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Nickel oxide nanoparticles exert cytotoxicity via oxidative stress
and induce apoptotic response in human liver cells (HepG2)
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HIGHLIGHTS

« NiO NPs exerted cytotoxicity in human liver cells HepG2 in dose-dependent manner.
« NiO NPs induced ROS generation in dose-dependent manner.

« ROS scavenger vitamin C abolished almost fully the cytotoxic effect of NiO NPs.

« NiO NPs induced DNA damage, chromatin condensation and micronuclei induction.
« NiO NPs altered mRNA levels of apoptotic genes e.g. bax, bcl-2 and caspase-3.
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Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their
potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly
on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this
study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apopto-
tic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline
and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death)
and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced
Human health cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role
Liver toxicity in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells
ROS treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative
Apoptosis real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression
level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level
of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also
higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that
NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated
through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial
and industrial applications.
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1. Introduction 2008; Singh et al., 2009). NPs are the materials used in nanotech-

nology, which have at least one of their dimensions in the range

Nanoparticles (NPs) have received tremendous international
attention due to not only their wide-spread applications ranging
from aerospace engineering and nano-electronics to environmen-
tal remediation and medical healthcare, but also their adverse ef-
fects to the environment and human health (Ahamed et al,

* Corresponding author. Address: King Abdullah Institute for Nanotechnology,
King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia. Tel.: +966
4698781; fax: +966 4670664.

E-mail addresses: maqusood@gmail.com, mahamed@ksu.edu.sa (M. Ahamed).

0045-6535/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.chemosphere.2013.09.047

of 1-100 nm. The crucial factors in NPs toxicity are size, chemical
composition, shape and surface charge (Oberdoerster et al., 2005;
Nel et al., 2006). Being smaller than cellular organelles and cells,
it allows them to penetrate basic biological structures, which
may in-turn disrupt their normal function (Buzae et al., 2007;
Magaye and Zhao, 2012). Moreover, physicochemical properties
of a NP cannot be simply predicted from the properties of a bulk
particle with the same chemical composition (Magaye and Zhao,
2012). Studies have shown that NPs are more toxic than their bulk
forms (Oberdorster, 2001; Zhang et al., 2010).
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Nickel oxide (NiO) NPs are utilized in various applications such
as solar cells, catalysts, lithium-ion batteries, resistive random ac-
cess memory, light-emitting diodes, electrochemical sensors and
biosensors (Salimi et al., 2007; Rao and Sunandana, 2008). Increas-
ing use of NiO NPs necessitates an improved understanding of their
potential impact on the environment and human health. Recently,
few reports have shown that NiO NPs exert toxicity to bacteria,
microalgae and tomato (Lycopersicon esculentum) seedlings roots
(Baek and An, 2011; Gong et al., 2011; Faisal et al., 2013). In mam-
malian systems, toxic effects of NiO NPs have been investigated,
mainly on airway cells (Lu et al., 2009; Pietruska et al., 2011).
NiO NPs induced significant lung toxicity and inflammation follow-
ing intratracheal instillation in rats (Zhang et al., 1998; Ogami
et al., 2009; Horie et al., 2011; Morimoto et al., 2011). On the other
hand, no study, so far, have investigated possible mechanisms of
NiO NPs toxicity in human liver, which is the primary organ of
metabolism. Studies suggest that NPs get absorbed as they pass
through the gastrointestinal tract and distributed different organs
like liver via the circulatory system. Studies have shown that the
NPs when orally administered to mice accumulate in liver and
cause toxicity (Chen et al.,, 2007; Wang et al., 2008). NPs could
be delivered into the gastrointestinal tract via accidental ingestion
by those who work in the NPs manufacturing industry or NPs re-
search laboratories or by drinking or eating water or food contam-
inated with NPs (Ahamed et al., 2010a; Sharma et al., 2012).

