
Solutions to Complex Analysis Prelims
Ben Strasser

In preparation for the complex analysis prelim, I typed up solutions to some old exams. This
document includes complete solutions to both exams in 2013, as well as select solutions from some
older exams. The problems are organized in reverse chronological order, so the most recent exams
appear first. Some of these solutions are my own, others are adapted from online sources or fellow
graduate students. These solutions have not been checked by any prelim graders.

Fall, 2013

1. Find the number of zeros of the polynomial z4 + 3z2 + z + 1 in the unit disk.

This is the classic setup of a “Rouché’s theorem” problem. In its simplest form, Rouché’s
theorem states that if f and g are analytic functions inside a simply connected region Ω and
satisfy

|f(z)− g(z)| < |f(z)|+ |g(z)|

on ∂Ω, then f and g have the same number of zeros (counting multiplicity) inside Ω.

Let f(z) = z4 + 3z2 + z + 1 and let g(z) = 3z2 + 1. Then on the boundary of the unit disk,

|f(z)− g(z)| = |z4 + z| ≤ 2 ≤ |3z2 + 1| = |g(z)|.

We are done if we can show that we cannot have both of the above inequalities be simulta-
neously equal. Consider the case where |g(z)| = 2 and |z| = 1. This happens exactly when
z2 = −1, so z = ±i. Plugging these in, we see that

|f(i)− g(i)| = |1 + i| =
√

2 = |1− i| = |f(−i)− g(−i)|,

so if |g(z)| = 2, |f(z) − g(z)| < 2 on the boundary of the disk. By Rouché’s theorem, we
conclude that f and g have the same number of zeros inside the disk. Since g has exactly
two zeros (i/

√
3 and −i/

√
3) inside the disk, we conclude that f has exactly two zeros in the

disk.

2. Let n ≥ 2 be an integer. Evaluate the following integral∫ ∞
0

1

1 + xn
dx

Carefully justify all your steps.

Let f(z) = 1
1+zn . Let ω = eπi/n be a primitive nth root of −1. Consider the contour γR

illustrated (poorly) below:
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This contour consists of three parts, IR along the line [0, R] ⊆ R, CR on the circle of radius
R, and Iω2,R along the line ω2[0, R]. We orient these contours so that γR = IR +CR + Iω2,R is
a positive contour around the wedge. f has exactly one simple pole inside γR at ω. Therefore,
by the residue theorem, we have∫

γR

f(z)dz = 2πiResz=ωf(z)

= 2πi
1

nωn−1
= −2πiω

n
.

We now show that the integral of f along CR vanishes as R→∞. By the triangle inequality∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ ∫
CR

1

|1−Rn|
|dz| ≤ 2πR

|1−Rn|
→ 0 as R→∞.

Therefore,

−2πiω

n
= lim

R→∞

∫
γR

f(z)dz = lim
R→∞

∫
IR

f(z)dz +

∫
CR

f(z)dz +

∫
Iω2,R

f(z)dz

= lim
R→∞

∫ R

0

1

1 + xn
dx+

∫ 0

R

1

1 + (ω2x)n
ω2dx

⇒ −2πiω

n
=

∫ ∞
0

1

1 + xn
dx− ω2

∫ ∞
0

1

1 + xn
dx.

Rearranging the above identity yields∫ ∞
0

1

1 + xn
dx = − 2πiω

n(1− ω2)

= − 2πieπi/n

n(1− e2πi/n)

=
π

n

2i

eπi/n − e−πi/n
=

π

n sin(π/n)
.

phew.
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3. Suppose f is analytic on {z : 0 < |z| < 1} and |f(z)| ≤ log(1/|z|). Prove that f is identically
0.

