Code Generation

We focus on generating code for a stack machine
with accumulator

We want to run the resulting code on a real machine
— e.g., the MIPS processor (or simulator)

We simulate stack machine instructions using MIPS
instructions and registers

* The accumulator is kept in MIPS register Sa0

* The stack is kept in memory
— The stack grows towards lower addresses
— Standard convention on MIPS

* The address of the next location on the stack is kept in
MIPS register Ssp

— The top of the stack is at address Ssp + 4

Notice that Ssp points to the next unused memory, and
since the stack grows towards lower addresses the top
of the stack is at Ssp+4

MIPS architecture
— Prototypical Reduced Instruction Set Computer (RISC)

— Most operations use registers for operands & results
— Use load & store instructions to use values in memory

— 32 general purpose registers (32 bits each)
* We use 5sp, Sa0 and St1 (a temporary register)

* Read the SPIM documentation for details

SPIM is the simulator that we can use to execute our
generated code.

5 MIPS instructions that we will need
for our first example :

lw reg, offset(reg,)

* Load 32-bit word from address reg, + offsetinto reg,
add reg, reg, reg,

* reg, < reg,+ reg,
sw reg, offset(reg,)

* Store 32-bit word in reg, at address reg, + offset
addiu reg, reg, imm

* reg, « reg,+imm

* “u” means overflow is not checked
li reg imm

* reg < imm

The stack-machine code for 7 + 5 in MIPS:

acc « 7
push acc

acc « 5
acc « acc + top_of_stack

pop

The stack-machine code for 7 + 5 in MIPS:

acc « 7
push acc

acc « 5
acc « acc + top_of_stack

pop

li $a0 7

sw $a0 O($sp)
addiu $sp $sp -4
li $a0 5

lw $11 4($sp)
add $a0 $a0 $t1
addiu $sp $sp 4

A language with integers and integer operations
P>D:P|D

D — def id(ARGS) = E;
ARGS — id, ARGS | id

E— int]id|ifE, =E, then E;else E,
I El + E2 I El ot E2 I id(El""'En)

* The first function definition f is the entry point
— The “main” routine

* Program for computing the Fibonacci numbers:
def fib(x) = if x =1 then O else
if x=2 then 1 else

fib(x - 1) + fib(x — 2)

* For each expression e we generate MIPS code that:
— Computes the value of e in $5a0
— Preserves Ssp and the contents of the stack

* We define a code generation function cgen(e) whose
result is the code generated for e

* The code to evaluate a constant simply copies it into the
accumulator:

cgen(i) =i Sa0 |
* This preserves the stack, as required
* Color key:

— RED: compile time
— BLUE: run time

cgen(e, +e,) =
cgen(e,)
sw Sa0 0(Ssp)
addiu Ssp Ssp -4
cgen(e,)
lw St1 4(Ssp)
add Sa0 St1 Sa0
addiu Ssp Ssp 4

cgen(e, +e,) =

cgen(e,)
. Laa These two statements store
sw Sa0 0(Ssp .
SW 5 O(>s]) the result of el into the

addiu Ssp Ssp -4 stack

cgen(e,)

w $t1 4(Ssp)
add Sa0 St1 Sa0
addiu Ssp Ssp 4

cgen(e, +e,) =

cgen(e,)
y These two statements store
| the result of el into the
ddiu Ssp Ssp -4 stack
cgen(e,)

This instruction load the result of
el into the temporary reg tl

cgen(e, +e,) =

cgen(e,)
o i These two statements store
e Lo the result of el into the
addiu Ssp Ssp -4 stack

This instruction load the result of
el into the temporary reg tl
accu = e1+e1>

cgen(e, +e,) -

cgen(e,)
i € (€ uin These two statements store
i - the result of el into the
addiu Ssp Ssp -4 stack
cgen(e,)

' : This instruction load the result of
I 2dU ptl pau el into the temporary reg t1
Ycu = e1+e2>
k

pops the stac

cgen(e, +e,) -

cgen(e,)
i € (€ uin These two statements store
i - the result of el into the
addiu Ssp Ssp -4 stack
cgen(e,)

' : This instruction load the result of
I 2dU ptl pau el into the temporary reg t1
Ycu = e1+e1>
k

pops the stac

Actually the code generator creates a file
containing the instructions that will be
executed at run time.

cgen(e, + e,) =
cgen(e,)
print “sw $Sa0 0(Ssp)”
print “addiu Ssp Ssp -4”
cgen(e,)
print “lw St1 4(Ssp)”
print “add $a0 St1 $a0”

print “addiu Ssp Ssp 4”

The code for + is a template with “holes” for code for
evaluating e, and e,

Stack machine code generation is recursive
— Code for e, +e, is code for e, and e, glued together

