12.7 Increments and Differentials

First, we remind you of the notation that we used for functions of a single variable. We
defined the increment Ay of the function f (x) at X =a tobe Ay =f (a+Ax)—f (a).

Referring to Figure 1, notice that for Ax small, Ay ~dy =f '(@)Ax , where we referred
to dy as the differential of y .

4 v = fla) + filajx — a)

a a+ Ax

AN

Figure 1: Increments and differentials for a function of one variable.

For z =f (x,y), we define the increment of f at (a,b) to be
Az =f (@+Ax,b+Ay)-f (a,b).
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Figure 2: Linear approximation.
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Notice that as long as f is continuous in some open region containing (a,b) and f

has first partial derivatives on that region, we can write:
Az =f (a+Ax,b+Ay)-f (a,b)

=[f (@+Ax,b+Ay)—f (ab+Ay)]+[f @b+Ay)-f (a,b)]
Adding and subtracting f (a,b +Ay ) .
=f, (U.b+Ay)[(a+ax)-a]+f, (@v)[(b+Ay)-b |
Applying the Mean Value Theorem to both terms.
=f, (U,b+Ay)Ax +f (a,v)Ay,

by the Mean Value Theorem. Here, U is some value between a and a+AXx ,andV is
some value between b and b + Ay (see Figure 3). This gives us

Az =f, (u,b+Ay)Ax +f  (a,\v)Ay,

={f, @b)+[f, (b +Ay)-f, (ab)]}Ax +{fy(a,b)+[fy(a,v)—fy(a,b)]}Ay
which we rewrite as Az =f, (a,b)Ax +f (a,b)Ay +&Ax +¢&,Ay , where
&=[f,wb+Ay)-f, (ab)] and & =[f (av)-f, (@b)].

(u, b + Ay)
h £ ‘ﬁ}-__ ....... - L -._j_
[ #lda, r!} _'l.'l.'
[ — s oY
I | X
i U a+ Ax
f—— Ax——]

Figure 3: Intermediate points from the Mean Value Theorem.

We have now established the following result.
Theoreml
Suppose that z =f (x,y) is defined on the rectangular region

R ={(x,y)eR2|x0<x <X, &Y, <Y <y1} and f, and f, are defined on R and
are continuous at (a,b)eR . Then for(a+Ax,b+Ay)eR ,

Az =f, (@,b)Ax +f, (a,b)Ay +&AX +&,Ay where ¢, and ¢, are functions of Ax
and Ay that both tend to zero, as (Ax,Ay ) —(0,0).

Functions of several variables and differentiation-Math107 Page 2



Example 1 (Computing the IncrementAz )
For z =f (x,y)=x?-5xy, find Az .
Solution

We have

Az =f (x +Ax,y +Ay )-f (x,y).
=(X +AX )2 —5(x +Ax )(y +Ay )—[x2—5xy].
=X % +2X AX +(Ax )2—5(xy +X AY +Yy AX +AX Ay )—X * +5xy
=(2x —5)Ax +(=5x ) Ay +(AX ) Ax +(-5AX )Ay.
=f, (X, y)Ax +f (X,y) Ay +5AX +&,Ay,
where & =Ax and &, =—5Ax both tend to zero, as (Ax,Ay ) —(0,0).
Example 2
Let z =f (X,y)=3x?—xy.
(@) If Ax and Ay are increments of X and y , find Az .
(b) Use Az to calculate the change in f (x,y) if (x,y ) changes from (1,2) to

(1.01,1.98) .

Solution
(a) We have

Az =f (x +Ax,y +Ay )-f (x,y).
=3(x +Ax )" —(x +Ax)(y +Ay)—[3x2—xy].