First, we show f has a removable singularity at 0.

lim
z→0
|zf(z)| ≤ lim

z→0
|z| log(1/|z|) ≤ lim

z→0
|z|
√

1/|z| = 0,

as desired. Therefore, there is a function g analytic on D = {|z| < 1} which satisfies g|D\{0} =
f . The condition |g(z)| < log(1/|z|) means that |g(z)| → 0 as |z| → 1, so by the maximum
modulus principle, g ≡ 0 on D. Thus, f ≡ 0 on D \ {0}.

4. Show the equating sin z = z has infinitely many solutions in the complex plane.

Let f(z) = sin z − z. By Picard’s great theorem, there is at most one complex number which
f does not take as a value infinitely many times. That is, there is at most one w0 ∈ C such
that

sin z − z = w0

does not have infinitely many solutions. It must be true that f(z) = sin z − z = w0 + 2π has
infinitely many solutions in C, which means

f(z + 2π) = sin(z + 2π)− (z + 2π) = w0

has infinitely many solutions. This contradicts the assumption that sin z−z = w0 has at most
finitely many solutions, so we conclude that f takes each value in C infinitely many times.
This implies, in particular, there are infinitely many solutions to

f(z) = sin z − z = 0.

5. (a) State Schwartz’ Lemma.

Schwartz’ Lemma: Let D be the open unit disk. If f : D → D is an analytic function fixing
0, then

(i) for all z ∈ D, |f(z)| ≤ |z| and |f ′(0)| ≤ 1.

(ii) Furthermore, if |f ′(0)| = 1 or |f(z)| = |z| for any z ∈ D \ {0}, then f(z) = αz for some
α ∈ C with |α| = 1.

(b) Let f : D → D be a holomorphic map from the unit disk to itself. Prove that for all z ∈ D,
|f ′(z)|

1−|f(z)|2 ≤
1

1−|z|2 .

This result is sometimes called the Schwartz-Pick Theorem.
Throughout this problem, we use the fact that for any w0 ∈ D, the Möbius transformation

m(z) =
w0 − z
1− w0z
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maps D to D and swaps w0 and 0. For a given z0 ∈ z, let

g(z) =
z0 − z
1− z0z

and h(z) =
f(z0)− z
1− f(z0)z

.

Then h◦f ◦g is an analytic map from D to D which fixes 0, so we may apply Schwartz’ lemma
to obtain ∣∣∣∣∣ f(z0)− f(g(z0))

1− f(g(z0))f(z0)

∣∣∣∣∣ ≤ |z|.
Letting w = g−1(z), we get

∣∣∣∣∣ f(z0)− f(w)

1− f(w)f(z0)

∣∣∣∣∣ ≤
∣∣∣∣ z0 − w1− z0w

∣∣∣∣
⇒
∣∣∣∣f(z0)− f(w)

z0 − w

∣∣∣∣ ≤
∣∣∣∣∣1− f(w)f(z0)

1− z0w

∣∣∣∣∣ .
Taking the limit as w → z0 (which we can do since g is bijective on D), we get

|f ′(z0)| ≤
1− |f(z0)|2

1− |z0|2
⇒ |f ′(z0)|

1− |f(z0)|2
≤ 1

1− |z0|2

for all z0 ∈ D, as desired.

6. Determine all continuous functions on {z : 0 < |z| ≤ 1} which are harmonic on {z : 0 <
|z| < 1} and which are identically 0 on {z : |z| = 1}.

I claim that any such function is of the form c log |z| for some c ∈ R (which could be 0).
Define f(z) = log |z|, let g be any function satisfying the given conditions, and let h be the
Möbius transformation given by

h(z) =
z − i
z + i

,

which maps the upper half plane to the unit disk analytically (and continuously on the
boundary). Observe that the functions harmonic f ◦h and g ◦h on H\{i} are continuous (and
identically 0) on R. By the Schwartz reflection principle for harmonic functions, we can define
harmonic functions F and G on C \ {−i, i} such that

F |H\{i} = f ◦h and G|H\{i} = g ◦h.