Intracellular generation of reactive oxygen species (ROS) is a
crucial factor not only in apoptotic pathway, but also in DNA dam-
age and many other cellular processes (Nel et al., 2006; Stone and
Donaldson, 2006; Ahamed et al., 2010b). Therefore, present study
was designed to investigate the underlying mechanisms of cyto-
toxicity and apoptosis induced by NiO NPs in human liver cells
(HepG2). To achieve this goal, we determined the cell viability,
ROS generation, micronuclei induction, chromosome condensation,
DNA damage and expression of apoptotic genes in HepG2 cells ex-
posed to NiO NPs. The HepG2 cell line is a classical hepatic model
used to test particles/compounds that are potentially cytotoxic,
genotoxic or affect hepatocyte functions (Zou et al., 2011; Ahmad
et al., 2012; Piret et al., 2012).

2. Materials and methods
2.1. Chemicals and reagents

Dulbecco’s modified eagle’s medium (DMEM), hank’s balanced
salt solution (HBSS), fetal bovine serum (FBS), penicillin-strepto-
mycin and trypsin were purchased from Invitrogen Co. (Carlsbad,
CA, USA). The 3-(4,5-2-yl)-2,5-diphenyltetrazoliumbromide
(MTT), 2,7-dichlorofluorescin diacetate (DCFH-DA) and vitamin C
were obtained from Sigma-Aldrich (St. Louis, MO, USA). DNA
Ladder assay kit was bought from Roche (Indianapolis, IN, USA).
Caspase-3 enzyme assay kit was purchased from Bio-Vision Inc.
(Milpitas, California, USA). All other chemicals used were of the
highest purity available from commercial sources.

2.2. Synthesis of nickel oxide nanoparticles

NiO NPs were prepared by a solid-state reaction using nickel (II)
acetate [Ni(CH3C0O),-4H,0] and sodium hydroxide (NaOH) as the
raw materials and Tween 80 as a dispersant (Wang et al., 2005). In
brief, Ni(CH3C00),-4H,0 and NaOH were grinded with appropriate
amount of Tween 80 in an agate mortar at room temperature for
about half an hour. Then product was washed with distilled water,
treated in an ultrasonic bath with absolute ethanol and centri-
fuged. After that samples were dried in desiccators at 80 °C for

4 h. A light green powder of NiO NPs was obtained which was sin-
tered at 400 °C for 2 h.

2.3. Characterization of nickel oxide nanoparticles

Crystalline nature of NiO NPs was carried out by X-ray diffrac-
tion (XRD). The XRD pattern of NiO NPs was acquired at room tem-
perature with the help of PANalytical X'Pert X-ray diffractometer
equipped with a Ni filter using Cu Kot (/. = 1.54056 A) radiations
as an X-ray source. Shape and size of NiO NPs were determined
by field emission transmission electron microscopy (FETEM, JEM-
2100F, JEOL Inc., Japan) at an accelerating voltage of 200 kV as de-
scribed in our previous publication (Ahamed et al., 2010). In brief,
dry powder of Ni NPs was suspended in deionized water at a con-
centration of 1 mg mL~!, and then sonicated using a sonicator bath
at room temperature for 15 min at 40 W to form a homogeneous
suspension. For size measurement, sonicated 1 mg mL™! Ni NPs
stock solution was then diluted to a 50-100 pg mL~! working
solutions. A drop of aqueous Ni NP suspension was placed onto a
carbon-coated copper grid, air dried and observed with TEM.

The average hydrodynamic size and zeta potential of ZnO NPs in
water and complete cell culture medium were determined by
dynamic light scattering (DLS) (Nano-ZetaSizer-HT, Malvern
Instruments, Malvern, UK) as described by Murdock et al. (2008).
In brief, dry powder of Ni NPs was suspended in water and cell
culture medium at a concentration of 100 ug mL~' for 24 h. Then
suspension of Ni NPs was sonicated using a sonicator bath at room
temperature for 15min at 40 W and the DLS experiments
performed.

