Problem 1: Prove that

If $W_{1}, W_{2}, \ldots, W_{r}$ are subspaces of a vector space V, then the intersection of these subspaces is also a subspace of V.

Problem 2:

Prove that \quad The solution set of a homogeneous linear system $A \mathbf{x}=\mathbf{0}$ of m equations in n unknowns is a subspace of R^{n}.

Problem 3:
11. In each part, determine whether the vectors span R^{3}.
(a) $\mathbf{v}_{1}=(2,2,2), \mathbf{v}_{2}=(0,0,3), \mathbf{v}_{3}=(0,1,1)$
(b) $\mathbf{v}_{1}=(2,-1,3), \mathbf{v}_{2}=(4,1,2), \mathbf{v}_{3}=(8,-1,8)$
12. Suppose that $\mathbf{v}_{1}=(2,1,0,3), \mathbf{v}_{2}=(3,-1,5,2)$, and $\mathbf{v}_{3}=(-1,0,2,1)$. Which of the following vectors are in $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
(a) $(2,3,-7,3)$
(b) $(0,0,0,0)$
(c) $(1,1,1,1)$
(d) $(-4,6,-13,4)$
13. Determine whether the following polynomials span P_{2}.

$$
\begin{array}{ll}
\mathbf{p}_{1}=1-x+2 x^{2}, & \mathbf{p}_{2}=3+x \\
\mathbf{p}_{3}=5-x+4 x^{2}, & \mathbf{p}_{4}=-2-2 x+2 x^{2}
\end{array}
$$

14. Let $\mathbf{f}=\cos ^{2} x$ and $\mathbf{g}=\sin ^{2} x$. Which of the following lie in the space spanned by \mathbf{f} and \mathbf{g} ?
(a) $\cos 2 x$
(b) $3+x^{2}$
(c) 1
(d) $\sin x$
(e) 0

Question 3 : [9pts]

1. Let $E=\left\{(x, y, z) \in \mathbb{R}^{3} ; a x+y+2 z=b^{2}-4\right\}$. Find $a, b \in \mathbb{R}$ such that E is a sub-space of \mathbb{R}^{3}.
2. Let F be the subspace of \mathbb{R}^{3} generated by the vectors $v_{1}=(1,-1,2)$, $v_{2}=(0,1,-1), v_{3}=(1,0,1)$, and $v_{4}=(1,1,0)$.
Is the vector $v=(1,1,1)$ in F ? (Justify your answer.)
3. Let $W=\left\{(x, y, z, t) \in \mathbb{R}^{4} ; x-2 z=0, y+z=0\right\}$.
(a) Find a basis for W.
(b) Which of the following vectors belong to W. $u=(0,1,-1,1), v=(2,0,-1,5), w=(-2,1,-1,-7)$. (Justify your answer.)