By construction, F (z) ≡ 0 ≡ G(z) for all z ∈ R. On the real line, we also have 0 = ∂2F/∂x2 =
∂2F/∂y2 = ∂2G/∂x2 = ∂2G/∂y2, so for some constants α, β ∈ R, ∂F/∂y = α and ∂G/∂y = β.
Note that α 6= 0 since F is not constant by assumption. It follows that the analytic functions

β

(
∂F

∂x
− i∂F

∂y

)
and α

(
∂G

∂x
− i∂G

∂y

)
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are equal on R. By the identity principle, we have that the above functions are equal on
C\{−i, i}. But then integrating the real part of the above equation with respect to x we have

β

α
F = G

since F and G both fix the origin. It follows that for all z ∈ {z : 0 < |z| ≤ 1},

β

α
F ◦h−1(z) =

β

α
log |z| = g(z) = G◦h−1(z),

as desired.

7. (a) Prove the series
∑∞
−∞

1
(z−n)2 converges to a meromorphic function on C.

By Weierstrass’ theorem, it is sufficient to show that f(z) =
∑∞
−∞

1
(z−n)2 converges uniformly

on compact sets (which avoid Z). Our strategy is to use the Weierstrass M test, which states

that it is sufficient to produce positive real numbers Mn such that
∣∣∣ 1
(z−n)2

∣∣∣ ≤ Mn and for

which
∞∑

n=−∞
Mn <∞.

With this in mind, let K ⊆ C \ Z be a compact set. Let N1 and N2 be integers such that

N1 < Re z < N2 for all z ∈ K,

and let ε = d(K,Z) = min{|z − n| : z ∈ K,n ∈ Z}. Now for any z ∈ K and n1 ≤ N1, we
have |z−n1| > |N1−n1|, and for any n2 ≥ N2, we have |z−n2| > |N2−n2|. Finally, for any
N1 < n3 < N2, |z − n3| > ε. Since

(N2 −N1)

ε2
+

N1∑
n=−∞

1

(N1 − n)2
+

∞∑
n=N2

1

(N2 − n)2
<∞,

the series for f converges uniformly on K by the Weierstrass M test. By Weierstrass’ theorem,
the limit function f is meromorphic.

(b) Prove that there is an entire function h(z) so that π2

sin2(πz)
=
∑∞
−∞

1
(z−n)2 + h(z).

Consider the function

g(z) =
π2

sin2(πz)
−
∞∑
−∞

1

(z − n)2
.

g is a meromorphic function with singularities at each integer. Therefore, it is sufficient to
show that each of these singularities is removable. First, consider the singularity at 0. π2

sin2(πz)

has a pole of order 2 at 0 since sin z has a simple 0 at 0. Furthermore,

lim
z→0

z2π2

sin2(πz)
= lim

z→0

z2π2

(πz)2(1 +
∑∞

n=3(−1)n(πz)2n−3/(2n− 1)!
= 1,
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so the singular part of π2

sin2(πz)
at 0 is 1/z2 ( π2

sin2(πz)
is even, so we do not need to consider a

1/z Laurent coefficient). Since this is also the singular part of f at 0, we conclude that g has a
removable singularity at 0. g is periodic with period 1, so g only has removable singularities.
Therefore, there is an entire function h such that h|C\Z = g, and further

π2

sin2(πz)
=
∞∑
−∞

1

(z − n)2
+ h(z).

It turns out that the function h is identically 0, but we do not need to show this.

8. Show that the total number of poles of an elliptic function f in its fundamental parallelogram
is ≥ 2.

Observe that this problem is false is we do not assume that

(i) all elliptic functions are non-constant, and

(ii) the number of poles of an elliptic function is counted with multiplicity.

Assuming the above, let f be an elliptic function with period lattice Λ = ω1Z + ω2Z and
fundamental parallelogram P , chosen so that f has no poles on ∂P . First, we observe that
P is a compact set, so if f has no poles, f is constant by Liouville’s theorem. Assume for
the sake of contradiction that f has exactly one simple pole inside P . By Cauchy’s residue
theorem, ∫

∂P
f(z)dz 6= 0.