2.4. Cell culture and treatment of nickel oxide nanoparticles

HepG2 cells were obtained from American Type Culture Collec-
tion (ATCC) (Manassas, VA, USA). Cells were used between 10 and
20 passages. Cells were cultured in MEM medium supplemented
with 10% FBS, 100 U mL™! penicillin-streptomycin, 1 mM sodium
pyruvate and 1.5 gL™! sodium bicarbonate at 5% CO, and 37 °C.
At 85% confluence, cells were harvested using 0.25% trypsin and
were sub-cultured. Cells were allowed to attach the surface for
24 h prior to treatment. Dry powder of NiO NPs was suspended
in cell culture medium at a concentration concentration of
1mgmL™' and diluted to appropriate concentrations (2-
100 pg mL~1). The dilutions of NiO NPs were then sonicated using
a sonicator bath at room temperature for 15 min at 40 W to avoid
NPs agglomeration prior to cell exposure. Under some conditions,
HepG2 cells were pre-exposed for 1 h with 1.5 mM of vitamin C be-
fore 24 h co-exposure with or without NiO NPs. Cells not exposed
to NiO NPs served as controls in each experiment.

2.5. Cell viability assay

Cell viability (MTT assay) was carried out following the proce-
dure as described by Mossman (1983) with some modifications
(Ahamed et al., 2011). The MTT assay assesses the mitochondrial
function by measuring ability of viable cells to reduce MTT into
blue formazan product. In brief, 1 x 10* cells/well were seeded in
96-well plates and exposed to different concentrations of NiO
NPs (2-100 pg mL~!) for 24 h. At the end of exposure, culture med-
ium was removed from each well to avoid interference of NPs and
replaced with new medium containing MTT solution in an amount
equal to 10% of culture volume and incubated for 3 h at 37 °C until
a purple-colored formazan product developed. The resulting for-
mazan product was dissolved in acidified isopropanol. Further,
the 96-well plate was centrifuged at 2300g for 5 min to settle
down the remaining NPs. Then, a 100 pL supernatant was trans-
ferred to other fresh wells of a 96-well plate, and absorbance
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was measured at 570 by using a microplate reader (Synergy-HT,
BioTek, USA).

2.6. Assay of ROS generation

ROS generation was measured using 2,7-dichlorofluorescin
diacetate (DCFH-DA) as described by Wang and Joseph (1999) with
some modifications (Siddiqui et al., 2010). Generation of ROS was
determined by two methods; fluorometric analysis and micro-
scopic fluorescence imaging. For fluorometric analysis, cells
(1 x 10 cells/well) were seeded in 96-well black-bottomed cul-
ture plates and allowed to adhere for 24 h in a CO, incubator at
37 °C. Next, HepG2 cells were exposed to different concentrations
of NiO NPs (25-100 pug mL™!) for 24 h. At the end of exposure, cells
were washed twice with HBSS and then incubated in 1 mL of work-
ing solution of DCFH-DA at 37 °C for 30 min. Cells were lysed in
alkaline solution and centrifuged at 2300g for 10 min. A 200 pL
supernatant was transferred to a 96-well plate, and fluorescence
was measured at 485 nm excitation and 520 nm emission using a
microplate reader (Synergy-HT, BioTek). The values were ex-
pressed as a percent of fluorescence intensity relative to control
wells. A parallel set of cells (5 x 10% cells/well) were analyzed for
intracellular fluorescence using a fluorescence microscope (OLYM-
PUS CKX 41) by grabbing the images at 20x magnification.

2.7. Flow cytometry analysis for micronuclei induction

Micronuclei formation due NiO NPs exposure was examined
using flow cytometer as described by Nusse et al. (1994). Briefly,
exposed and control cells were washed with cold phosphate buffer
saline. Further cell suspension was centrifuged for 5 min at 500g
and supernatant was removed. Cell pellet was suspended in solu-
tion I (10 mM Nacl, 3.4 mM sodium citrate, 25 pg mL~! propidium
iodide, 0.01 mg RNase from bovine pancreas and 0.3 pL mL™"' tri-
ton-X). After 1 h at room temperature, an equal volume of solution
II (78.1 mM citric acid, 40 ug mL~! PI, and 0.25 M sucrose) was
added. After 15 min, the suspension was filtered through a 53-
mmnylon mesh and stored on ice until analyzed on flow cytometer
(Becton-Dickinson LSR II, San Jose, CA, USA) using ‘Cell Quest’ 3.3
analysis software.