=3X*+6X AX +3(AX )2—(xy +X Ay +Y AX +AX Ay )—3x * +Xy
=(6x —y )AX +(—x ) Ay +(3AX )Ax +(-Ax )Ay.
=f, (X, y) Ax +f (X,y) Ay +£AX +&,Ay,
where g =3Ax and & =—Ax both tend to zero, as (Ax,Ay ) —(0,0).
(b) If (x,y ) changes from (1,2) to (1.01,1.98), substituting x =1,y =2, Ax =0.01,
and Ay =-0.02 into the formula for Az gives us
A7 = [6(1) - 2] (0.01) — (1)(- 0.02) +3(0.01)> — (0.01)(— 0.02) = 0.0605.

Remark1l
If we increment x by the amount dx = AX and increment y by dy = Ay , then we

define the total differential of z tobe dz =f, (x,y)dx +f (x,y)dy .
Definition1
Let z =f (x,y). We say that f is differentiable at (a,b) if we can write

Az =f, (@,b) Ax +f,(a,b) Ay +&£AX +&,Ay, where ¢ and ¢, are both functions of
Ax and Ay and &,&, —0 ,as (Ax,Ay )—(0,0). We say that f is differentiable on

aregion R = R? whenever f is differentiable at every pointin R .
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Definition2

The linear approximation tof (x,y,z) at the point (a,b,c) is given by

L(x,y,z)=f (a,b,c)+f, (a,b,c)(x —a)+f (a,b,c)(y —-b)+f,(ab,c)(z —c).
Example 3

The dimensions of a closed rectangular box are measured as 3 feet, 4 feet, and 5 feet,
with a possible error of i% inch in each measurement. Use differentials to approximate
the maximum error in the calculated value of

(a) The surface area.

(b) The volume.

Solution

(a) The surface areais S = 2(Xy +YZ +X2 ) So

dS =2(y +z)dx +2(X +z)dy +2(Xx +y)dz.

_+_
As dx =dy =dz :ii inch:ii feet, we get dS = (18+16+14) _—1j:il feet?.
16 192 192

(b) The volumeisV =xy z .So

dV =yz dx +xz dy +xy dz

+
_—1j = +ﬂ feet®.
192

:(20+15+12)( +
192

12.8 Chain Rule and Implicit Differentiation

The general form of the chain rule says that for differentiable functions f and g ,

;—X[f (9())]=f "(90(x))g'(x).

We now extend the chain rule to functions of several variables.

Theorem1 (Chain Rule)

If z=f (x(t),y(t)), where x(t) and y (t) are differentiable and f (x,y) is a

differentiable function of X and y , then
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d d of d
éza[ (x@).y ®))]= (x(t)y(t))—+5( (t)y(t))%.
I=J{x,vy)
dz .I %
ox Jy
X v
dx dy
dt di
I I

d_adx ady
dt  ox dt oy dt

Examplel (Using the Chain Rule)

Forz =f (x,y)=x%",x(t)=t>-1 and y (t) =sint , find the derivative of
g)=f (x(t),y®)) .

Solution
. . . 62 y az 2 y 1 1
We first compute the derivatives a—=2xe : 5:x e’ ,x'(t)=2t and y '(t) =cost .
X
The chain rule (Theorem1l) then gives us
g'(t ()_a_Zd_X a_Zd_y_zxey(zt)+x2ey(cost)
ox dt oy dt .

= 4t (t2 ~1)e"™ +(cost ) (t2 ~1) e

Theorem2 (Chain Rule)
Suppose that z =f (x,y) ,where f is adifferentiable function of x and y and

where X =x (s,t) and y =(s,t) both have first-order partial derivatives. Then we
0z 07 oX 8_z@anda_z 0z OX. azay

have the chain rules: —=——+
oS OX 0s oy os ot ox ot 6yat
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9z L 9z
ox dy
X ¥
d9x Ldx  dy ay
ds at  ds \dt

]

Example 2 (Using the Chain Rule)

Suppose that f (x,y)=e", x (u,v)=3usinvand y (u,v)=4"u. For

gyv)=f (x@\v),y,y)), find the partial derivativesg—g and gv—g :
u

of =xe ,%:3sinv and

Solution
We first compute the partial derivatives — =ye* , — =
OX oy ou

5 4y ? . The chain rule (Theorem 2) gives us
u
ou oOX ou oy ou

Substituting for X and y , we get

0 ) 24 .
9 _12uv Zsinv e L 120y Zsiny e

u
12u% ?sinv

= 24uv %sinv e
For the partial derivative of g with respecttoV , we compute — =3u cosv and

oy

12u% 2sinv

8uv . Here, the chain rule gives us :

og ot ox ooy _ ye™ (3ucosv )+xe™ (8uv ).

