
Code Generation

Notice that $sp points to the next unused memory, and
since the stack grows towards lower addresses the top
of the stack is at $sp+4

SPIM is the simulator that we can use to execute our
generated code.

5 MIPS instructions that we will need
for our first example :

These two statements store
the result of e1 into the

stack

These two statements store
the result of e1 into the

stack

This instruction load the result of
e1 into the temporary reg t1

These two statements store
the result of e1 into the

stack

This instruction load the result of
e1 into the temporary reg t1

accu = e1+e1

These two statements store
the result of e1 into the

stack

This instruction load the result of
e1 into the temporary reg t1

accu = e1+e2

pops the stack

These two statements store
the result of e1 into the

stack

This instruction load the result of
e1 into the temporary reg t1

accu = e1+e1

pops the stack

Actually the code generator creates a file
containing the instructions that will be
executed at run time.

What is the difference between this and the
code for e1+e2?

This difference is only in this
instruction (sub instead of

add)

To be able to generate code for if expressions
we need two more MIPS instructions:

The code that will execute on the Caller
Side

The code that will execute on the Callee
Side

Two words: the
return address

and the old frame
address

Generating Code for Reference Variables: i.e.
generate code that determines their place in the
activation record.

Code Generation Example

 def sumto(X) = if x=0 then 0 else x+sumto(x-1)

 Sumto_entry:

 move $fp $sp
% fp points to AR of sumto

sw $ra 0($sp)

addiu $sp $sp -4

lw $a0 4($fp) //load x

sw $a0 0($sp)

addiu $sp $sp -4

li $a0 0 //code for 0

lw $t1 4($sp) //pop x

addiu $sp $sp 4

beq $a0 $t1 true1 //goto then part

false1:

false1:

lw $a0 4($fp) % x

sw $a0 0($sp)

addiu $sp $sp -4

% call sumto(x-1) here we insert what happens at the caller side

% store old fp on the new activation record

sw $fp 0($sp)

addiu $sp $sp -4

% compute x-1 and store it in the new AR

lw $a0 4($fp)

sw $a0 0($sp)

addiu $sp $sp -4

li $a0 1 //code for 1

lw $t1 4($sp) // x

sub $a0 $t1 $a0

addiu $sp 0($sp) //pop stack

%store x-1 in the new AR

sw $a0 0($sp)

addiu $sp $sp -4

% jump to sumto(x-1)

jal Sumto_entry

% add X

lw $t1 4($sp) % x was stored in the stack
because it is part of the
expression x+sumto(x-1)

add $a0 $t1 $a0

addiu $sp $sp 4 %pop x

b endif

% the true part 0

true1:

li $a0 0

% function ends so we return

endif: lw $ra 4($sp)

% pop AR

addiu $sp $sp 12

lw $fp 0($sp)

% jump back to the caller

jr $ra

Two Observations:

1. Although the code is correct it is extremely
inefficient, notice that we load x form the
stack (memory op) then immediately after
that we store it back in the stack.

2. Temporary values are stored in the AR; a
better alternative might be to store them in
temporary registers.

Summary

• The activation record must be designed together
with the code generator

• Code generation can be done by recursive
traversal of the AST

• The stack model simplifies things.

• Production compilers do different things
– Emphasis is on keeping values (esp. current stack

frame) in registers

– Intermediate results are laid out in the AR, not pushed
and popped from the stack

An Improvement

• Idea: Keep temporaries in the AR

• The code generator must assign a fixed
location in the AR for each temporary (this
saves the need to keep pushing an popping
them).

Example

def fib(x) = if x = 1 then 0 else

 if x = 2 then 1 else

 fib(x - 1) + fib(x – 2)

• What intermediate values are placed on the
stack?

• How many slots are needed in the AR to hold
these values? i.e. how many intermediate
values are needed?

How Many Temporaries?

• Let NT(e) = # of temps needed to evaluate e

• NT(e1+ e2)

– Needs at least as many temporaries as NT(e1)

– Needs at least as many temporaries as NT(e2) + 1

• Space used for temporaries in e1 can be
reused for temporaries in e2

The Equations

• NT(e1+ e2) = max(NT(e1), 1 + NT(e2))

• NT(e1- e2) = max(NT(e1), 1 + NT(e2))

• NT(if e1= e2then e3else e4) = max(NT(e1),1 +
NT(e2), NT(e3), NT(e4))

• NT(id(e1,…,en) = max(NT(e1),…,NT(en))

• NT(int) = 0

• NT(id) = 0

• What is NT(…code for fib…)?

• The answer is 2

The Revised AR

• For a function definition f(x1,…,xn) = e the AR
has 2 + n + NT(e) elements

– Return address

– Frame pointer

– n arguments

– NT(e) locations for intermediate results

Picture

Revised Code Generation

• Code generation must know how many
temporaries are in use at each point

• Add a new argument to code generation: the
position of the next available temporary

Code Generation for + (original)

cgen(e1+ e2) =
cgen(e1)

sw $a0 0($sp)

addiu $sp $sp -4

cgen(e2)

lw $t1 4($sp)

add $a0 $t1 $a0

addiu $sp $sp 4

Code Generation for + (revised)

cgen(e1+ e2, nt) =
cgen(e1, nt)

sw $a0 nt($fp)

cgen(e2, nt + 4)

lw $t1 nt($fp)

add $a0 $t1 $a0

Notes

 Two sentences shorter and substantially more
efficient.

 The temporary area is used like a small, fixed-
size stack