2.8. DAPI staining for chromosome condensation

Chromosome condensation in HepG2 cells due to NiO NPs expo-
sure was observed by 4',6-diamidino-2-phenylindole (DAPI) stain-
ing according to the method of Dhar-Mascareno et al. (2005). DAPI
solution was used to stain the exposed cells in eight chamber slides
and slides were incubated for 10 min in dark at 37 °C. Images of the
nucleus were captured using a fluorescence microscope (OLYMPUS
CKX 41).

2.9. DNA ladder assay

DNA ladder assay was performed in HepG2 cells exposed to
100 ug mL~! NiO NPs for 24 h. At the end of exposure, DNA was
extracted using a DNA Ladder Kit. The extracted DNA was then
evaluated on a 1% agarose gel using ethidium bromide. DNA frag-
mentation pattern was observed in a gel documentation system.

2.10. Comet assay

Comet assay was performed as described by Singh et al. (1988)
with some specific modifications (Ali et al., 2010). In brief,
70000 cells/well were seeded in a 12-well plate. After 24 h of
seeding, cells were treated with different concentrations of NiO
NPs (25-100 pg mL™!) for 24 h. At the end of exposure, cells were

trypsinized and re-suspended in DMEM supplemented with 10%
FBS and cell suspension was centrifuged at 2300g for 5 min at
4 °C. The cell pellet was finally suspended in ice-chilled phosphate
buffer saline for comet assay. Then, 15 pL of cell suspension
(approximately 20000 cells) was mixed with 85 pL of low melt-
ing-point agarose (0.5%) and layered on one end of a frosted plain
glass slide, pre-coated with a layer of 200 puL normal agarose (1%).
Thereafter, it was covered with a third layer of 100 uL low melting-
point agarose (0.5%). After solidification of the gel, the slides were
immersed in a freshly prepared lysing solution (2.5M NaCl,
100 mM Na,EDTA and 10 mM Tris pH 10 with 10% DMSO and 1%
Triton X-100) for overnight at 4 °C. The slides were then placed
in a horizontal gel electrophoresis unit. Fresh cold alkaline electro-
phoresis buffer (300 mM NaOH, 1 mM Na,EDTA and 0.2% DMSO,
pH 13.5) was poured into the chamber and left for 20 min at 4 °C
for DNA unwinding and conversion of alkali-labile sites to single-
strand breaks. Electrophoresis was carried out using same solution
at 4 °C for 20 min at 15 V. The slides were neutralized gently with
0.4 M tris buffer at pH 7.5 and stained with 75 pL ethidium bro-
mide (20 ug mL™"). The slides were stored at 4 °C in a humidified
slide box until scoring. Slides were scored at a final magnification
of 400x using an image analysis system (Biovis comet software)
attached to a fluorescent microscope (Leica optiphase microscope)
equipped with appropriate filters. An undamaged cell resembles an
intact nucleus without a tail and a damaged cell has the appear-
ance of a comet. The comet parameter used to measure DNA dam-
age in the cells was % tail DNA (fraction of DNA in the tail). Images
from 50 random cells (25 from each replicate slide) were analyzed
for each experiment.