For some a ∈ C, P is the convex hull of {a, a+ ω1, a+ ω2, a+ ω1 + ω2}. Therefore,∫
∂P
f(z)dz =

∫ a+ω1

a
f(z)dz +

∫ a+ω1+ω2

a+ω1

f(z)dz +

∫ a+ω2

a+ω1+ω2

f(z)dz +

∫ a

a+ω2

f(z)dz

=

∫ a+ω1

a
f(z)dz −

∫ a+ω1+ω2

a+ω2

f(z)dz +

∫ a+ω1+ω2

a+ω1

f(z)dz −
∫ a+ω2

a
f(z)dz.

By the periodicity of f , we have∫ a+ω1

a
f(z)dz =

∫ a+ω1+ω2

a+ω2

f(z)dz and

∫ a+ω1+ω2

a+ω1

f(z)dz =

∫ a+ω2

a
f(z)dz,

so∫
∂P
f(z)dz =

∫ a+ω1

a
f(z)dz −

∫ a+ω1

a
f(z)dz +

∫ a+ω1+ω2

a+ω1

f(z)dz −
∫ a+ω1+ω2

a+ω1

f(z)dz = 0,

a contradiction. Therefore, f must have at least two poles in P (counting multiplicity).
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Spring, 2013

1. Prove that for any a ∈ C and n ≥ 2, the polynomial azn + z + 1 has at least one root in the
disk |z| ≤ 2.

Let f(z) = azn + z + 1 and let D(0, 2) = {|z| ≤ 2}. There are two cases.

Case 1: |a| < 1/2n.
Let g(z) = z + 1. Then

|f(z)− g(z)| = |az|n < 1 ≤ |g(z)|

on the boundary of D(0, 2). Therefore, by Rouché’s theorem, f has exactly one root in the
disk D(0, 2).

Case 2: |a| ≥ 1/2n.
By the fundamental theorem of algebra, we can factor f as

f(z) = a

n∏
k=1

(z − αk) = azn + z + 1

for some complex numbers {αk}. Then

(−1)na
n∏
k=1

(αk) = 1⇒
n∏
k=1

|αk| ≤ 2n.

In particular, there must exist at least one αk with |ak| ≤ 2.

2. Suppose f(z) is analytic on the unit disk D(0, 1) and continuous on the closed unit disk
D(0, 1). Assume that f(z) = 0 on an arc of the circle z = 1. Show that f(z) ≡ 0.

Let D = D(0, 1) be the (open) unit disk. We recall that the map h : H→ D given by h(z) =
z−i
z+i analytically and bijectively maps the upper half plane to the unit disk (continuously on
the boundary). Then the function g : H→ C

g(z) = f ◦h(z)

is an analytic map which is continuous on R. In particular, g is identically 0 on some interval
I ⊆ R. Let U ⊆ H be some connected open set such that U ∩ R = I. By the Schwartz
reflection principle, there is an analytic continuation of g to some function G on U ∪ I ∪ U ′,
where U ′ = {u : u ∈ U}. Since G ≡ 0 on I, by the identity principle G ≡ 0 on U ∪ I ∪ U ′.
As G|U = g, we get that g ≡ 0 on U . Again by the identity principle we have that g(z) ≡ 0
on H. Finally, h is invertible and

g ◦h−1(z) = f(z),

so we conclude that f(z) ≡ 0.
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3. Prove that meromorphic functions on the extended complex plane are rational functions.

Let C∞ be the extended complex plane, and let f : C∞ → C∞ be a non-constant meromor-
phic function. Since C∞ is compact, by the identity principle for compact Riemann surfaces,
f has at most finitely many zeros and finitely many poles (each necessarily of finite order
since f is meromorphic).