Code generation can be written as a recursive-descent of
the AST

— At least for expressions

* New instruction:sub reg, reg, reg,

— Implements reg, <« reg, - reg;
cgen(e, - e,) =
cgen(e,)
sw Sa0 0(Ssp)
addiu Ssp Ssp -4
cgen(e,)
lw St1 4(Ssp)
sub Sa0 St1 Sa0
addiu Ssp Ssp 4

* New instruction:sub reg, reg, reg,

— Implements reg, < reg, - reg,
cgen(e, - e,) =
cgen(e,)
sw Sa0 0(Ssp)
addiu Ssp Ssp -4
cgen(e,)
lw St1 4(Ssp)
sub Sa0 St1 Sa0
addiu Ssp Ssp 4

What is the difference between this and the
code for el+e2?

* New instruction:sub reg, reg, reg,

— Implements reg, < reg, - reg,
cgen(e, - e,) =
cgen(e,)
sw Sa0 O(Ssp)
addiu Ssp Ssp -4
cgen(e,)
lw St1 4(Ssp)
sub Sa0 St1 Sa0
addiu Ssp Ssp 4

This difference is only in this
instruction (sub instead of
add)

To be able to generate code for if expressions
we need two more MIPS instructions:

* New instruction: beq reg, reg, label
— Branch to label if reg, = reg,

* New instruction: b label
— Unconditional jump to label

cgen(if e, = e, then ey else e,) =
cgen(e,)
sw $a0 0(Ssp)
addiu Ssp Ssp -4
cgen(e,)
lw St1 4(Ssp)
addiu Ssp Ssp 4
beq $a0 St1 true branch

false_branch:
cgen(e,)
b end if
true_branch:
cgenle,)
end _if:

* Code for function calls and function definitions depends
on the layout of the AR

* Averysimple AR suffices for this language:
— The result is always in the accumulator
* No need to store the result in the AR

— The activation record holds actual parameters
* For f(x,,...,x,) push x,,...,x, on the stack

i

* These are the only variables in this language

* The stack discipline guarantees that on function exit
Ssp is the same as it was on function entry

— No need for a control link
* We need the return address

* A pointer to the current activation is useful
— This pointer lives in register Sfp (frame pointer)

* Summary: For this language, an AR with the caller’s frame
pointer, the actual parameters, and the return address suffices

* Picture: Consider a call to f(x,y), the AR is:

FP

old fp
Yy AR of f

SP

* The calling sequence is the instructions (of both
caller and callee) to set up a function invocation

* New instruction: jal label
— Jump to label, save address of next instruction in

Sra

— On other architectures the return address is
stored on the stack by the “call” instruction

The code that will execute on the Caller

Side

cgen(f(ey,....e,)) =
sw Stp O(Ssp)
addiu Ssp Ssp -4
cgen(e,)
sw Sa0 O(Ssp)
addiu Ssp Ssp -4

cgen(e,)

sw Sa0 0(Ssp)
addiu Ssp Ssp -4
jal f_entry

The caller saves its value of the frame
pointer

Then it saves the actual parameters in
reverse order

Finally the caller saves the return
address in register Sra

The AR so far is 4*n+4 bytes long

The code that will execute on the Callee
Side

* New instruction: jr reg
— Jump to address in register reg
cgen(def f(x,,...x,) = e) =
Entry: move $fp $sp

sw Sra 0(Ssp)

addiu Ssp Ssp -4

cgen(e)

lw Sra 4(Ssp)

addiu Ssp Ssp z

lw Sfp O(Ssp)

jr ora

* New instruction: jr reg
— Jump to address in register reg

cgen(def f(x,,...x,)=e) =

Entry: move $fp $sp * Note: The frame pointer points to the
sw $ra 0($sp) top, not bottom of the frame

addiu Ssp Ssp -4 * The callee pops the return address, the
actual arguments and the saved value of
the frame pointer

e 2=4"n+8

cgen(e)

lw Sra 4(Ssp)
addiu Ssp Ssp 2
lw Sfp O(Ssp)
jr5ra

Two words: the
return address
and the old frame
address

FP

SP

Before call

FP

SP

On entry

old fp

FP
sP

Before exit

old fp

Y

X

return

FP

SP

After call

Generating Code for Reference Variables: i.e.
generate code that determines their place in the
activation record.