2.11. Quantitative real-time PCR analysis

Cells were cultured in 6-well plates and exposed to different
concentrations (25-100 pg mL~') of NiO NPs for 24 h. At the end
of exposure, total RNA was extracted by Qiagen RNeasy mini Kit
(Valencia, CA, USA) according to the manufacturer’s instructions.
Concentration of the extracted RNA was determined using Nano-
drop 8000 spectrophotometer (Thermo-Scientific, Wilmington,
DE, USA), and the integrity of RNA was visualized on a 1% agarose
gel using a gel documentation system (Universal Hood II, BioRad,
Hercules, CA, USA). The first strand of cDNA was synthesized from
1 pg of total RNA by reverse transcriptase using M-MLV (Promega,
Madison, WI, USA) and oligo (dT) primers (Promega) according to
the manufacturer’s protocol. Quantitative real-time PCR was per-
formed by QuantiTect SYBR Green PCR kit (Qiagen) using an ABI
PRISM 7900HT Sequence Detection System (Applied Biosystems,
Foster City, CA, USA). Two microliters of template cDNA was added
to the final volume of 20 pL of reaction mixture. Real-time PCR cy-
cle parameters included 10 min at 95 °C followed by 40 cycles
involving denaturation at 95 °C for 15s, annealing at 60 °C for
20 s, and elongation at 72 °C for 20 s. The sequences of the specific
sets of primer for bax, bcl-2, caspase-3 and B-actin used in this
study are given in our previous publication (Ahamed et al,
2011). Expressions of selected genes were normalized to the B-ac-
tin gene, which was used as an internal housekeeping control.

2.12. Assay of caspase-3 enzyme

Activity of caspase-3 enzymes was measured in exposed and
control cells using BioVision kit. This assay is based on the princi-
ple that activated caspases in apoptotic cells cleave the synthetic
substrates to release free chromophore p-nitroanilide (pNA). The
PNA generated after specific action of caspase-3 on tertrapeptide
substrates was DEVD-pNA (Ahamed et al., 2011). The reaction mix-
ture was consisted of 50 pL of cell extract protein (50 pg), 50 pL of
2x reaction buffer (containing 10 mM dithiothreitol) and 5 pL of
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4 mM DEVD-pNA substrate in a total volume of 105 pL. The reac-
tion mixture was incubated at 37 °C for 1 h and absorbance of
the product was measured using a microplate reader (Synergy-
HT, BioTek) at 405 nm according to manufacturer’s protocol.

2.13. Protein estimation

The total protein content was measured by the Bradford Meth-
od (Bradford, 1976) using Bradford reagent (Sigma-Aldrich) and
bovine serum albumin as the standard.

2.14. Statistical analysis

All the data represented in this study are means * SD of three
identical experiments made in three replicate. Statistical signifi-
cance was determined by one-way analysis of variance (ANOVA)
followed by Dunnett’s multiple comparison test. Significance was
ascribed at p < 0.05. All analyses were conducted using the Prism
software package (GraphPad Software, Version 5.0).

3. Results
3.1. Characterization of nickel oxide nanoparticles

Sharp diffraction peaks shown in Fig. 1A indicates the crystal-
line nature of NiO NPs. No characteristic peak related to any impu-
rities was observed. The existence of strong and sharp diffraction
peaks at 20 =37.42, 43.63, 63.07, 75.39 and 79.66 corresponding
to(111),(200),(220),(311) and (222) crystal plane, respectively
(JCPDS Card No. 73-1523). The crystallite size has been estimated
from XRD using the Scherer’s equation (Patterson, 1939). The aver-
age crystallite size of NiO NPs calculated by Scherer’s formula was
around 44 nm. Fig. 1B shows the typical TEM image of NiO NPs.
TEM average diameter was calculated from measuring over 100
particles in random fields of TEM view. The average TEM diameter
of NiO NPs was also approximately 44 nm (size range 22-69 nm)
supporting the XRD results.

The average hydrodynamic size of Ni NPs in water and cell cul-
ture media determined by DLS was 350 nm and 311 nm, respec-
tively. Further, the zeta potential of Ni NPs in water and culture
media was —13 mV and —18 mV, respectively.

3.2. Nickel oxide nanoparticles induced cytotoxicity
HepG2 cells were exposed to NiO NPs at the concentrations of 0,

2,5, 10, 25, 50, 100 and 200 pug mL~! for 24 h and cell viability was
determined by MTT assay. We observed that NiO NPs up to concen-
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Fig. 2. NiO NPs induced cytotoxicity in HepG2 cells in dose-dependent manner.
Data represented are mean +SD of three identical experiments made in three
replicate. “Statistically significant difference as compared to control (p < 0.05).

tration of 5 pg mL~!, did not produce significant reduction in cell
viability. As concentration of NPs increased to 10 ugmL~' or
above, reduction in cell viability was observed in dose-dependent
manner. Cell viability decreased to 88%, 78%, 64%, 41% and 25%
when cells exposed to NiO NPs at the concentrations of 10, 25,
50, 100 and 200 pug mL™!, respectively (Fig. 2).