N X OV Yy ov
Substituting for x and y , we have : a—g=(12u2v2cosv +24u siny Je! s

%y

Example 3 (Converting from Rectangular to Polar Coordinates)

Page 6
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For a differentiable function f (x,y) with X =rcos@ and y =rsind , show that
f,=f, cos@+f, sing and f =f, cos’6+2f  cos@sind+f  sin’6 .
Solution

First, notice that Z—X =Co0sd and% =sin@. From Theorem 2, we now have
r r
OX oy .
fr :fx g-f-fy Ezfx C059+fy Sln6’ .

Be very careful when computing the second partial derivative. Using the expression we
have already found for f_and Theorem2, we have

0 0 .
f :a_r(f’):a_r(fx cosf+f, sind)

0 0 .
:a_r(fx cosé?)+a—r(fy sing)

0 oXx 0 oy 0 ox O oy | .
L A N L AT A
{8x( X)ar +ay( x)ar}cose{ax( y)ar +ay( y)ar}sme
=[f, cos@+f, sind|cosd+[f,, coso+f, sind|sing

=f, cos’0+2f sinfcosd+f  sin’é.

Implicit Differentiation
e Suppose that the equation F(x,y) =0 defines y implicitly as a function of x ,

say y =f (x).Weletz=F(x,y), where x =t and y =f (t). From
dz dx dy

Theoreml, we have — =F, d_t+ Fy d_t But, since z =F(x,y) =0, we have
d_z =0. Further, since x =t , we haved—x =land d_y = dl This gives us
dt dt dt dx
dy . . dy . .
0=F + Fy d_ Notice that we can solve this ford— , provided Fy #0 . In this
X X
dy F,

case, we have ; — =——2
dx F

y
e Suppose that the equation F(x,y,z) =0 implicitly defines a function

z =f (x,y), where f is differentiable. Then, we can find the partial derivatives
f, and f  using the chain rule, as follows. We firstletw =F(x,y,z). From the

chain rule, we have w _ F, a—X+ F Q+ F, 8_2 Notice that since
OX ox 7 ox OX

w :F(x,y,z)zo,%:o . Also, a—le and ﬂ:O, since X and y are
OX OX OX
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independent variables. This givesus 0=F, +F, 2—2 We can solve this for Z_Z ,
X X

aslongas F, =0, to obtain: a =—F—X.
OX F,
Likewise, differentiating W with respectto y leads us to: 8—Z: —F—y, F,#0 .

z

Example 4 (Finding Partial Derivatives Implicitly)

Find 2—2 and 2—2 ,given that F(x,y,z)=xy?+z°+sin(xyz )=0 .
X y

Solution
First, note that using the usual chain rule, we have: F, =y *+yz cos(xyz),

F, =2xy +xz cos(xyz) and F, =3z 24Xy cos(xyz) .
If3z 2 +xy cos(xyz ) #0 then
o _ F _ y % +yz cos(xyz) and 6_2__F_y_ 2Xy +Xz cos(xyz)

X

x F 3z % +xy cos(xyz) oy F, 322+ xy cos(xyz)

z

12.9 The gradient and Directional derivatives

In this section, we develop the notion of directional derivatives. Suppose that we want to
find the instantaneous rate of change of f (x,y) at the pointP (a,b) and in the direction

given by the unit vector u =<u,,u, >. Let Q(x,y) be any point on the line through
P (a,b) in the direction of u . Notice that the vector PQ is then parallel to U . Since two
vectors are parallel if and only if one is a scalar multiple of the other, we have that
PQ =h.u, for some scalar h , so that PQ = <x —a,y -b >=hu =h <u ,u, >=<hu,hu, >.
It then follows that X —a=hu, andy —b =hu,, so that x =a+hu, andy =b +hu, .
The point Q is then described by (a+hu1,b + hu2) , as indicated in Figure 1. Notice
that the average rate of change of z =f (x,y) along the line from P to Q is then
f (a+hu1,b +hu2)—f (a,b)

h
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O(a + huy, b + huy)

/

u="{u,u)  pa. b

Figurel: The vector PQ .

