a basis for W.
 - (b) Which of the following vectors belong to W. u = (0, 1, -1, 1), v = (2, 0, -1, 5), w = (-2, 1, -1, -7). (Justify your answer.)