3.3. Nickel oxide nanoparticles induced intracellular ROS generation

Oxidative stress has been implicated as an explanation behind
nanoparticles toxicity (Nel et al., 2006; Ahamed, 2013). Ability of
NiO NPs to induce oxidative stress was assessed by measuring
the ROS level in HepG2 cells. Both fluorescence microscopy
(Fig. 3A) and quantitative data (Fig. 3B) revealed that NiO NPs
(25-100 pg mL™!) induce intracellular ROS generation in dose-
dependent manner. Fig. 3A showed that fluorescence for ROS was
detected in cells undergoing stress either lives or on the verge of
death due to NiO NPs exposure. We also observed an inverse linear
correlation between ROS and MTT (Fig. 3C).

3.4. Cytotoxicity of nickel oxide nanoparticles was mediated through
ROS generation

In order to investigate whether ROS generation could play a role
in cytotoxicity of NiO NPs, HepG2 cells were exposed to NiO NPs in
presence of the vitamin C. Results showed that vitamin C
prevented the ROS generation as well as abolished almost fully
the cytotoxic effect of NiO NPs at all concentrations studied
(25-100 pg mL™!) (Fig. 4A and B).

Fig. 1. Physico-chemical characterization of NiO NPs. (A) X-ray diffraction pattern of NiO NPs and (B) Transmission electron microscopy image of NiO NPs.
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3.5. Nickel oxide nanoparticles induced micronuclei induction, condensation was evaluated by DAPI staining. When cells were
chromosome condensation and DNA fragmentation treated with the above concentrations of NiO NPs for 24 h, chroma-
tin condensation was observed in the treated group (Fig. 5C). We

Flow cytometry data revealed an increase in frequency of further analyzed the DNA profiles of the cells treated with NiO
micronuclei in NiO NPs exposed cells (Fig. 5A and B). Chromatin NPs. Results revealed that in control cells the DNA was not



M. Ahamed et al. / Chemosphere 93 (2013) 2514-2522 2519

NiO NPs i ik

SSCH
1?

o 12 =
8 Control
< 10 *
c ]
40 =
i3] 8 -
=}
__8 % 6 3 ‘o
39 Z
EREE
o -
<] 23
K] 24
=
0 - %
0 ]
Control 100 pg/ml 10 L

Control NiO NPs

FL2-A

>

Fig. 5. NiO NPs induced mincronucei induction, chromosome condensation and DNA fragmentation in HepG2 cells. (A) Bar diagram of micronuclei formation in treated and
control cells analyzed by flow cytometer. Data represented are mean + SD of three identical experiments made in three replicate. ‘Significant difference as compared to the
controls (p < 0.05). (B) Representative image of micronuclei induction of control and NiO NPs cells. (C) Representative photographs of DAPI staining for control and exposed

cells. (D) DNA fragmentation.

fragmented, whereas the cells treated with NiO NPs had frag-
mented DNA (Fig. 5D). Micronuclei induction, chromatin conden-
sation and DNA fragmentation in HepG2 cells suggest that NiO
NPs induced cell death via apoptotic pathway.

3.6. Nickel oxide nanoparticles induced DNA damage

Comet assay, also called single cell gel electrophoresis (SCGE),
determines a combination of single-strand breaks, double-strand
breaks and alkaline labile sites (Olive and Durand, 1992; Yang
et al., 2009). The DNA damage was measured as % tail DNA and ol-
ive tail moment in NiO NPs exposed cells and control cells. During
electrophoresis, the cell DNA was observed to migrate more rap-
idly toward the anode at the highest concentration than the lowest
concentration. The cells exposed to different concentrations of NiO
NPs, exhibited higher DNA damage in cells than those of controls
(Fig. 6A and B) (p <0.05 for each). Fig 6C represents the photo-
graphs of DNA damage in HepG2 cells treated with NiO NPs.