The instantaneous rate of change of f (x : y) at the point P (a,b) and in the direction of
the unit vector U is then found by taking the limitash — 0.

Definition1
The directional derivative of f (x,y) at the point (a,b) and in the direction of the

f hu,,b +hu,)—f (a,b
unit vector u =<u,,u, > is given by Duf(a,b)zling (a+ Uy +h u2) (@ )’

provided the limit exists.

Remark1:
We can extend the definition of the directional derivative of a function in 3 variables as:
The directional derivative of f (x,y,z) at the point (a,b,c) and in the direction of the

unit vector u =<u,,U,,u; > is given by
f (a+hu,b+hu,,c+hu,)-f (ab,c)
h

D, f (ab,c)= Llrrg , provided the limit exists.

Theoreml
- Suppose that f is differentiable at (a,b) and u =<u,,u, > is any unit vector.

Then, we can write D, f =f, (a,b)u, +f (a,b)u, .
- Suppose that f is differentiable at (a,b,c) and u =<u,,u,,u, > is any unit
vector. Then, we can write D, f =f, (a,b,c)u, +f (a,b,c)u,+f,(a,b,c)u, .

Example 1 (Computing Directional Derivatives)
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For f (x,y)=x?y —4y?®, compute D, f (2,1) for the directions

J3 1

AUu=<—,=>
(@) 52

(b) u in the direction from (2,1) to (4,0).

Solution
Regardless of the direction, we first need to compute the first partial derivatives

i:2xy and %:xz—ﬂyz. Then, f, (21)=4 and f,(2,1)=-8.

OX
31

e For (a), the unit vector is given as U =< >3 > and so, from Theorem 1 we

B3

haveD, f (2,1)=f (21)u,+f, (2)u, :47—8%:2J§—4<0. Notice that

this says that the function is decreasing in this direction.
o For (b), we must first find the unit vector U in the indicated direction. Observe

that the vector from (2,1) to (4,0) corresponds to the position vector < 2,—1>

and so, the unit vector in that direction is u :ﬂ 2 > . We then
ll<2,-1>| \/_ «/_
have from Theorem 1 that
2 -) 16

D, f (21)=f (2)u,+f, (2)u,=4 -8) >0. So, the function

EEE

is increasing rapidly in this direction.

For convenience, we define the gradient of a function to be the vector-valued function
whose components are the first-order partial derivatives of f . We denote the gradient
of afunction f bygrad f orVf .

Definition 2
The gradient of f (X, y) is the vector-valued function

Vi (x,y)= <—(x y) (x y)>——(x y)i +E(X ,¥)j , provided both partial

derivatives exist. Slmllarly, we define the gradient of f (x,y,z) as the vector-valued

function

of of of of of - of
Vf (X,y,Z)=<&(X,y,Z),@(X,y,Z),E(X,y,Z) X (X Y, Z) +5(X Yo Z)J (X Yy, Z)k

provided all the partial derivatives are defined.

Theorem 2
If f is adifferentiable function of x and y and U is any unit vector, then

D, f(x,y)=Vf (x,y).u
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Similarly, if f is a differentiable function of x ,y and z and U is any unit vector,
thenD, f (x,y,z)=Vf (x,y,z).u

Example 2 (Finding Directional Derivatives)
For f (x,y)=x?+y? find D, f (1,-1) for
(d) U in the direction of v =<-3,4> .
(b) U in the direction of v =<3,—4>.

Solution

First, note that Vf (x,y):<?—(x,y),%(x,y)>:<2x,2y >,
X

At the point (1,—1) , we have Vf (1 -1)=<2,-2>.

