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12.7 Increments and Differentials 

First, we remind you of the notation that we used for functions of a single variable. We 

defined the increment y  of the function ( )f x  at x a  to be ( ) ( )y f a x f a    . 

Referring to Figure 1, notice that for x  small, '( )y dy f a x     , where we referred 

to dy  as the differential of y . 

 
Figure 1: Increments and differentials for a function of one variable. 

 
 

For ( , )z f x y , we define the increment of f  at  ,a b  to be  

( , ) ( , )z f a x b y f a b     . 

 
 

Figure 2: Linear approximation. 
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Notice that as long as f  is continuous in some open region containing  ,a b   and f   

has first partial derivatives on that region, we can write: 

   

( , ) ( , )

( , ) ( , ) ( , ) ( , )

z f a x b y f a b

f a x b y f a b y f a b y f a b

    

       
  

Adding and subtracting  ,f a b y  . 

   ( , ) ( , )x yf u b y a x a f a v b y b               

Applying the Mean Value Theorem to both terms. 

( , ) ( , ) ,x yf u b y x f a v y       

by the Mean Value Theorem. Here, u   is some value between a   and a x  , and v  is 

some value between b  and b y  (see Figure 3). This gives us 

( , ) ( , ) ,x yz f u b y x f a v y       

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , )x x x y y yf a b f u b y f a b x f a b f a v f a b y             

which we rewrite as 
1 2( , ) ( , )x yz f a b x f a b y x y          , where 

 1 ( , ) ( , )x xf u b y f a b     and 
2 ( , ) ( , )y yf a v f a b     . 

 

 
 

Figure 3: Intermediate points from the Mean Value Theorem. 

We have now established the following result. 
Theorem1 

Suppose that ( , )z f x y   is defined on the rectangular region 

  2

0 1 0 1, | &R x y x x x y y y       and xf  and yf  are defined on R  and 

are continuous at  ,a b R .  Then for  ,a x b y R    ,  

1 2( , ) ( , )x yz f a b x f a b y x y           where 1  and 2  are functions of x  

and y  that both tend to zero, as    , 0,0x y   . 
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Example 1 (Computing the Increment z ) 

 For 
2( , ) 5z f x y x xy   , find z . 

Solution 
We have  

   

    

   

       

2 2

22 2

1 2

, , .

5 5 .

2 5 5

2 5 5 5 .

( , ) ( , ) ,x y

z f x x y y f x y

x x x x y y x xy

x x x x xy x y y x x y x xy

x x x y x x x y

f x y x f x y y x y 

      

           

              

            

       

  

where 1 x    and 2 5 x     both tend to zero, as    , 0,0x y   . 

Example 2 

Let 
2( , ) 3 .z f x y x xy     

(a) If x  and y  are increments of x  and y , find z  . 

(b) Use z  to calculate the change in ( , )f x y  if  ,x y  changes from  1,2  to 

 1.01,1.98  . 

Solution 
(a) We have 

 

   

    

   

       

2 2

22 2

1 2

, , .

3 3 .

3 6 3 3

6 3 .

( , ) ( , ) ,x y

z f x x y y f x y

x x x x y y x xy

x x x x xy x y y x x y x xy

x y x x y x x x y

f x y x f x y y x y 

      

           

              

           

       

 

where 1 3 x    and 2 x     both tend to zero, as    , 0,0x y   . 

(b) If  ,x y  changes from  1,2  to  1.01,1.98 , substituting 1, 2, 0.01,x y x     

and 0.02y    into the formula for z gives us

  26(1) 2 (0.01) (1)( 0.02) 3(0.01) (0.01)( 0.02) 0.0605.z           

Remark1 

If we increment x  by the amount dx x   and increment y  by dy y  , then we 

define the total differential of z  to be ( , ) ( , )x ydz f x y dx f x y dy  .  