3.7. Nickel oxide nanoparticles altered the expressions of mRNA level of
apoptotic genes

Quantitative real-time PCR was utilized to analyze mRNA level
of apoptotic genes (bax, bcl-2 and caspase-3) in HepG2 cells ex-
posed to NiO NPs at the concentrations of 25, 50 and 100 pg mL™!
for 24 h. Results showed that NiO NPs altered the expressions of

mRNA of these genes dose-dependently. The mRNA expression
levels of apoptotic genes bax and caspase-3 were up-regulated
while the expression level of anti-apoptotic gene bcl-2 was
down-regulated in NiO NPs treated cells as compared to control
(Fig. 7A) (p < 0.05 for each).

3.8. Nickel oxide nanoparticles induced caspase-3 enzyme activity

Activity of caspase-3 enzyme was also induced by NiO NPs sup-
porting the real-time PCR results (Fig. 7B) (p < 0.05).

4. Discussion

Evidences of hazardous health effect of engineered NPs are rap-
idly increasing. As one of the toxic mechanisms of NPs, generation
of ROS seems to be widely studied. NPs may alter ROS production
and thereby may cause interference in biological antioxidant de-
fense responses (Xia et al., 2008; Barillet et al., 2010). ROS in gen-
eral cause DNA damage, including a multitude of oxidized base
lesions, abasic sites, single and double-strand breaks; all of these
can be cytotoxic and/or mutagenic (Diakowska et al., 2007; Paz-Eli-
zur et al, 2008). However, studies on the exact mechanisms
through which NPs generated ROS in cells are still underway. In
this study, we evaluated the toxicity mechanisms of NiO NPs in
human liver cell line (HepG2). Results showed that NiO NPs de-
creased cell viability dose-dependently. We hypothesized that
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NiO NPs

NiO NPs induced cytotoxic response in HepG2 cells through ROS
generation. Indeed, NiO NPs were shown to generate ROS in HepG2
cells as assayed by the 2,7-DCF probe oxidation measurement.
Dose-dependent increase in ROS production was observed after
24 h exposure. These results confirm the oxidant potential of NiO
NPs earlier described in other cell lines such as A549, HEp-2 and
MCF-7 (Horie et al., 2011; Siddiqui et al., 2012). Moreover, ROS
scavenger vitamin C reduced cell death drastically indicating that
excessive ROS generation plays an important role in NiO NPs
toxicity.

Apoptotic cell death is associated with a distinct set of biochem-
ical and physical changes involving the cytoplasm, nucleus and
plasma membrane. Early in apoptosis, cells round up, losing
contact with their neighbors and shrink. In cytoplasm, endoplasmic
reticulum dilates and cisternae swell to form vesicles and vacuoles.
In nucleus, chromatin condenses and aggregates into dense com-
pact masses (Lawen, 2003). In the present study, DAPI staining
revealed that after treatment of NiO NPs, the cell nuclei were chan-
ged significantly, including the nuclear turned rippled or creased
and nuclear condensation, suggesting that NiO NPs could influence
the morphology of cell nuclei and further interference their func-
tions. Micronuclei induction measurement is an established cytoge-
netic assay that can detect acentric fragments and lagging
chromosomes induced by clastogens and aneugens (Heddle et al.,
2011). The micronuclei induction measurement manually is usually
conducted microscopically and is limited to two dimensions and,
hence, some micronuclei are not counted due to a lack of
visibility. The micronuclei induction measurement by flow cytome-
try, however, is a powerful tool that has capability of analyzing
thousands of events rapidly in three dimensions leading to a reduc-
tion of false negatives errors. Progress has been made to automate
the scoring of micronuclei by flow cytometry (Roman et al., 1998;
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Smolewksi et al., 2001; Dertinger et al., 2002). Our results indicated
that NiO NPs was able to cause a significant increase in micronuclei
induction in HepG2 cells. In agreement with chromosome conden-
sation and micronuclei induction results we further found that
NiO NPs caused DNA fragmentation in HepG2 cells.