. . o . -3 4 o
For (a), a unit vector in the same directionas Vv isu =< 5 > . The directional

derivative of f in this direction at the point (1,—1) is then
Du f (1,_1):< 2,—2><_—3,ﬂ>:2><_—3+(_2)xﬂ:__14
55 5 5 5

For (b), the unit vectoris u = <§%4 > and so, the directional derivative of f in this

direction at (1,-1) is D, f (1,—1)=<2,—2>.<§,_—4>=2x§+(—2)><_—4=E.
55 5 5 5

Theorem 3
Suppose that f is a differentiable function of x and y at the point (a,b). Then

* the maximum rate of change of f at (a,b) is ||Vf (a,b)| , occurring in the

direction of the gradient;

e the minimum rate of change of f at (a,b) (a, b)is —||Vf (a,b)”, occurring

in the direction opposite the gradient;
e therate of change off at (a,b) is Oin the directions orthogonal to

vf (a,b).
« thegradientVf (a,b) is orthogonal to the level curve f (x,y)=c at the
point (a,b), where c =f (a,b).

Example 3 (Finding Maximum and Minimum Rates of Change)

Find the maximum and minimum rates of change of the function f (x,y)=x°+y? at
the point (1,3).

Solution
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We first compute the gradient Vf =< 2x,2y > and evaluate it at the point (1,3);

\%i (1, 3) =<2,6>. From Theorem 3, the maximum rate of change of f at (1,3) is
vf (13) _..1 38
[V @3] o Vi
Similarly, the minimum rate of change of f at (1,3) is—||Vf (13 || =40 =20,

3)

which occurs in the direction of U = va E 13 H \/1—0 @
y
&

HVf 13 H 2\/_0 and occurs in the direction of U =

...fJ.:— — u
z 2= 16
2__ /r Y
I_ I_ .. : — ]_D \ 1 I -_II
e — ¥
—di\ | -2 204
_2__
—4T

Figure2: Contour Plot of z =x*+Yy .

Example 4 (Finding the Direction of Maximum Increase)
{rer)

If the temperature at point (x,y,z ) isgiven by T (x,y,z ):85+[1_1é_0je ’

find the direction from the point (2,0,99) in which the temperature increases most

rapidly.
Solution
We first compute the gradient
Vi =< i&f_ , a >
OX oy oz
<2 [1_2_]e-<“+y2>,_zy (1_Z_je-<“+v2>,—_1e-<x2+y2> .
100 100 100
and Vf (2,0,99)=< ;—;e“‘, 0, %e4‘ >. To find a unit vector in this direction, you can

simplify the algebra by canceling the common factor of e ™ and multiplying by 100. A
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unit vector in the direction of < —4, 0, —1> and also in the direction of Vf (2,0 ,99) is

then<_—4 0 _—1>
N AN T
Theorem 4

Suppose that f (x,y,z) has continuous partial derivatives at the point (a,b,c)
and Vf (a,b,c) #0. Then, Vf (a,b,c)is a normal vector to the tangent plane to the
surface f (x,y,c) =k , at the point (a,b,c). Further, the equation of the tangent

planeis f, (a,b,c)(x —a)+f, (ab,c)(y -b)+f, (ab,c)(z —c)=0.
Example 5 (Using a Gradient to Find a Tangent Plane and Normal Line to a Surface)

Find equations of the tangent plane and the normal line to x*y —y*+z% =7 atthe
point (1,2,3).

Solution
If we interpret the surface as a level surface of the function f (x,y,z)=x% —y?+z?,

a normal vector to the tangent plane at the point (1,2,3) is given by Vf (1,2,3). We
have Vf =<3x?y,x°-2y,2z > andVf (12,3)=<6,-3,6>. Given the normal
vector<6,—3,6> and point (1, 2,3) , an equation of the tangent plane is

6(x —1)-3(y —2)+6(z —3)=0 .

X =146t
The normal line has parametric equations<y =2-3t ,teR.
z =3+6t
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