Definition1  

Let ( , )z f x y . We say that f  is differentiable at  ,a b  if we can write 

1 2( , ) ( , ) ,x yz f a b x f a b y x y           where 1  and 2  are both functions of 

x  and y  and 1 2, 0    , as    , 0,0x y   . We say that f  is differentiable on 

a region 
2R   whenever f   is differentiable at every point in R . 
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Definition2 

The linear approximation to ( , , )f x y z  at the point  , ,a b c   is given by 

( , , ) ( , , ) ( , , )( ) ( , , )( ) ( , , )( ).x y zL x y z f a b c f a b c x a f a b c y b f a b c z c         

Example 3 

The dimensions of a closed rectangular box are measured as 3 feet, 4 feet, and 5 feet, 

with a possible error of 
1

16
  inch in each measurement. Use differentials to approximate 

the maximum error in the calculated value of  

(a) The surface area.          

(b) The volume. 

Solution 

(a) The surface area is  2S xy yz xz   . So  

2( ) 2( ) 2( ) .dS y z dx x z dy x y dz       

As 
1

16
dx dy dz     inch

1

192
   feet, we get 

1 1
(18 16 14)

192 4
dS

 
     

 
 feet

2.   

(b) The volume is V x y z  . So  

  31 47
20 15 12 feet .

192 192

dV yz dx xz dy xy dz  

 
     

 

  

12.8 Chain Rule and Implicit Differentiation 
 

The general form of the chain rule says that for differentiable functions f  and g  , 

   ( ) ' ( ) ( )
d

f g x f g x g x
dx

   . 

We now extend the chain rule to functions of several variables. 

Theorem1 (Chain Rule) 

If  ( ), ( )z f x t y t , where ( )x t  and ( )y t  are differentiable and ( , )f x y  is a 

differentiable function of x  and y , then 
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     ( ), ( ) ( ), ( ) ( ), ( )
dz d f dx f dy

f x t y t x t y t x t y t
dt dt x dt y dt

 
      

 . 

 

 
dz z dx z dy

dt x dt y dt

 
 
 

 

 
Example1 (Using the Chain Rule) 
 

For 
2( , ) yz f x y x e  ,

2( ) 1x t t   and ( ) siny t t , find the derivative of 

 ( ) ( ), ( )g t f x t y t  . 

Solution 

We first compute the derivatives 2 yz
xe

x





 , 

2 yz
x e

y





 , '( ) 2x t t  and '( ) cosy t t  . 

The chain rule (Theorem1) then gives us 

   

    

2

2
2 sin 2 sin

'( ) 2 2 cos

4 1 cos 1

y y

t t

z dx z dy
g t xe t x e t

x dt y dt

t t e t t e

 
   
 

   

 . 

 
Theorem2 (Chain Rule) 

Suppose that ( , )z f x y  , where f  is a differentiable function of x  and y  and 

where  ,x x s t   and  ,y s t  both have first-order partial derivatives. Then we 

have the chain rules: 
z z x z y

s x s y s

    
 

    
 and 

z z x z y

t x t y t

    
 

    
. 
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Example 2 (Using the Chain Rule) 

Suppose that ( , ) xyf x y e ,  , 3 sinx u v u v and   2, 4y u v v u . For 

 ( , ) ( , ), ( , )g u v f x u v y u v  , find the partial derivatives
g

u




 and 

g

v




 . 

Solution 

We first compute the partial derivatives
xyf

ye
x





 , 

xyf
xe

y





, 3sin

x
v

u





and

24
y

v
u





. The chain rule (Theorem 2) gives us 

   23sin 4xy xyg f x f y
ye v xe v

u x u y u

    
   

    
. 

Substituting for x  and y , we get 

2 2 2 2

2 2

2 12 sin 2 12 sin

2 12 sin

12 sin 12 sin

24 sin .

u v v u v v

u v v

g
uv v e uv v e

u

uv v e


 





  

For the partial derivative of g   with respect to v , we compute 3 cos
x

u v
v





 and 

8
y

u v
v





 . Here, the chain rule gives us : 

   3 cos 8xy xyg f x f y
ye u v xe uv

v x v y v

    
   

    
. 

Substituting for x  and y ,  we have :  
2 22 2 2 12 sin12 cos 24 sin u v vg

u v v u v v e
v


 


 . 