To confirm the above results we further used comet assay to
examine DNA damage response of NiO NPs. This assay is able to de-
tect DNA damage i.e. single strand breakage or other lesions, such
as alkali-labile sites, DNA cross-links and incomplete excision re-
pair events (Gedic et al., 1992; Tice et al., 2000). This technique
has been widely used in the fields of genetic toxicology (Tice
et al., 2000; Buschini et al., 2003). Investigators have been utilizing
the comet assay to examine genotoxic potential of different types
of nanoparticles (Ali et al., 2010; Shukla et al., 2011). Our results
also demonstrated that NiO NPs significantly induce DNA damage
as evident by % tail DNA and olive tail moment.

ROS can also oxidize proteins and lipids, leading to generation
of highly toxic electrophilic species which can initiate inappropri-
ate or altered cellular signal transduction pathways and contribute
to toxicity (Halliwell et al., 1992). It has been proved that mito-
chondrial outer membrane proteins, which are regulated by the
anti- and pro-apoptotic members of the bcl-2 family, and proteins
released from mitochondria, lead to activation of caspases and sub-
sequent cell death (Kuwana and Newmeyer, 2003). The bcl-2 and
bax are two discrete members of bcl-2 family. The bcl-2 blocks cell
death following various stimuli, demonstrating a death-sparing ef-
fect; however, over expression of bax has a pro-apoptotic effect
and bax also counters the anti-apoptotic activity of bcl-2 (Chou-
gule et al., 2011). The ratio of bax to bcl-2 expression represents
a cell death switch, which determines the life or death of cells in
response to an apoptotic stimulus; an increased bax/bcl-2 ratio de-
creases the cellular resistance to apoptotic stimuli, leading to in-
creased apoptotic cell death (Bai and Meng, 2005; Gao and
Wang, 2009). Caspases are activated during apoptosis in many cells
and are known to play a vital role in both initiation and execution
of apoptosis. It was reported that caspase-3 is essential for cellular
DNA damage and apoptosis (Janicke et al., 1998). In this study, we
found that the expressions of mRNA levels of apoptotic genes bax
and caspase-3 were up-regulated, whereas expression of anti-
apoptotic gene bcl-2 was down-regulated in HepG2 cells due to
NiO NPs exposure. Activity of caspase-3 enzyme was also higher
in NiO NPs treated HepG2 cells.

It has been reported that Ni ions released from the surface of Ni
or NiO NPs when they were suspended in aqueous state e.g. water
and cell culture media. However, we did not examine the degree of
ionization of NiO NPs in aqueous suspension and their effects on
HepG2 cells. Ispas et al. (2009) found that NiO NPs was not likely
a result solely of particles’ dissolution, as soluble Ni ions alone
caused much less toxicity to zebrafish embryos than NiO NPs.
However, another recent study found that Ni ions and NiO NPs
were equally toxic to human lung epithelial cells followed by
metallic Ni NPs, but not by metallic Ni microparticles (Pietruska
et al.,, 2011). Therefore, toxicity due to dissolution of metallic Ni
or NiO NPs to biological systems needs further investigations.

5. Conclusions

We have shown that NiO NPs exert cytotoxicity and oxidative
stress to human liver (HepG2) cells in dose-dependent manner.
ROS scavenger vitamin C reduced cell death considerably indicat-
ing that oxidative stress plays a crucial role in nanocrystalline
NiO toxicity. Micronuclei induction, chromatin condensation and
DNA damage in HepG2 cells suggest that NiO NPs induced cell
death via apoptotic pathway. Furthermore, quantitative real-time
PCR analysis displayed that mRNA levels of genes involved in the

apoptosis were also altered by NiO NPs. Overall, our data suggest-
ing that NiO NPs exert cytotoxicity via ROS and induce apoptosis in
HepG2 cells, which is likely to be mediated through bax/bcl-2
pathway. Further studies are needed to investigate role of ROS in
signaling pathways of apoptosis in response to exposure to NiO
NPs at in vivo level.
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