If the reader worries about citing a result about Riemann surfaces, one can instead prove
that f has finitely many zeros and finitely many poles (counting multiplicity) like so: since
the closed unit disk is compact, f(z) and f(1/z) each can only have finitely many zeros and
finitely many poles inside the closed unit disk, D, by the usual identity principle. Further-
more, the map z 7→ 1/z is a bijective map between zeros and poles of f(z) inside D and the
zeros and poles of f(1/z) inside D.

Let a1, · · · , ak be the zeros of f with corresponding orders n1, · · · , nk, and let b1, · · · , b` be
the poles of f with corresponding orders m1, · · · ,m`. Consider

g(z) =

∏k
j=1(z − aj)nj∏`
d=1(z − bd)md

.

g has exactly the same zeros and poles of f with exactly the same multiplicities, so h : C∞ →
C∞ given by

h(z) =
f(z)

g(z)

is a meromorphic function which has no zeros or poles in C∞. Thus, h extends to a nonzero
bounded entire function, so by Liouville, h(z) ≡ c for some nonzero constant c. Then

f(z) = cg(z) = c

∏k
j=1(z − aj)nj∏`
d=1(z − bd)md

,

so f is a rational function.

4. Suppose u is harmonic and bounded in {z ∈ C : 0 < |z| < 1}. Show that {z = 0} is a
removable singularity of u. That is, show that u(0) can be defined so that u becomes harmonic
in the full disk {|z| < 1}.

For a circle Cr of radius r centered at 0 and any (piecewise) continuous function ur on Cr,
the Poisson integral

Pur(z) =
1

2π

∫ 2π

0

R2 − |z|2

|z − reiθ|2
ur(e

iθ)dθ

defines the unique harmonic function inside CR which approaches ur on the boundary. This
result is sometimes called Schwartz’ theorem.
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Let D be the unit disk. We wish to show that the function u is given by the Poisson integral
on D \ {0}. For some r ∈ (0, 1), define g : {0 < |z| ≤ r} as

g(z) = u(z)− Pur(z),

where ur(z) = u|Cr . For any ε > 0, define

gε(z) = g(z) + ε log(|z|/r).

Pur is a continuous function on the closed disk of radius r, so it is bounded, and u is bounded
by assumption, so g is bounded. Therefore,

lim sup
z→0

gε(z) < 0,

so for some δ > 0 and for all |z| ≤ δ, gε(z) ≤ 0. By construction, we also have that gε(z) = 0
for all |z| = r, since u(z) = Pur(z) for all such z. By the maximum principle for harmonic
functions, we get that gε(z) ≤ 0 for all δ < z < r. Sending ε to 0, we get that g(z) ≤ 0 for all
δ < z < r. Since this argument works for any δ′ ∈ (0, δ), we can say

g(z) ≤ 0.

Applying the analogous argument to −g, we can conclude that g ≡ 0 on its domain. It follows
that we can define u(0) = Pur(0) so that u becomes harmonic at 0.

5. Evaluate the following integral ∫ ∞
0

1

1 + x6

Carefully justify all your steps.

This is problem 2 on the Fall 2013 exam if we set n = 6.

6. (a) State Schwartz’ Lemma.

(b) Let f : D → D be a holomorphic map from the unit disk to itself. Prove that for all z ∈ D,
|f ′(z)|

1−|f(z)|2 ≤
1

1−|z|2 .

This is problem 6 on the Fall 2013 exam.

7. Find a one to one holomorphic map that sends the unit disk D(0, 1) onto the slit disk
D(0, 1) \ {[0, 1)}.

Let D = D(0, 1) be the unit disk. The Möbius transformation

h(z) =
z − i
z + i

=
x2 + y2 − 1

x2 + (y + 1)2
− i 2x

x2 + (y + 1)2
= h(x+ iy)

sends the upper half plane, H, to D analytically and bijectively. By writing it in real and
imaginary parts, it is clear that h sends the first quadrant to {z ∈ D : Im z < 0}. Let
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g(z) =
√
z be the map which sends the upper half plane to the first quadrant (analytically

and bijectively). Then
h◦g ◦h−1

maps D analytically (and bijectively) to {z ∈ D : Im z < 0}. Since the map z 7→ z2 sends
{z ∈ D : Im z < 0} → D \ {[0, 1)} analytically, we have that

(h◦g ◦h−1(z))2 =


√

z+1
iz−i − i√
z+1
iz−i + i

2

maps D analytically and bijectively to D \ {[0, 1)}, as desired.