 
Example 3 (Converting from Rectangular to Polar Coordinates) 
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For a differentiable function ( , )f x y  with cosx r    and siny r   , show that 

cos sinr x yf f f    and 
2 2cos 2 cos sin sinrr xx xy yyf f f f       . 

Solution 

First, notice that cos
x

r






 and sin

y

r






. From Theorem 2, we now have 

cos sinr x y x y

x y
f f f f f

r r
 

 
   

 
 . 

Be very careful when computing the second partial derivative. Using the expression we 

have already found for rf   and Theorem2, we have 

   

   

       

2 2

cos sin

cos sin

cos sin

cos sin cos cos sin sin

cos 2 sin cos sin .

rr r x y

x y

x x y y

xx xy yx yy

xx xy yy

f f f f
r r

f f
r r

x y x y
f f f f

x r y r x r y r

f f f f

f f f

 

 

 

     

   

 
  
 

 
 
 

          
      

          

         

  

  

  
Implicit Differentiation 

 Suppose that the equation ( , ) 0F x y   defines y  implicitly as a function of x , 

say ( )y f x . We let ( , )z F x y ,  where x t  and ( )y f t . From 

Theorem1, we have
x y

dz dx dy
F F

dt dt dt
  . But, since ( , ) 0z F x y  , we have

0
dz

dt
 . Further, since x t  , we have 1

dx

dt
 and 

dy dy

dt dx
 . This gives us

0 x y

dy
F F

dx
  . Notice that we can solve this for

dy

dx
 , provided 0yF   . In this 

case, we have : x

y

Fdy

dx F
   . 

 Suppose that the equation ( , , ) 0F x y z   implicitly defines a function

( , )z f x y , where f  is differentiable. Then, we can find the partial derivatives 

xf  and yf  using the chain rule, as follows. We first let ( , , )w F x y z . From the 

chain rule, we have 
x y z

w x y z
F F F

x x x x

   
  

   
. Notice that since 

( , , ) 0w F x y z  , 0
w

x





 . Also, 1

x

x





 and 0

y

x





, since x  and y  are 
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independent variables. This gives us 0 x z

z
F F

x


 


. We can solve this for 

z

x




 , 

as long as 0zF  ,  to obtain: x

z

Fz

x F


 


. 

            Likewise, differentiating w  with respect to y  leads us to: 
y

z

Fz

y F


 


, 0zF   . 

Example 4 (Finding Partial Derivatives Implicitly) 

Find 
z

x




 and 

z

y




 , given that  2 3( , , ) sin 0F x y z xy z xyz     . 

Solution 

First, note that using the usual chain rule, we have: 
2 cos( )xF y yz xyz  , 

2 cos( )yF xy xz xyz   and 
23 cos( )zF z xy xyz   .  

 If
23 cos( ) 0z xy xyz   then  

2

2

cos( )

3 cos( )

x

z

Fz y yz xyz

x F z xy xyz

 
   

 
 and 

2

2 cos( )

3 cos( )

y

z

Fz xy xz xyz

y F z xy xyz

 
   

 
. 

 
12.9 The gradient and Directional derivatives 
 
In this section, we develop the notion of directional derivatives. Suppose that we want to 

find the instantaneous rate of change of ( , )f x y  at the point ( , )P a b  and in the direction 

given by the unit vector 1 2,u u u   . Let ( , )Q x y  be any point on the line through 

( , )P a b  in the direction of u . Notice that the vector PQ  is then parallel to u . Since two 

vectors are parallel if and only if one is a scalar multiple of the other, we have that 

.PQ h u , for some scalar h , so that 1 2 1 2, . , ,PQ x a y b h u h u u hu hu            . 

It then follows that 1x a hu   and 2y b hu  , so that 1x a hu   and 2y b hu  . 

The point Q  is then described by  1 2,a hu b hu   , as indicated in Figure 1. Notice 

that the average rate of change of ( , )z f x y  along the line from P  to Q  is then 

 1 2, ( , )f a hu b hu f a b

h

  
 . 
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Figure1: The vector PQ  . 