Variable references are the last construct

* The “variables” of a function are just its parameters
— They are all in the AR
— Pushed by the caller

* Problem: Because the stack grows when intermediate

results are saved, the variables are not at a fixed offset
from Ssp

* Solution: use a frame pointer
— Always points to the return address on the stack

— Since it does not move it can be used to find the
variables

* Letx bethei" (i=1,..,n) formal parameter of the
function for which code is being generated

¢gen(x;) = Ilw Sa0 z(Sfp) (z=4%)

* Example: For a function def f(x,y) = e the activation
and frame pointer are set up as follows:

old fp
y e Xisatfp+4
X o
FP return * Y Is at fp +8

SP

Code Generation Example

def sumto(X) = if x=0 then 0 else x+sumto(x-1)

Sumto_entry:

move Sfp SSp % fp points to AR of sumto
sw Sra 0($sp)

addiu Ssp Ssp -4

Iw 530 4(Sfp) //load x
Sw $a0 0($sp)

addiu Ssp Ssp -4

! $a0 0 //code for 0
W Stl 4($sp) //pop x
addiu Ssp Ssp 4

beg $a0 Stl truel //ectothenpart

falsel:

falsel:

lw Sa0
SW Sa0
addiu Ssp

4(Sfp)
0(Ssp)
Ssp -4

% X

% call sumto(x-1) here we insert what happens at the caller side

% store old fp on the new activation record

SW Sfp 0($sp)

addiu Ssp Ssp -4
% compute x-1 and store it in the new AR

lw $a0 4(5fp)

SW $a0 0($sp)

addiu Ssp Ssp -4

I Sa0 1

lw St1 4($sp)

sub Sa0 Stl Sa0

addiu Ssp 0($sp)

%store x-1 in the new AR

SW Sao0

0(Ssp)

//code for 1
/] x

//pop stack

% jump to sumto(x-1)

jal Sumto_entry
% add X
w st AlSsp)
expression x+sumto(x-1)
add $a0 St1 Sa0
addiu Ssp Ssp 4 %pop x
b endif
% the truepart O
truel:
li Sa0 0
% function ends so we return
endif: lw Sra 4(Ssp)
% pop AR
addiu Ssp Ssp 12
lw Sfp 0(Ssp)

% jump back to the caller

jr Sra

Two Observations:

1. Although the code is correct it is extremely
inefficient, notice that we load x form the

stack (memory op) then immediately after
that we store it back in the stack.

2. Temporary values are stored in the AR; a
better alternative might be to store them in
temporary registers.

Summary

* The activation record must be designed together
with the code generator

* Code generation can be done by recursive
traversal of the AST

* The stack model simplifies things.

* Production compilers do different things

— Emphasis is on keeping values (esp. current stack
frame) in registers

— Intermediate results are laid out in the AR, not pushed
and popped from the stack

An Improvement

* |dea: Keep temporaries in the AR

* The code generator must assign a fixed
location in the AR for each temporary (this
saves the need to keep pushing an popping
them).

Example

def fib(x) = if x =1 then O else
if x =2 then 1 else
fib(x - 1) + fib(x — 2)
 What intermediate values are placed on the
stack?

* How many slots are needed in the AR to hold
these values? i.e. how many intermediate
values are needed?

How Many Temporaries?

* Let NT(e) = # of temps needed to evaluate e

* NT(e,+e,)
— Needs at least as many temporaries as NT(e,)
— Needs at least as many temporaries as NT(e,) + 1

* Space used for temporaries in e, can be
reused for temporariesin e,

The Equations

T(e,+e,) = max(NT(e,), 1 + NT(e,))
T(e,- e,) = max(NT(e,), 1 + NT(e,))

T(if .= e,then eselse e,) = max(NT(e,),1 +
T(e,), NT(e5), NT(e,))

T(id(ey,...,e,) = max(NT(e,),...,NT(e,))
T(int) =0
e NT(id) =0

e o e e o
L Z2 Z2 2 Z2 Z2

e What is NT(...code for fib...)?

e The answer is 2

def fib(x) =

2,

! O
|f5,- 1 then Q0 else

|fgg 2 then 1 else

F”'l r—ar\\/—
fub(x 1)+f|b(x—)

.

\

The Revised AR

* For a function definition f(x,,...,x,) = e the AR
has 2 + n + NT(e) elements

— Return address

— Frame pointer

— n arguments

— NT(e) locations for intermediate results

Picture

Return Addr.

Temp NT(e)

Temp 1

Revised Code Generation

* Code generation must know how many
temporaries are in use at each point

 Add a new argument to code generation: the
position of the next available temporary

Code Generation for + (original)

cgen(e,+e,) =

cgen(e,)

sw $Sa0 0(Ssp)
addiu Ssp Ssp -4
cgen(e,)

lw St 4(Ssp)
add $Sa0 St Sa0
addiu Ssp Ssp 4

Code Generation for + (revised)

cgen(e,+e,, nt) =
cgen(e,, nt)
sw Sa0 nt(Sfp)
cgen(e,, nt + 4)
lw St1 nt(Sfp)
add $Sa0 St1 Sa0

Notes

= Two sentences shorter and substantially more
efficient.

" The temporary area is used like a small, fixed-
size stack