8. Show that the total number of poles of an elliptic function f in its fundamental parallelogram
is ≥ 2.

This is problem 8 on the Fall 2013 exam.
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Fall, 2012

1. Show that each Möbius transformation maps a straight line or circle onto a straight line or
circle.

The group of Möbius transformations is generated by translations, dilations, and a single
inversion z 7→ 1/z. Since every translation and every dilation clearly maps circles to circles
and lines to lines, we need only show that the inversion map always sends circles and lines to
circles and lines. To do this, we need two basic facts. First, if u, v, x, y ∈ R and u+ iv = w =
1/z = 1/(x+ iy), then a straightforward calculation yields

u =
x

x2 + y2
, v =

−y
x2 + y2

, x =
u

u2 + v2
, and y =

−v
u2 + v2

.

Secondly, it is not hard to show that every circle and line in C is given by the set of solutions
to a non-degenerate (B2 + C2 > 4AD) quadratic equation of the form

A(x2 + y2) +Bx+ Cy +D = 0,

and any every solution to such a non-degenerate quadratic equation is a circle (A 6= 0) or a
line (A = 0). Given S = {(x, y) : A(x2 + y2) +Bx+Cy+D = 0} for B2 +C2 > 4AD, then
by an earlier observation, the image of S under z 7→ 1/z is exactly the set of all u + iv ∈ C
satisfying

A

(
u2

(u2 + v2)2
+

v2

(u2 + v2)2

)
+B

u

u2 + v2
− C v

u2 + v2
+D = 0.

Clearing the denominators gives

A+Bu− Cv +D(u2 + v2) = 0,

which is also a non-degenerate quadratic equation. We conclude that circles and lines get
mapped to circles and lines under inversion, so all Möbius transformations send circles and
lines to circles and lines.

2. Let f be a complex valued function in the unit disk D(0, 1) such that g = f2 and h = f3 are
both analytic. Prove that f is analytic in D(0, 1).

Since h and g are analytic,

f(z) =
h(z)

g(z)

is meromorphic in D(0, 1). If f is not analytic, then f has a pole at a ∈ D(0, 1) of order n > 0.
Then we can write

f(z) =
r(z)

(z − a)n

where r is analytic and nonzero around a. Then r2 is also analytic and nonzero around a.
This implies

g(z) =
r(z)2

(z − a)2n

has a pole of order 2n at a, contradicting the assumption that g is analytic. Thus f is a
meromorphic function on D(0, 1) without poles, so f is analytic.
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4. Exhibit a function f such that at each positive integer n, f has a pole of order n, and f is
analytic and nonzero at each other complex number.

Let

g(z) =

∞∏
n=1

((
1− z

n

)
e
z
n+

z2

2n2

)n
.

If the product defining g converges, then it defines an analytic function with zeros of order n
at each positive integer n. For a given n, consider

(
1− z

n

)
e
z
n+

z2

n2 =
(

1− z

n

) ∞∑
k=0

1
k!