 

The instantaneous rate of change of  ,f x y  at the point ( , )P a b  and in the direction of 

the unit vector u  is then found by taking the limit as 0h  . 

 
Definition1 
 

The directional derivative of ( , )f x y  at the point ( , )a b  and in the direction of the 

unit vector 1 2,u u u    is given by 
 1 2

0

, ( , )
( , ) limu

h

f a hu b hu f a b
D f a b

h

  
 , 

provided the limit exists. 
 
 
 
Remark1: 
We can extend the definition of the directional derivative of a function in 3 variables as: 

The directional derivative of ( , , )f x y z  at the point ( , , )a b c  and in the direction of the 

unit vector 1 2 3, ,u u u u    is given by 

 1 2 3

0

, , ( , , )
( , , ) limu

h

f a hu b hu c hu f a b c
D f a b c

h

   
 , provided the limit exists. 

 
Theorem1 

- Suppose that f  is differentiable at ( , )a b  and 1 2,u u u    is any unit vector. 

Then, we can write 1 2( , ) ( , )u x yD f f a b u f a b u   . 

- Suppose that f  is differentiable at ( , , )a b c  and 1 2 3, ,u u u u    is any unit 

vector. Then, we can write 1 2 3( , , ) ( , , ) ( , , )u x y zD f f a b c u f a b c u f a b c u    . 

 
Example 1 (Computing Directional Derivatives) 
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For 
2 3( , ) 4f x y x y y  , compute (2,1)uD f  for the directions 

    (a) 
3 1

,
2 2

u     

    (b) u in the direction from  2,1  to  4,0 . 

 
Solution  
Regardless of the direction, we first need to compute the first partial derivatives 

2
f

xy
x





 and 

2 212
f

x y
y


 


. Then,  2,1 4xf   and  2,1 8yf   . 

 For (a), the unit vector is given as 
3 1

,
2 2

u     and so, from Theorem 1 we 

have   1 2

3 1
2,1 (2,1) (2,1) 4 8 2 3 4 0

2 2
u x yD f f u f u       . Notice that 

this says that the function is decreasing in this direction. 

 For (b), we must first find the unit vector u  in the indicated direction. Observe 

that the vector from  2,1  to  4,0  corresponds to the position vector 2, 1  

and so, the unit vector in that direction is 
2, 1 2 1

,
|| 2, 1 || 5 5

u
   

  
  

 . We then 

have from Theorem 1 that 

  1 2

2 ( 1) 16
2,1 (2,1) (2,1) 4 ( 8) 0

5 5 5
u x yD f f u f u


       . So, the function 

is increasing rapidly in this direction. 
 
For convenience, we define the gradient of a function to be the vector-valued function 

whose components are the first-order partial derivatives of f  . We denote the gradient 

of a function f  by grad f  or f . 

 
Definition 2 

The gradient of ( , )f x y  is the vector-valued function

( , ) ( , ), ( , ) ( , ) ( , )
f f f f

f x y x y x y x y i x y j
x y x y

   
     

   
, provided both partial 

derivatives exist. Similarly, we define the gradient of ( , , )f x y z  as the vector-valued 

function

( , , ) ( , , ), ( , , ), ( , , ) ( , , ) ( , , ) ( , , )
f f f f f f

f x y z x y z x y z x y z x y z i x y z j x y z k
x y z x y z

     
      

     
, 

provided all the partial derivatives are defined. 
 
Theorem 2 

If f  is a differentiable function of x  and y  and u  is any unit vector, then

( , ) ( , ) .uD f x y f x y u   
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Similarly, if f  is a differentiable function of x , y  and z  and u  is any unit vector, 

then ( , , ) ( , , ) .uD f x y z f x y z u  

 
Example 2 (Finding Directional Derivatives) 

For 
2 2( , )f x y x y  , find  1, 1uD f    for  

(a) u  in the direction of 3,4v      . 

(b) u  in the direction of 3, 4v     . 

 
Solution 

First, note that ( , ) ( , ), ( , ) 2 ,2
f f

f x y x y x y x y
x y

 
      

 
. 

At the point  1, 1  , we have (1, 1) 2, 2f      .  