(
z
n + z2

2n2

)k
= 1− 1

3
( zn)3 − 1

4
( zn)4 +O(( zn)5)

Since the power series for ew converges absolutely on all of C, each term of the product is of
the form (1 − z3O(1/n3))n, and further, there is some universal constant C (independent of
n) such that the coefficient of z3 is bounded by C/n3. It follows that our series converges if

∞∑
n=1

n∑
k=1

z3
C

n3

converges uniformly on compact sets. However, the above series can be rewritten as

Cz3
∞∑
n=1

1

n2
,

which converges uniformly on compact sets by the Weierstrass M test. Therefore, g defines
an entire function with zeros of order n at each positive integer n. If we let f = 1/g, then f
is a meromorphic function with poles of order n at each positive integer n, and f is analytic
everywhere else by the entirety of g. Furthermore, f is never 0 since g is entire and therefore
has no poles in C.
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Spring, 2012

5. Suppose that an entire holomorphic function g(z) satisfies the equation g(1 − z) = 1 − g(z)
for all z ∈ C. Show that g(C) = C.

We need to assume g is non-constant, or g(z) ≡ 1/2 is a counter example.

If g is non-constant, by Picard’s theorem we have that there is at most one point a ∈ C which
is not in the image of g. Since g(1/2) = 1 − g(1/2), we have that g(1/2) = 1/2. If a 6= 1/2,
1 − a 6= a and there is some z ∈ C with g(z) = 1 − a, which implies g(1 − z) = a. Thus, g
must take every value in C.

8. State and prove a version of the Schwartz reflection principle.

Let u(x, y) be a continuous function on H which is harmonic on H and identically 0 on R.
Then there is a harmonic function U on C such that U |H = u.

Proof. Define

U(x, y) =

{
u(x, y) if x+ iy ∈ H
−u(x,−y) else.

U is certainly harmonic on H since u is. Furthermore, on the lower half plane,

∂2U

∂x2
+
∂2U

∂y2
= −∂

2u

∂x2
− ∂2u

∂y2
= 0,

so U is harmonic away from R.

Let x ∈ R. To show U is harmonic at x, we need only show that U satisfies the mean value
property at x. That is, we need to show that for any r > 0,

U(x+ 0i) = 0 =
1

2π

∫ 2π

0
U(x+ reiθ)dθ.

This integral must vanish since

∫ 2π

0
U(x+ reiθ)dθ =

∫ π

0
U(x+ reiθ)dθ +

∫ 2π

π
U(x+ reiθ)dθ

=

∫ π

0
u(x+ reiθ)dθ +

∫ 2π

π
−u(x+ re−iθ)dθ

=

∫ π

0
u(x+ reiθ)dθ −

∫ π

0
u(x− re−iθ)dθ

=

∫ π

0
u(x+ reiθ)dθ −

∫ π

0
u(x+ reiθ)dθ = 0.

Thus, U is harmonic on R, so U is harmonic on C.
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Note that the above argument can be used to show the Schwartz reflection principle for
analytic functions on H which take real values on the real axis by fixing u as the imaginary
part of any such function.
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5. Let f(z) be an entire holomorphic function. Suppose that f(z) = f(z + 1) and |f(z)| ≤ e|z|

for all z ∈ C. Prove that f is constant.

Observe that the function

g(z) =
1

sin(πz)

also satisfies g(z + 1) = g(z), and g has a simple pole at each integer. Therefore

h(z) =
f(z)− f(0)

sin(πz)

is an entire, periodic function with period 1. We claim that h is identically 0. To show this,
we will first show that h is bounded on S = {x+ iy ∈ C : 0 ≤ x ≤ 1}. For any x+ iy ∈ S,

|h(x+ iy)| =
∣∣∣∣f(x+ iy)− f(0)

sin(πx+ iy)

∣∣∣∣
≤ 2e|x+iy| + |f(0)|
|e−πyeiπx − eπye−iπx|

� e|y|

e|πy|
.

It follows that |h(z)| → 0 uniformly as |y| → ∞, so h is bounded on S. Since h(z+ 1) = h(z),
we have that h is bounded on C, and so by Liouville, h is constant. Furthermore, since
|h(x+ iy)| → 0 as y →∞, we conclude that h ≡ 0 in C. Then f(z)− f(0) ≡ 0 on C, so f is
constant.
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