 For (a), a unit vector in the same direction as v  is 
3 4

,
5 5

u


    . The directional 

derivative of f in this direction at the point  1, 1  is then

 
3 4 3 4 14

1, 1 2, 2 . , 2 ( 2)
5 5 5 5 5

uD f
  

             . 

 For (b), the unit vector is 
3 4

,
5 5

u


    and so, the directional derivative of f  in this 

direction at  1, 1   is  
3 4 3 4 14

1, 1 2, 2 . , 2 ( 2)
5 5 5 5 5

uD f
 

             . 

Theorem 3 

Suppose that f  is a differentiable function of x  and y at the point ( , )a b . Then 

 the maximum rate of change of f  at ( , )a b  is  ,f a b  , occurring in the 

direction of the gradient; 

 the minimum rate of change of f  at ( , )a b  (a, b) is  ,f a b  , occurring 

in the direction opposite the gradient; 

 the rate of change of f  at ( , )a b  is 0 in the directions orthogonal to 

 ,f a b . 

 the gradient  ,f a b  is orthogonal to the level curve  ,f x y c  at the 

point ( , )a b , where  ,c f a b . 

 
Example 3 (Finding Maximum and Minimum Rates of Change) 
 

Find the maximum and minimum rates of change of the function 
2 2( , )f x y x y   at 

the point (1,3) . 

 
Solution 
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We first compute the gradient 2 ,2f x y     and evaluate it at the point (1,3) ; 

 1,3 2,6f    . From Theorem 3, the maximum rate of change of f  at (1,3)  is 

 1,3 40 2 10f   and occurs in the direction of 
 

 

1,3 1 3
,

1,3 10 10

f
u

f


   


. 

Similarly, the minimum rate of change of f  at (1,3)  is  1,3 40 2 10f      , 

which occurs in the direction of 
 

 

1,3 1 3
,

1,3 10 10

f
u

f

  
    


. 

 

Figure2: Contour Plot of 
2 2.z x y   

 
 
Example 4 (Finding the Direction of Maximum Increase) 

If the temperature at point  , ,x y z  is given by  
 2 2

, , 85 1
100

x yz
T x y z e

  
   

 
,  

find the direction from the point  2,0,99  in which the temperature increases most 

rapidly. 
Solution  
We first compute the gradient 

     2 2 2 2 2 2

, ,

1
2 1 , 2 1 ,

100 100 100

x y x y x y

f f f
f

x y z

z z
x e y e e

     

  
   

  

   
         

   

  

and   4 41 1
2,0,99 , 0 ,

25 100
f e e  

    . To find a unit vector in this direction, you can 

simplify the algebra by canceling the common factor of 
4e 
 and multiplying by 100. A 
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unit vector in the direction of 4, 0 , 1     and also in the direction of  2,0 ,99f is 

then
4 1

, 0 ,
17 17

 
   . 

 
Theorem 4 

Suppose that ( , , )f x y z  has continuous partial derivatives at the point  , ,a b c  

and ( , , ) 0f a b c  . Then, ( , , )f a b c is a normal vector to the tangent plane to the 

surface ( , , )f x y c k , at the point  , ,a b c . Further, the equation of the tangent 

plane is            , , , , , , 0x y zf a b c x a f a b c y b f a b c z c       . 

 
Example 5 (Using a Gradient to Find a Tangent Plane and Normal Line to a Surface) 
 

Find equations of the tangent plane and the normal line to 
3 2 2 7x y y z    at the 

point  1,2,3 . 

 
Solution  

If we interpret the surface as a level surface of the function 
3 2 2( , , )f x y z x y y z   , 

a normal vector to the tangent plane at the point  1,2,3  is given by  1,2,3f . We 

have 
2 33 , 2 , 2f x y x y z      and  1,2,3 6 , 3 , 6f     . Given the normal 

vector 6 , 3 , 6    and point  1,2,3 , an equation of the tangent plane is  

     6 1 3 2 6 3 0x y z       . 

The normal line has parametric equations

1 6

2 3 , .

3 6

x t

y t t

z t

 


  
  

  

 
 
 


